
Efficient Broadcast Encryption
using Multiple Interpolation Methods

Eun Sun Yoo1, Nam-Su Jho1, Jung Hee Cheon1, and Myung-Hwan Kim1 ?

1ISaC and Department of Mathematical Sciences, Seoul National University,
Seoul 151-747, Korea

{eunsun, drake, jhcheon, mhkim}@math.snu.ac.kr

Abstract. We propose a new broadcast encryption scheme based on
polynomial interpolations. Our scheme, obtained from the Naor-Pinkas
scheme by partitioning the user set and interpolating multiple polyno-
mials, turns out to be better in efficiency than the best known broadcast
schemes like the Subset Difference and the Layered Subset Difference
methods, which are tree based schemes. More precisely, when r users
are revoked among n users, our method requires O(log(n/m)) user keys
and O(αr + m) transmission overhead in the worst case, where m is the
number of partitions of the user set and can be chosen to optimize its
efficiency, and α is a predetermined constant satisfying 1 < α < 2. So,
our scheme is always better in the storage than the tree based schemes
(whose storage overhead is O(log2 n) or O(log3/2 n)). In the transmission
overhead, our scheme beats those schemes except for a very small r/n.
The computation cost is worse than the other schemes but is reasonable
for systems with moderate computing power. The security proof is given
based on the computational Diffie-Hellman problem.

1 Introduction

Broadcast Encryption is a cryptographic method to efficiently broadcast infor-
mation to a large set of users so that only privileged users can decrypt it. We
assume that each user is given a user-key, which is a set of secrets, from the
center before starting the broadcast and the user key is never updated, that is,
users are stateless receivers. In each session, a message is encrypted by a session
key and the encrypted message is transmitted over an insecure channel with the
encrypted value, called a header, of the session key, which can be decrypted only
by the user-keys. When a user needs to be removed from the set of the privi-
leged users, the center should be able to make a header to be decrypted only
by the non-revoked users. Each session can have an independent set of revoked
users. That is, a revoked user in one session may subscribe another session. The
application covers pay TV, internet multicast of movies or news, and mobile
games. The best known broadcast schemes are the Subset Difference method
(SD) [?] and the Layered Subset Difference method (LSD) [?], which is a variant

? This author was partially supported by KRF Research Fund(2004-070-100001)



of SD adopting the notion of layers. There is also the Stratified Subset Difference
method (SSD) [?], which was proposed at Crypto’04.

The polynomial interpolation method was first introduced by Berkovits [?]
and improved by Naor and Pinkas [?]. In the improved scheme, called the NP
scheme, a user-key is only one field element and the header size is very small.
However, since this scheme is originally designed for multicast with traitor trac-
ing rather than broadcast, it has the best performance for small size user sets
(of several hundred users, say) and requires key refreshment from time to time.
The scheme can also be used for stateless receivers without key refreshment.
But in this case, the NP scheme has shortcomings. First, the system cannot
revoke more than d users, where d is the degree of a polynomial predetermined
in the setup stage. Second, its header size depends on d, not on the number r of
revoked users. If we increase d large enough to cover the maximum number of
revoked users, the header size increases along with d even if r is small. Third,
the computation cost for each user increases in the square order of d, which is
too large to be practical even for d ≈ 1000.

In this paper, we adopt two simple ideas, partitioning the users and inter-
polating multiple polynomials, to overcome the weaknesses of the NP scheme
mentioned above as a broadcast encryption for a large number of stateless re-
ceivers. Our scheme covers any number n of users and is more efficient than
SD, LSD and SSD in the user-key size and in the header size. More precisely,
our method requires O(log(n/m)) key storage and the O(αr + m) header size
in the worst case, where m, which can be chosen to optimize efficiency, is the
number of partitions of the user set, and α is a predetermined constant satis-
fying 1 < α < 2. So, the user-key size is always smaller than the tree based
schemes whose key storage is O(logβ n) with 1 ≤ β ≤ 2. Our scheme satisfies, in
fact, the log-key restriction (the storage size is bounded by log n) [?] with much
smaller transmission overhead than SSD. The header size is also smaller than
those schemes except when r/n is very small. The computation cost is worse
than those schemes but can be adjusted according to computing power of the
user device.

Outline of this paper is as follows: After a brief preliminaries in Section 2, we
propose the basic scheme interpolating multiple polynomials and the extended
scheme partitioning the user set, respectively, in Sections 4 and 5. We analyze
the performance of our scheme in Section 5, and compare our scheme with SD,
LSD and SSD in Section 6. We discuss a security proof of our scheme in Section
7, and conclude in Section 8. We present a detailed proof in Appendix.

2 Preliminaries

We use the following parameters:

n: the number of total users
r: the number of revoked users
Iu: The identifier of a user u
Ku: the set of keys stored by a user u, i.e., the user-key of u



A session is one broadcast of data to all users and the session key k is the
key used to encrypt the data in the session. In order to broadcast a message M ,
the center encrypts M using the session key k and sends the encrypted message
together with a header to the users. That is, the center sends

〈 〈header〉, Ek(M) 〉

to the users, where Ek(M) is a symmetric encryption of M by k. Then, a priv-
ileged user u can easily compute k from a pre-defined function F satisfying
F (Ku, 〈header〉) = k. With this k, u can recover M by

Dk(Ek(M)) = M.

But any revoked user u should not be able to rend k from Ku and 〈header〉.
Furthermore, there should be no efficient polynomial time algorithm O such that

O(K1,K2, . . . , Kr, 〈header〉) = k,

where Ka = Kua and ua’s are revoked users for a = 1, 2, · · · , r. The fixed function
F is pre-distributed before the system starts to operate, and is computable in
polynomial time under user level computing power. We call the length of the
header the transmission overhead or message overhead. The computing time of F
is called the computation overhead or computation cost. In a broadcast encryption
scheme, the user-key size, called the storage overhead, the transmission overhead,
and the computation overhead are three most important parameters determining
the efficiency of the scheme.

3 Basic scheme

Let n be the number of total users. Given a system parameter α satisfying
1 < α < 2, define a sequence of positive integers di by the recurrence relation:

d1 = 1 and di+1 = bα(di + 1)c,

where bxc denotes the largest integer not exceeding x. Let w be the minimal
integer such that n ≤ (α + 1)(dw + 1) + 1. Then we take random w polynomials
fd1 , fd2 , . . . , fdw , where fdi is a polynomial of degree di. Let r be the number
of revoked users. If di−1 < r ≤ di for some 1 ≤ i ≤ w (we make a convention
that d0 = 0 for convenience), then the polynomial of degree di is to be used for
revocation. For the case when r = 0 or dw < r ≤ n, see below.

In the initialization step, the center chooses an elliptic curve E over Fp and
selects a point P in E which is of order q, where p and q are 160 bit primes. (As
a matter of fact, any abelian group over which the computational Diffie-Hallman
problem is hard will do.) Then it chooses a system parameter α satisfying 1 <
α < 2, and selects a non-secret identifier Iu(= I) ∈ Zq to be given to each user
u. Then, the center chooses random polynomials fdi of degree di corresponding
to (di+1)-out-of-n threshold secret sharing schemes for i = 1, 2, . . . , w, where



di+1 = bα(di + 1)c over Zq for i = 1, 2, . . . , w − 1. Each user u receives his/her
user-key

Ku = 〈 I, fd1(I), fd2(I), . . . , fdw
(I), φ, ψu 〉

and the system information E, P , p and q over a private channel from the center,
where φ is the key which will be used when there is no revocation and ψu is the
key which will be used when of r > dw.

Let u1, u2, . . . , ur be the revoked users, where di−1 < r ≤ di. For revocation,
the center first learns the identifiers Ia = Iua

(a = 1, 2, . . . , r) of the revoked
users. For a random s ∈ Zq, it takes k = fdi

(0)sP as a new session key that
should be unknown to the revoked users. The center chooses distinct di− r ran-
dom points, say Ir+1, Ir+2, . . . , Idi

∈ Zq, which are distinct from the identifiers
of all users, and broadcasts

〈 index, Q, (I1, fdi
(I1)Q), . . . , (Ir, fdi

(Ir)Q),
(Ir+1, fdi(Ir+1)Q), . . . , (Idi , fdi(Idi)Q) 〉,

where Q = sP and index is the indicator of the polynomial used in the session.
Each privileged user u can compute fdi(I)Q by his/her own secret key fdi(I)
and therefore can recover the session key fdi(0)Q. More precisely, the user u can
compute fdi(0)Q from the values

(I0, fdi(I0)Q), (I1, fdi(I1)Q), . . . , (Ir, fdi(Ir)Q),
(Ir+1, fdi(Ir+1)Q), . . . , (Idi , fdi(Idi)Q),

where I0 = I, as follows:

fdi(0)Q =

(
di∑

a=0

λafdi(Ia)

)
Q =

di∑
a=0

λa (fdi(Ia)Q) ,

where

λa =
∏

b6=a

Ib

Ib − Ia
. (1)

If there is no revoked user, i.e., r = 0, then the center encrypts the session
key k by symmetric encryption scheme with the key φ and broadcasts

〈 index,Eφ(k) 〉.

So only one encrypted session key is required. If r > dw, then the center encrypts
the session key k with each non-revoked user’s private key ψu and broadcasts

〈 index, Eψu1
(k), Eψu2

(k), . . . , Eψun−r
(k) 〉,

where u1, . . . , un−r are non-revoked users. This requires n− r encrypted session
keys.



Performance Each user stores w + 2 private keys, the identifier I and the
system parameters E, P , p and q.

If di−1 < r ≤ di for 1 ≤ i ≤ w, then the transmitted data consists of an
index, one base point, and di points in E(Fp). Since di ≤ α(di−1 + 1) ≤ αr, it
is at most αr + 1 elements in E(Fp). If r = 0, then the header contains only
one encryption. If r > dw, then the header contains n− r encryptions, which is
also bounded by αr + 1 since n− r ≤ n − (dw + 1) ≤ αr + 1. In any cases, the
transmission overhead is at most αr + 1 points ignoring the index.

The computation overhead is di +1(≤ αr+1) scalar multiplications in E(Fp)
if di−1 < r ≤ di. If r > dw, then it is n − r(≤ αr + 1) symmetric encryptions.
Since one symmetric encryption is faster than a scalar multiplication in E(Fp),
the computation overhead is bounded by (αr+1) scalar multiplications in E(Fp).
We can save the computation using a simultaneous scalar multiplication method,
which will be discussed in Section 5.

Security If r = 0 or r > dw, then the scheme is secure since the session key is
encrypted by a symmetric encryption algorithm using the key φ or private keys
ψu’s of non-revoked users. If di−1 < r ≤ di, the session key fdi(0)Q is secure
against the coalition of the r revoked users. This is because every revoked user
has only di values and cannot gain any further information. A more detailed
security proof is given in Appendix.

4 Extended scheme

Although the basic scheme is quite efficient when the number n of users is small,
the scheme is not usable in practice when n is very large because the polynomial
degree grows too big and so does the computation overhead. This problem,
however, can be resolved easily by partitioning the users into small partitions and
applying the basic scheme to each partition. Despite the number of revoked users
in each partition can vary dynamically, we can handle the dynamics properly
with the polynomials chosen in the basic scheme.

In the initialization step, the center divides n users into m partitions of size
D. Actually, D and m are adjusted by the system parameter α in order to
make the computation overhead reasonable. (This will be discussed in Section
5.) Because each user should belong to one and only one partition, we can apply
the basic scheme to each partition. The center generates random polynomials

f1di , f2di , . . . , fmdi for i = 1, 2, . . . , w,

where fjdi is a polynomial of degree di over Zq assigned to the j-th partition.
Then it provides each user u in the j-th partition, via a private channel, his/her
user-key

Ku = 〈 I, fjd1(I), fjd2(I), . . . , fjdw(I), φj , ψu 〉,
where I is the identifier of u, j is the partition number of the partition containing
u, and φj , ψu are the keys corresponding to φ, ψu, respectively, in the basic
scheme.



For revocation, the center first learns the identifiers of r revoked users and
the partitions they belong to. Let uj1, uj2, . . . , ujrj be the revoked users in the
j-th partition, where

r = r1 + r2 + · · ·+ rm.

If di−1 < rj ≤ di, then the polynomial fjdi will be used for revocation in
the j-th partition. Let’s denote this di(depending on rj) by tj for convenience
in the following. The center then chooses tj − rj random distinct points, say
Ij,rj+1, Ij,rj+2, . . . , Ijtj , from Zq, which are distinct from the identifiers of the
users in the j-th partition, and broadcasts the following:

〈 . . . , par(j), ind(j), Qj , (Ij1, fjtj
(Ij1)Qj), . . . , (Ijrj

, fjtj
(Ijrj

)Qj),

(Ij,rj+1, fjtj
(Ij,rj+1)Qj), . . . , (Ijtj

, fjtj
(Ijtj

)Qj), . . . 〉 ,
where par(j) is the indicator of the j-th partition, ind(j) = tj , Qj = sjP , sj

is a random number of the j-th partition and Ija is the identifier of uja for
1 ≤ a ≤ rj . Each non-revoked user u in the j-th partition can find which part
of the header is for his/her partition from the partition indicator par(j), and
then he/she can compute the session key k = fjtj (0)Qj as in the basic scheme.
If rj = 0, then the center broadcasts

〈 . . . , par(j), ind(j), Eφj (k), . . . 〉.
If rj > dw, then D − rj < αrj . So the center sends following:

〈 . . . , par(j), ind(j), Eψu1
(k), Eψu2

(k), . . . , EψuD−rj
(k), . . . 〉,

where u1, u2, . . . , uD−rj are non-revoked users and Eψu(k) is a symmetric en-
cryption of the session key k by ψu.

In the above, if fjtj (0)Qj ’s are distinct, then we have to insert more infor-
mation in the header for all privileged users in each partition to compute the
session key k. To avoid this, we make all fjtj (0)Qj ’s be equal as follows:

Choose a random s ∈ Zq and let

ŝ = f1t1(0)f2t2(0) · · · fmtm(0)s.

For ŝ , define

sj =
ŝ

fjtj (0)
(mod q) for all j = 1, 2, . . . , m.

Then we have

k = f1t1(0)Q1 = f2t2(0)Q2 = · · · = fmtm(0)Qm. (2)

5 Analysis

In the basic scheme, given α and w, the maximum possible value of n is b(dw +
1)(α + 1)c + 1. Since the performance of the basic scheme depends only on α
and w, we take D to be b(dw + 1)(α + 1)c+ 1 in the extended scheme.



Storage Overhead The storage overhead for each user is w + 2 elements in
Fp as in the basic scheme. We estimate w in terms of D. Recall that di’s are
determined from recurrence relations: d1 = 1 and di+1 = bα(di + 1)c. Since
di+1 > α(di + 1)− 1, we have

dw + 1 > α(dw−1 + 1) > · · · > αw−1(d1 + 1) = 2αw−1.

Since D > (α + 1)(dw−1 + 1), we obtain D > 2(α + 1)αw−2 > 2αw−1 and hence
w < log D/ log α (we assume that 1 < α < 2).

Transmission Overhead Since the size of par(j) and ind(j) are negligible,
the transmission overhead for the j-th partition is αrj+1 elements of E(Fp) in
the worst case. So the total message overhead is at most

m∑

j=1

(αrj + 1) =
m∑

j=1

αrj + m = αr + m.

Computation Overhead Most computation of this scheme consists of scalar
multiplications in E(Fp). To speed up this, one can use a simultaneous scalar
multiplication method [?]. If one computes c scalar multiplications using Non-
Adjacent Form (NAF), it takes c log q (doublings) + (c/3) log q (additions) on
the average. Using the standard simultaneous scalar multiplication method, it
takes log q (doublings)+(c/3) log q (additions) for c scalar multiplications, which
amounts about (3 + c)/4 scalar multiplications.

The computation overhead for each user is bounded by dw +1 scalar multipli-
cations, as in the basic scheme. Using the standard simultaneous multiplication
method, it is reduced to (dw/4) + 1 scalar multiplications. If the revoked users
are assumed to be uniformly distributed over all partitions, however, there are
r/m revoked users in each partition on the average. In this case, the computation
overhead is about (r/4m) + 1 scalar multiplications.

Optimization In the extended scheme, we first fix a constant α with 1 < α < 2
and an upper bound M of the computation overhead (the number of scalar
multiplications in E(Fp)). And then, in order to optimize the scheme’s efficiency,
we choose the other system parameters as follows:

– Compute di’s, where d1 = 1 and di+1 = bα(di + 1)c
– Find the maximum w such that (dw/4) + 1 ≤ M
– Compute D = b(dw +1)(α+1)c+1 (with this D, we can optimize the upper

bound of w with (log D − 1)/ log α
– Divide all users into m = dn/De partitions of size D

The extended scheme with these optimized parameters is summarized in Fig. 1.



Parameters
- n : the number of total users in the system
- p, q : 160-bit primes
- E : an elliptic curve over Zp

- P : an element of E(Fp) of order q
- M : an upper bound of the computation overhead

Setup (partitioning)
- Pick α(1 < α < 2) and compute di’s, where d1 = 1 and di+1 = bα(di + 1)c
- Find the maximum w satisfying dw ≤ 4(M − 1)
- Compute D = b(dw + 1)(α + 1)c+ 1
- Divide all users into m = dn/De partitions of size D

Key Generation of the j-th partition for j = 1, 2, . . . , m
- Assign the identifier I to each user u
- Make w random polynomials fjd1 , fjd2 , . . . , fjdw over Zp, where deg(fjdi) = di

- Give the set Ku = {I, fjd1(I), . . . , fjdw (I), φ, ψu} to each user u

Encryption and Decryption

◦ Case 1 1 ≤ rj ≤ dw:
- Assume that there are rj revoked users uj1, uj2, . . . , ujrj in the j-th partition
- For each j find di satisfying di−1 < rj ≤ di (convention : d0 = 0) and let tj = di

- Choose s ∈ Zq randomly and compute ŝ = f1t1(0)f2t2(0) · · · fmtm(0)s
- For ŝ, define sj = ŝ/fjtj (0) (mod q) for each j = 1, 2, . . . , m
- Compute Qj = sjP
- Select distinct Ija’s which are different from the identifiers assigned to the users

in the j-th partition for a = rj + 1, rj + 2, . . . , tj

- Broadcast the following message:

〈 . . . , par(j), ind(j), Qj , (Ij1, fjtj (Ij1)Qj), (Ij2, fjtj (Ij2)Qj), . . . ,
(Ijrj , fjtj (Ijrj )Qj), (Ij,rj+1, fjtj (Ij,rj+1)Qj), . . . , (Ijtj , fjtj (Ijtj )Qj), . . . 〉

- Assume that u with identifier I = I0 is a privileged user in the j-th partition
- From the message, find out tj

- Compute λja =
Q

b6=a

Ijb

Ijb−Ija
and the session key k as follows:

k = fjtj (0)Q =
�Ptj

a=0 λjafjtj (Ija)
�

Q =
Ptj

a=0 λja

�
fjtj (Ija)Q

�

◦ Case 2 rj = 0:
- In this case, the center transmits 〈 . . . , par(j), ind(j), Eφj (k), . . . 〉,

where Eφj (k) is a symmetric encryption of the session key k by φj

- Then all users in the j-th partition decrypt by φj

◦ Case 3 rj > dw:
- Let u1, u2, . . . , uD−rj be the non-revoked users. Then the center broadcasts

〈 . . . , par(j), ind(j), Eψu1
(k), Eψu2

(k), . . . , EψuD−rj
(k), . . . 〉

where Eψu(k) is a symmetric encryption of the session key k by ψu

- Then each privileged user u in the j-th partition decrypts by ψu

Fig. 1. Extended Scheme



6 Comparison

Table 1 provides the values of di’s for some α’s such that 1 < α < 2. In the
following, because the computation overhead depends on the degrees of polyno-
mials, we set 40 as an upper bound of the degrees. Interpolating a polynomial of
degree 40 requires about 11 scalar multiplications in E(Fp), which, we believe,
is reasonable in practice. The table also provides the value of D, the size of
one partition, which is determined from given α and dw. With these values, the
transmission overhead is less than or equals to αr + 1 for any number r of the
revoked users in one partition.

Table 1. The values of di’s

α di’s size of D

3/2 1 3 6 10 16 25 39 101
4/3 1 2 4 6 9 13 18 25 34 82
4
√

2 1 2 3 4 5 7 9 11 14 17 21 26 32 39 88

In Table 2, we compare our extended scheme with SD [?] and LSD [?], which
are regarded as the best known broadcast encryption schemes. The threshold
column shows that our scheme has the smaller message length than SD and
LSD except when r/n is very small. For example, our scheme with α = 4

√
2 has

smaller message length than SD when the number of revoked users is larger than
1.41 % of the total users. Fig. 2 depicts the transmission overhead (TO) of each
scheme with respect to 100r/n(%).

Table 2. Efficiency Comparison

Scheme Key Storage # of Computations Message Length Threshold(vs SD)

SD [?] log2n log n hashes 2r − 1 -

LSD [?] log3/2n log n hashes 4r -

Ours b (log D−1)
log α

c+ 2 (dw/4) + 1 mul. in E αr + n/D -

α=3/2 9 10.75 mul. in E (3r/2) + (n/101) r > 1.99n/100
α=4/3 11 9.5 mul. in E (4r/3) + (n/82) r > 1.83n/100

α = 4
√

2 16 10.75 mul. in E 4
√

2 r + (n/88) r > 1.41n/100

¿From this comparison, we can see that our scheme always has the smaller
key storage as well than SD and LSD. The computation overhead, however, is
worse. But even so, our scheme is still practical for systems with some computing
power. Furthermore, considering the fact that the transmission cost is much
more expensive than the computation cost in practice, this is a desirable trade
off. In addition, if the revoked users are assumed to be uniformly distributed



in each partition, the computation overhead O(dw) is reduced to (r/4m) + 1,
which is 2.26, 2.03, and 2.1 scalar multiplications in E(Fp) when r ≤ 0.05n and
α = 3/2, 4/3, 4

√
2, respectively.

Fig. 2. Comparison of Transmission Overhead for n = 100,000,000

7 Security proof

Naor and Pinkas [?] proved that their NP scheme is secure against coalitions of up
to d revoked users under the computational Diffie-Hellman (CDH) assumption,
where d is the degree of a polynomial predetermined. We generalize their proof
to our basic scheme (with multiple polynomials) in the following lemma.

Lemma. The basic scheme is secure against coalition of r revoked users under
the CDH assumption for any r.

Proof. See Appendix. ut



And then we prove the extended scheme (with multiple partitions) is also
secure under the same assumption in the following theorem.

Theorem. The extended scheme is secure against coalition of total r revoked
users, where r1, r2, . . . , rm are the numbers of revoked users in partitions

G1, G2, . . . , Gm,

respectively, such that
r = r1 + r2 + · · ·+ rm.

Proof. See Appendix. ut
Observe that if different fjtj

(0)Qj ’s - called the partition keys - are used for
different partitions in the extended scheme, the security proof is an immediate
consequence of the lemma above. But this increases the transmission overhead
by O(m). In order to avoid this, the extended scheme makes all the partition
keys be the same. The main part of the proof is, in fact, the part proving that
the same partition key does not harm to the security of the scheme.

The authors expect that our proof is useful for security proofs in similar
situations, that is, our security proof works for any broadcast encryption scheme
with multiple partitions using the same partition key.

8 Conclusion

In this paper, we introduced two simple ideas, multiple interpolations and mul-
tiple partitions, to the NP scheme to obtain an efficient broadcast encryption
scheme for a large number of stateless receivers. Our scheme fully satisfies the
general requirements of broadcast encryption (even the log-key restriction, the
notion of which was introduced in this year’s Crypto) and the scheme’s efficiency
is comparable to the most efficient broadcast encryption schemes known. Our
scheme, in fact, is better in the storage overhead and in the transmission over-
head. It costs more computations but the computation overhead is reasonable
for systems with moderate computing power. Our scheme is applicable to any
abelian group over which the CDH is hard. Moreover, our scheme has another
advantage: later entry of new users is very easy and cheap because we can simply
add new partitions at anytime. We expect that this advantage is exploited in
many applications in practice. We provide a detailed security proof in Appendix.

References

1. J. Anzai, N. Matsuzaki and T. Matsumoto, A quick key distribution scheme with
“Entity Revocation”, Advances in Cryptology - Asiacrypt’99, Lecture Notes in Com-
puter Science 1716, pp.333-347.



2. S. Berkovits, How to Broadcast a secret, Advances in Cryptology - Eurocrypt’91,
Lecture Notes in Computer Science 547, pp.536-541.

3. G. Chick and S. Tavares, Flexible access control with master keys, Advances in
Cryptology - Crypto’89, Lecture Notes in Computer Science, pp.316-322.

4. P. D’Aroco and D.R. Stinson, Fault Tolerant and Distributed Broadcast Encrytion,
CT - RSA’03, Lecture Notes in Computer Science 2612, pp.263-280.

5. A. Fiat and M. Naor, Broadcast Encryption, Advances in Cryptology - Crypto’93,
Lecture Notes in Computer Science 773, pp.480-491.

6. M.T. Goodrich, J.Z. Sun and R. Tamassia, Efficient Tree-Based Revocation in
Groups of Low-State Devices, Advances in Cryptology - Crypto’04, Lecture Notes
in Computer Science 3152, pp.511-527.

7. J. Garay, J. Staddon and A. Wool, Long-Lived Broadcast Encryption, Advances in
Cryptology - Crypto’00, Lecture Notes in Computer Science 1880, pp.333-352.

8. D. Halevi and A. Shamir, The LSD Broadcast Encryption Scheme, Advances in
Crytology - Crypto’02, Lecture Notes in Computer Science 2442, pp.47-60.

9. R. Kumar, S. Rajagopalan and A. Sahai, Coding Constructions for blacklisting prob-
lems without Computational Assumptions, Advances in Cryptology - Crypto’99, Lec-
ture Notes in Computer Science 1666, pp.609-623.

10. B. Möller, Algorithms for Multi-exponentiation, Selected Areas in Cryptography -
SAC’01. Lecture Notes in Computer Science 2259, pp.165-180.

11. D. Naor, M. Naor and J. Lotspiech, Revocation and Tracing Schemes for Stateless
Receivers, Advances in Cryptology - Crypto’01, Lecture Notes in Computer Science
2139, pp.41-62.

12. M. Naor and B. Pinkas, Efficient Trace and Revoke Schemes, Financial Cryptog-
raphy’00, Lecture Notes in Computer Science.

13. C.K. Wong, M. Gouda and S.S. Lam, Secure Group Communication using Key
Graphs, ACM SIGGCOM’98 ACM.

14. M. Luby and J. Staddon, Combinatorial Bounds for Broadcast Encryption, Ad-
vances in Cryptology Eurocrypt’98, Lecture Notes in Computer Science 1403,
pp.512-526.

15. A. Shamir, How to Share a Secret, Comm. ACM 22, pp.612-613.

Appendix: Security Proof

Naor and Pinkas [?] proved that the NP scheme is secure against coalitions of
up to t revoked users under the computational Diffie-Hellman assumption.

Computational Diffie-Hellman Assumption: For a cyclic group G in
which DLP is hard, let g ∈ G be a generator of G. Then there is no efficient
polynomial time algorithm that can compute gxy from 〈g, gx, gy〉, where x and
y are random integers in the interval [1, |G|]. In an elliptic curve, computational
Diffie-Hellman assumption means that there is no efficient algorithm that can
compute xyP from 〈P, xP, yP 〉.

We will prove that our scheme is also secure under the same assumption.

Lemma. The basic scheme is secure against coalition of r revoked users under
CDH assumption for any r.



Proof. Let r be the number of revoked users. When r = 0 or r > dw, then the
security of the scheme is guaranteed by the security of the symmetric encryption
algorithm used. So we may assume that r ∈ (di−1, di] for some i = 1, 2, . . . , w,
where d0 := 0. We first consider the case of one time revocation. Since r ∈
(di−1, di], the polynomial fdi

of degree di is used for revocation. Points on other
polynomials are useless to compute the session key since all polynomials are cho-
sen randomly. Therefore, for revoked users, computing the session key is equiv-
alent to finding polynomial of degree di with only di points, which is impossible
by [?].

Next we consider the case of repeated revocations. Let r and r′ be the
number of revoked users in current session and previous session, respectively.
If r ∈ (di−1, di] but r′ /∈ (di−1, di], then the scheme is secure because the
current polynomial fdi

is different from previous ones. We now assume that
r, r′ ∈ (di−1, di]. Then the same polynomial fdi of degree di is used in two differ-
ent sessions, say the first two sessions. Assume also that a user u was not revoked
in the first session but is revoked in the second session. Let the revoked users in
the second session be u1(= u), u2, . . . , ur. At least the following information are
available to u with coalition of r revoked users:

s(1)P, fdi(I1)s(1)P, . . . , fdi(Ir)s(1)P, fdi(I
′
r+1)s

(1)P, . . . , fdi(I
′
di

)s(1)P,

fdi(0)s(1)P, s(2)P, fdi(I1)s(2)P, . . . , fdi(Ir)s(2)P, fdi(Ir+1)s(2)P, . . . ,
fdi(Idi)s

(2)P, I1, I2, . . . , Ir, fdi(I1), fdi(I2), . . . , fdi(Ir),

where Ia is the identifier of ua for each a = 1, 2, . . . , r; I ′j ’s and Ij ’s for j =
r + 1, . . . , di are random and distinct from Ia’s; and s(b) is a random number
chosen in the b-th session for each b = 1,2.

Although u doesn’t know the value of the session key in session 2, u knows
that the session key is of the form fdi(0)s(2)P . In the following, we prove that
u cannot find the value of fdi(0)s(2)P . Suppose that the scheme is not secure,
that is, there is an efficient algorithm O with input

Input = 〈 s(1)P, fdi(I1)s(1)P, . . . , fdi(Ir)s(1)P, fdi(I
′
r+1)s

(1)P, . . . ,
fdi(I

′
di

)s(1)P, fdi(0)s(1)P, s(2)P, fdi(I1)s(2)P, . . . ,

fdi(Ir)s(2)P, fdi(Ir+1)s(2)P, . . . , fdi(Idi)s
(2)P,

I1, I2, . . . , Ir, fdi(I1), fdi(I2), . . . , fdi(Ir) 〉,
which can compute fdi(0)s(2)P . Let

O( Input ) = fdi(0)s(2)P

Then from the algorithm O, one can derive an efficient algorithm O′ that can
compute gxy from arbitrarily given inputs g, gx and gy (see [?] for details). This,
however, implies that u can solve the computational Diffie-Hellman problem. So
the scheme is secure against coalition of r revoked users under CDH assumption.

ut
Theorem. The extended scheme is secure against coalition of total r revoked
users, where r1, r2, . . . , rm are the numbers of revoked users in partitions

G1, G2, . . . , Gm,



respectively, such that
r = r1 + r2 + · · ·+ rm.

Proof. We first show that the session key cannot be recovered from given secret
shares for the revoked users. Since polynomials in this scheme are all chosen
randomly, secret shares (points on polynomials) in one partition are useless in
guessing the polynomials in the other partitions. So, the security of the whole
scheme depends on the security of the session key of each partition. For all j =
1,2,. . . ,m, we define tj as di satisfying di−1 < rj ≤ di. Since the case of rj = 0
or rj > dw can be proved trivially as in the previous lemma, we may assume
that 0 < rj ≤ dw.

We now prove that using the same partition key for all partitions is also
secure. In the extended scheme, non-revoked users in all partitions can compute
the same partition key

k = f1t1(0)s1P = f2t2(0)s2P = · · · = fmtm(0)smP

as in (2). This holds for all sessions. This, however, does not cause any weakness.
In order to show this, we first consider the case of one time revocation with two
partitions. In this case, the coalition of r = r1 + r2 revoked users know the
values of s1P, s2P , the secret shares of r users, and the fact that f1t1(0)s1P =
f2t2(0)s2P . Then,

f1t1(0)s1P = λuf1t1(Iu)s1P +
t1∑

a=1

λ1af1t1(I1a)s1P,

f2t2(0)s2P = λvf2t2(Iv)s2P +
t2∑

a=1

λ2af2t2(I2a)s2P,

where u and v are non-revoked users chosen randomly from the first and the
second partitions, respectively, and λu and λv are the constants obtained from
the formula (1). So the attackers, the r revoked users, can make the following
equation:

A + α = B + β,

where
A = λuf1t1(Iu)s1P, B = λvf2t2(Iv)s2P,

α =
t1∑

a=1

λ1af1t1(I1a)s1P, β =
t2∑

a=1

λ2af2t2(I2a)s2P.

Here, α and β are known to the attackers, but A and B are not. Although there
are many pairs of (A,B) satisfying the above equation, it is impossible for the
attackers to find the right values of A and B, which render the correct session
key. When there are three partitions, the attackers may obtain

A + α = B + β = C + γ.



But it is still impossible for them to find the correct session key. It is obvious
from mathematical induction that increasing the number of partitions does not
do any harm to the security of the scheme.

Next, let’s consider the case of repeated revocations. Assume that there are
two partitions. We may assume that for each j = 1,2, the degree tj of the
polynomial corresponding to the number r

(b)
j of the revoked users in the j-th

partition dose not change in the b-th session for b = 1, 2. Assume further that
in the first session, some of the r revoked users in the second session were not
revoked so that they know the first session key. After receiving the header of the
second session, those r revoked users know

s
(1)
1 P, s

(1)
2 P, f1t1(0)s(1)

1 P = f2t2(0)s(1)
2 P

and the private keys of their own, where s
(b)
j denotes a random number used in

the j-th partition in the b-th session. To break the scheme, they must obtain the
value of

f1t1(0)s(2)
1 P = f2t2(0)s(2)

2 P.

As above, the attackers can set up the following equations:

A + α = B + β (3)

τA + α′ = τB + β′,

where τ ∈ Zq satisfying τs
(1)
1 P = s

(2)
1 P , τs

(1)
2 P = s

(2)
2 P and

α′ =
t1∑

a=1

λ
(2)
1a f1t1(I

(2)
1a )s(2)

1 P, β′ =
t2∑

a=1

λ
(2)
2a f2t2(I

(2)
2a )s(2)

2 P,

where I
(b)
ja is the identifier of a user u

(b)
ja , a revoked user in the j-th partition in

the b-th session for 1 ≤ a ≤ r
(b)
j . Since α, α′, β and β′ satisfy

τA + τα = τB + τβ and (τα)− (α′) = (τβ)− (β′),

we obtain
β′ − α′ = τ(β − α). (4)

Suppose that there is an efficient algorithm O that can compute τA, which
renders the second session key. In other words, let

O(A,α, B, β, α′, β′) = τA,

where A,B, α, β, α′, β′ satisfy the conditions (??) and (??). Then, one can derive
an efficient algorithm O′ that can compute xyP with the input data P, xP, yP
as follows:

O′(P, xP, yP ) = O( xP, P, (x− ξ + 1)P, ξP, ηP, (y(ξ − 1) + η)P ),



where ξ and η are random. From the conditions (??) and (??), one can easily
obtain that τ = y and O′(P, xP, yP ) = xyP .

Since this contradicts to the CDH assumption, we may conclude that there
is no efficient algorithm that can compute the second session key. For three
partitions, we can prove using the algorithm O defined by

O(A, α, B, β, C, γ, α′, β′, γ′) = τA.

where A,B, C, α, β, γ, α′, β′, γ′ satisfy the conditions

A + α = B + β = C + γ

τ(β − α) = β′ − α′ , τ(γ − α) = γ′ − α′.

By the same argument, we can derive from O an efficient algorithm O′ that can
solve the CDH, which proves the security of the scheme. So, the security of the
extended scheme with two sessions follows from mathematical induction on the
number of partitions.

Assume that the extended scheme with m partitions is secure in the first
`(≥ 2) sessions for any m. We now suppose that if the attackers know the first `
session keys, then session (` + 1) is not secure. Under this supposition, we prove
that the second session is not secure if the attackers know the first session key,
which is a contradiction, as follows:

¿From the first session, the attackers can set up the equation

A1 + α1 = A2 + α2 = · · · = Am + αm (5)

and they know that the second session key is

τA1 + α′1 = τA2 + α′2 = · · · = τAm + α′m

for some τ . From (??) the attackers can compute

τ (b)A1, τ (b)A2, . . . , τ (b)Am, α
(b)
1 , α

(b)
2 , . . . , α(b)

m

satisfying

α
(b)
1 = τ (b)α1 + t(b), α

(b)
2 = τ (b)α2 + t(b), . . . , α(b)

m = τ (b)αm + t(b)

from randomly chosen distinct τ (b) and t(b). Then it is easy to check that

τ (b)A1 + α
(b)
1 = τ (b)A2 + α

(b)
2 = · · · = τ (b)Am + α(b)

m (6)

and
α

(b)
2 − α

(b)
1 = τ (b)(α2 − α1), . . . , α(b)

m − α
(b)
1 = τ (b)(αm − α1)

for b = 1,2,. . . , `−1. With these `−1 equations in (??) together with the equation
(??), the attackers can find the second session key (regarded as the (` + 1)-st
session) by the supposition.

Therefore, we may conclude that the extended scheme with any number of
partitions is secure in any number of repeated sessions. ut



We expect that our security proof may be applied to systems using partitions.
In particular, when a broadcast encryption, which is efficient for a small set of
users, is applied to many disjoint such sets, our security proof may help reducing
the transmission overhead further securely.


