Hidden quantum group symmetry in random conformal geometry

Kalle Kytölä

University of Helsinki, Department of Mathematics and Statistics Aalto University, Department of Mathematics and Systems Analysis

Recent Progress in Random Conformal Geometry Seoul, August 11-12, 2014

Joint work with:

- Niko Jokela (Univ. Santiago de Compostela) and Matti Järvinen (Univ. Crete) [arXiv:1311.2297]
- Eveliina Peltola (Univ. Helsinki) [arXiv:1408.1384]
- Konstantin Izyurov (Univ. Helsinki) (in progress)

イロト イポト イヨト イヨト

Quantum group construction of boundary correlation fns:

(K. & Peltola [arXiv:1408.1384])

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Э

Quantum group construction of boundary correlation fns:

(K. & Peltola [arXiv:1408.1384])

白 ト イヨト イヨト

E

- seek: *n*-point correlation functions defined for $x_1 < \cdots < x_n$
 - * Möbius covariant, satisfy PDEs, behavior as $|x_{j+1}-x_j|
 ightarrow 0$

Quantum group construction of boundary correlation fns:

(K. & Peltola [arXiv:1408.1384])

伺下 イヨト イヨト

- seek: *n*-point correlation functions defined for $x_1 < \cdots < x_n$
 - * Möbius covariant, satisfy PDEs, behavior as $|x_{j+1}-x_j|
 ightarrow 0$
- use: quantum group $\mathcal{U}_q(\mathfrak{sl}_2)$ and its representations M_d

Quantum group construction of boundary correlation fns:

(K. & Peltola [arXiv:1408.1384])

伺下 イヨト イヨト

- seek: *n*-point correlation functions defined for $x_1 < \cdots < x_n$
 - * Möbius covariant, satisfy PDEs, behavior as $|x_{j+1}-x_j|
 ightarrow 0$
- use: quantum group $\mathcal{U}_q(\mathfrak{sl}_2)$ and its representations M_d
- correspondence: associate functions to vectors $v \in \bigotimes_{i=1}^n M_{d_J}$
 - representation theoretic properties of v guarantee desired properties of the function

Quantum group construction of boundary correlation fns:

(K. & Peltola [arXiv:1408.1384])

- seek: *n*-point correlation functions defined for $x_1 < \cdots < x_n$
 - * Möbius covariant, satisfy PDEs, behavior as $|x_{j+1}-x_{j}|
 ightarrow 0$
- use: quantum group $\mathcal{U}_q(\mathfrak{sl}_2)$ and its representations M_d
- correspondence: associate functions to vectors $v \in \bigotimes_{i=1}^n M_{d_J}$
 - * representation theoretic properties of v guarantee desired properties of the function

SLE question(s):

• Chordal SLE boundary visiting probabilities

(Jokela & Järvinen & K. [arXiv:1311.2297])

イロト 不同 とうほう 不同 とう

- \rightsquigarrow multi-point boundary Green's function for SLE [Lawler & ...]
- \rightsquigarrow correlation fn of SLE covariant measure on bdry [Alberts & Sheffield]
- $\rightsquigarrow\,$ lattice model probas, e.g. Potts model bdry spin correlation

Quantum group construction of boundary correlation fns:

(K. & Peltola [arXiv:1408.1384])

- seek: *n*-point correlation functions defined for $x_1 < \cdots < x_n$
 - * Möbius covariant, satisfy PDEs, behavior as $|x_{j+1}-x_{j}|
 ightarrow 0$
- use: quantum group $\mathcal{U}_q(\mathfrak{sl}_2)$ and its representations M_d
- correspondence: associate functions to vectors $v \in \bigotimes_{i=1}^n M_{d_J}$
 - * representation theoretic properties of v guarantee desired properties of the function

SLE question(s):

• Chordal SLE boundary visiting probabilities

(Jokela & Järvinen & K. [arXiv:1311.2297])

- \rightsquigarrow multi-point boundary Green's function for SLE $_{[Lawler \& \ldots]}$
- \rightsquigarrow correlation fn of SLE covariant measure on bdry [Alberts & Sheffield]
- $\rightsquigarrow\,$ lattice model probas, e.g. Potts model bdry spin correlation
- Extremal multiple SLEs

Kalle Kytölä Hidden quantum group symmetry in SLEs

- 10

(신문) (신문)

E

$$q = e^{\mathrm{i}\pi 4/\kappa}$$
 (assume $\kappa \notin \mathbb{Q}$)

- 10

(신문) (신문)

E

Kalle Kytölä Hidden quantum group symmetry in SLEs

$$q = e^{\mathrm{i}\pi 4/\kappa}$$
 (assume $\kappa \notin \mathbb{Q}$)

- (三) - (二)

• Algebra $U_q(\mathfrak{sl}_2)$: gen. E, F, K, K^{-1} and q-Chevalley relations

$$q = e^{i\pi 4/\kappa}$$
 (assume $\kappa \notin \mathbb{Q}$)

• <u>Algebra $\mathcal{U}_q(\mathfrak{sl}_2)$ </u>: gen. E, F, K, K^{-1} and q-Chevalley relations $KE = q^2 EK, \quad KF = q^{-2} FK, \quad KK^{-1} = K^{-1}K = 1$ $EF - FE = \frac{1}{q-q^{-1}}(K - K^{-1})$

伺下 イヨト イヨト

$$q = e^{i\pi 4/\kappa}$$
 (assume $\kappa \notin \mathbb{Q}$)

• Algebra $\mathcal{U}_q(\mathfrak{sl}_2)$: gen. E, F, K, K^{-1} and q-Chevalley relations $KE = q^2 EK, \quad KF = q^{-2} FK, \quad KK^{-1} = K^{-1}K = 1$ $EF - FE = \frac{1}{q-q^{-1}}(K - K^{-1})$

• Irreducible rep. M_d of dimension d: basis $\mu_0, \mu_1, \ldots, \mu_{d-1}$

$$q = e^{\mathrm{i}\pi 4/\kappa}$$
 (assume $\kappa \notin \mathbb{Q}$)

ヨト イヨト イヨト

• Algebra $\mathcal{U}_q(\mathfrak{sl}_2)$: gen. E, F, K, K^{-1} and q-Chevalley relations $KE = q^2 E K, \quad KF = q^{-2} F K, \quad KK^{-1} = K^{-1} K = 1$ $EF - FE = \frac{1}{q-q^{-1}} (K - K^{-1})$

• Irreducible rep. M_d of dimension d: basis $\mu_0, \mu_1, \ldots, \mu_{d-1}$

$$K.\mu_j = q^{d-1-2j}\mu_j, \quad F.\mu_j = \mu_{j+1}, \quad E.\mu_j = [j] [d-j] \mu_{j-1}$$

where $[n] = \frac{q^n - q^{-n}}{q - q^{-1}}$ are "q-integers"

$$q = e^{i\pi 4/\kappa}$$
 (assume $\kappa \notin \mathbb{Q}$)

• Algebra $\mathcal{U}_q(\mathfrak{sl}_2)$: gen. E, F, K, K^{-1} and q-Chevalley relations $KE = q^2 E K, \quad KF = q^{-2} F K, \quad KK^{-1} = K^{-1} K = 1$ $EF - FE = \frac{1}{q-q^{-1}} (K - K^{-1})$

• Irreducible rep. M_d of dimension d: basis $\mu_0, \mu_1, \dots, \mu_{d-1}$ $\mathcal{K}.\mu_j = q^{d-1-2j}\mu_j, \quad \mathcal{F}.\mu_j = \mu_{j+1}, \quad \mathcal{E}.\mu_j = [j] [d-j] \mu_{j-1}$ where $[n] = \frac{q^n - q^{-n}}{q - q^{-1}}$ are "q-integers"

• Tensor products of representations: for $v \otimes w \in V \otimes W$ set

$$q = e^{\mathrm{i}\pi 4/\kappa}$$
 (assume $\kappa \notin \mathbb{Q}$)

伺下 イヨト イヨト

• Algebra $\mathcal{U}_q(\mathfrak{sl}_2)$: gen. E, F, K, K^{-1} and q-Chevalley relations $KE = q^2 E K, \quad KF = q^{-2} F K, \quad KK^{-1} = K^{-1} K = 1$ $EF - FE = \frac{1}{q-q^{-1}} (K - K^{-1})$

• Irreducible rep. M_d of dimension d: basis $\mu_0, \mu_1, \ldots, \mu_{d-1}$

$$K.\mu_j = q^{d-1-2j}\mu_j, \quad F.\mu_j = \mu_{j+1}, \quad E.\mu_j = [j] [d-j] \mu_{j-1}$$

where $[n] = \frac{q^n - q^{-n}}{q - q^{-1}}$ are "q-integers"

• Tensor products of representations: for $v \otimes w \in V \otimes W$ set

$$\begin{split} & \mathsf{K}.(\mathsf{v}\otimes\mathsf{w})=\mathsf{K}.\mathsf{v}\otimes\mathsf{K}.\mathsf{w}, \\ & \mathsf{E}.(\mathsf{v}\otimes\mathsf{w})=\mathsf{E}.\mathsf{v}\otimes\mathsf{K}.\mathsf{w}+\mathsf{v}\otimes\mathsf{E}.\mathsf{w}, \\ & \mathsf{F}.(\mathsf{v}\otimes\mathsf{w})=\mathsf{F}.\mathsf{v}\otimes\mathsf{w}+\mathsf{K}^{-1}.\mathsf{v}\otimes\mathsf{F}.\mathsf{w} \end{split}$$

$$q = e^{i\pi 4/\kappa}$$
 (assume $\kappa \notin \mathbb{Q}$)

・ 何 ト ・ ヨ ト ・ ヨ ト

• Algebra $\mathcal{U}_q(\mathfrak{sl}_2)$: gen. E, F, K, K^{-1} and q-Chevalley relations $KE = q^2 E K, \quad KF = q^{-2} F K, \quad KK^{-1} = K^{-1} K = 1$ $EF - FE = \frac{1}{q-q^{-1}} (K - K^{-1})$

• Irreducible rep. M_d of dimension d: basis $\mu_0, \mu_1, \ldots, \mu_{d-1}$

 $K.\mu_j = q^{d-1-2j}\mu_j, \quad F.\mu_j = \mu_{j+1}, \quad E.\mu_j = [j] [d-j] \mu_{j-1}$ where $[n] = \frac{q^n - q^{-n}}{q - q^{-1}}$ are "q-integers"

• Tensor products of representations: for $v \otimes w \in V \otimes W$ set

$$\begin{split} & \mathsf{K}.(\mathsf{v}\otimes\mathsf{w})=\mathsf{K}.\mathsf{v}\otimes\mathsf{K}.\mathsf{w}, \\ & \mathsf{E}.(\mathsf{v}\otimes\mathsf{w})=\mathsf{E}.\mathsf{v}\otimes\mathsf{K}.\mathsf{w}+\mathsf{v}\otimes\mathsf{E}.\mathsf{w}, \\ & \mathsf{F}.(\mathsf{v}\otimes\mathsf{w})=\mathsf{F}.\mathsf{v}\otimes\mathsf{w}+\mathsf{K}^{-1}.\mathsf{v}\otimes\mathsf{F}.\mathsf{w} \end{split}$$

• Semisimple tensor products of the irreps:

$$q = e^{i\pi 4/\kappa}$$
 (assume $\kappa \notin \mathbb{Q}$)

イロト イポト イヨト イヨト

• Algebra $\mathcal{U}_q(\mathfrak{sl}_2)$: gen. E, F, K, K^{-1} and q-Chevalley relations $KE = q^2 E K, \quad KF = q^{-2} F K, \quad KK^{-1} = K^{-1} K = 1$ $EF - FE = \frac{1}{q-q^{-1}} (K - K^{-1})$

• Irreducible rep. M_d of dimension d: basis $\mu_0, \mu_1, \ldots, \mu_{d-1}$

 $K.\mu_j = q^{d-1-2j}\mu_j, \quad F.\mu_j = \mu_{j+1}, \quad E.\mu_j = [j] [d-j] \mu_{j-1}$ where $[n] = \frac{q^n - q^{-n}}{q - q^{-1}}$ are "q-integers"

• Tensor products of representations: for $v \otimes w \in V \otimes W$ set

$$\begin{split} & \mathsf{K}.(\mathsf{v}\otimes\mathsf{w})=\mathsf{K}.\mathsf{v}\otimes\mathsf{K}.\mathsf{w}, \\ & \mathsf{E}.(\mathsf{v}\otimes\mathsf{w})=\mathsf{E}.\mathsf{v}\otimes\mathsf{K}.\mathsf{w}+\mathsf{v}\otimes\mathsf{E}.\mathsf{w}, \\ & \mathsf{F}.(\mathsf{v}\otimes\mathsf{w})=\mathsf{F}.\mathsf{v}\otimes\mathsf{w}+\mathsf{K}^{-1}.\mathsf{v}\otimes\mathsf{F}.\mathsf{w} \end{split}$$

• Semisimple tensor products of the irreps:

 $M_{d_2} \otimes M_{d_1} \cong M_{d_1+d_2-1} \oplus M_{d_1+d_2-3} \oplus \cdots \oplus M_{|d_1-d_2|+1}$

$$^{m{*}}$$
 anchor x_0 , chamber $\mathfrak{X}_n^{(x_0)} = \{x_0 < x_1 < x_2 < \cdots < x_n\} \subset \mathbb{R}^n$

Э

* anchor x_0 , chamber $\mathfrak{X}_n^{(x_0)} = \{x_0 < x_1 < x_2 < \cdots < x_n\} \subset \mathbb{R}^n$

* parameters $d_1, d_2, \ldots, d_n \in \mathbb{N}$

$*$
 anchor x_0 , chamber $\mathfrak{X}_n^{(x_0)} = \{x_0 < x_1 < x_2 < \cdots < x_n\} \subset \mathbb{R}^n$

* parameters
$$d_1, d_2, \ldots, d_n \in \mathbb{N}$$

$$\mathcal{F}^{(x_0)} \colon \bigotimes_{j=1}^n M_{d_j} \longrightarrow \{ \text{functions on } \mathfrak{X}_n^{(x_0)} \}$$

Informally, $\mathcal{F}^{(x_0)}[v](\mathbf{x}) = \int_{\Gamma[v]} f(\mathbf{x}; \mathbf{w}) d\mathbf{w}^n$, where the integration surface $\Gamma[v]$ depends on $v \in \bigotimes_{i=1}^n M_{d_i}$.

回 ト イヨ ト イヨ ト

$*$
 anchor x_0 , chamber $\mathfrak{X}_n^{(x_0)} = \{x_0 < x_1 < x_2 < \cdots < x_n\} \subset \mathbb{R}^n$

* parameters
$$d_1, d_2, \ldots, d_n \in \mathbb{N}$$

$$\mathcal{F}^{(x_0)} \colon \bigotimes_{j=1}^n M_{d_j} \longrightarrow \{ \text{functions on } \mathfrak{X}_n^{(x_0)} \}$$

Informally, $\mathcal{F}^{(x_0)}[v](\mathbf{x}) = \int_{\Gamma[v]} f(\mathbf{x}; \mathbf{w}) \mathrm{d}\mathbf{w}$, where the integration surface $\Gamma[v]$ depends on $v \in \bigotimes_{i=1}^{n} M_{d_i}$. $\mathcal{F}^{(x_0)}[\mu_{l_n} \otimes \cdots \otimes \mu_{l_1}] = \varphi_{l_1,\ldots,l_n}^{(x_0)}$ (below), extend linearly x_n $\varphi_{l_1}^{(\mathbf{x}_0)}$ $\varphi_{l_1}^{(\mathbf{x}_0)} =$

$*$
 anchor x_0 , chamber $\mathfrak{X}_n^{(x_0)} = \{x_0 < x_1 < x_2 < \cdots < x_n\} \subset \mathbb{R}^n$

* parameters
$$d_1, d_2, \ldots, d_n \in \mathbb{N}$$

$$\mathcal{F}^{(x_0)} \colon \bigotimes_{j=1}^n M_{d_j} \longrightarrow \{ \text{functions on } \mathfrak{X}_n^{(x_0)} \}$$

Informally, $\mathcal{F}^{(x_0)}[v](\mathbf{x}) = \int_{\Gamma[v]} f(\mathbf{x}; \mathbf{w}) \mathrm{d}\mathbf{w}$, where the integration surface $\Gamma[v]$ depends on $v \in \bigotimes_{i=1}^{n} M_{d_i}$. $\mathcal{F}^{(x_0)}[\mu_{l_n}\otimes\cdots\otimes\mu_{l_1}] = \varphi^{(x_0)}_{l_1,\ldots,l_n}$ (below), extend linearly x_n $\varphi_{l_1}^{(\mathbf{x}_0)}$ $\varphi_{l_1}^{(\mathbf{x}_0)} =$ $f \propto \prod (x_i - x_i)^{\frac{2}{\kappa}(d_i-1)(d_j-1)} \times \prod (w_s - w_r)^{\frac{8}{\kappa}} \times \prod (w_r - x_i)^{-\frac{4}{\kappa}(d_i-1)}$

$$\mathcal{F}_{d_1,\ldots,d_n}^{(x_0)}: \bigotimes_{j=1}^n M_{d_j} \longrightarrow \{\text{functions on } \mathfrak{X}_n^{(x_0)}\}$$

(v highest weight vector, if E.v = 0) (v in trivial subrepresentation, if E.v = 0 and K.v = v)

$$\mathcal{F}_{d_1,\dots,d_n}^{(x_0)}: \bigotimes_{j=1}^n M_{d_j} \longrightarrow \{\text{functions on } \mathfrak{X}_n^{(x_0)}\}$$

(v highest weight vector, if $E \cdot v = 0$) (v in trivial subrepresentation, if $E \cdot v = 0$ and $K \cdot v = v$)

Theorem (K. & Peltola)

$$\mathcal{F}_{d_1,\ldots,d_n}^{(\mathsf{x}_0)}$$
: $\bigotimes_{j=1}^n M_{d_j} \longrightarrow \{ \text{functions on } \mathfrak{X}_n^{(\mathsf{x}_0)} \}$

 (\mathfrak{X}_n) If v is a highest weight vector, then $\mathcal{F}^{(x_0)}[v] \colon \mathfrak{X}_n^{(x_0)} \to \mathbb{C}$ is independent of x_0 , thus defines a function $\mathcal{F}[v] \colon \mathfrak{X}_n \to \mathbb{C}$.

(v highest weight vector, if $E \cdot v = 0$) (v in trivial subrepresentation, if $E \cdot v = 0$ and $K \cdot v = v$)

$$\mathcal{F}_{d_1,...,d_n}^{(\mathbf{x}_0)}$$
: $\bigotimes_{j=1}^n M_{d_j} \longrightarrow \{ \text{functions on } \mathfrak{X}_n^{(\mathbf{x}_0)} \}$

- (\mathfrak{X}_n) If v is a highest weight vector, then $\mathcal{F}^{(x_0)}[v] \colon \mathfrak{X}_n^{(x_0)} \to \mathbb{C}$ is independent of x_0 , thus defines a function $\mathcal{F}[v] \colon \mathfrak{X}_n \to \mathbb{C}$.
- (PDE) If v is a highest weight vector, then $\mathcal{F}[v]: \mathfrak{X}_n \to \mathbb{C}$ satisfies n linear homogeneous PDEs of orders d_1, \ldots, d_n .

(v highest weight vector, if $E \cdot v = 0$) (v in trivial subrepresentation, if $E \cdot v = 0$ and $K \cdot v = v$)

$$\mathcal{F}_{d_1,...,d_n}^{(\mathbf{x}_0)}$$
: $\bigotimes_{j=1}^n M_{d_j} \longrightarrow \{ ext{functions on } \mathfrak{X}_n^{(\mathbf{x}_0)} \}$

- (\mathfrak{X}_n) If v is a highest weight vector, then $\mathcal{F}^{(x_0)}[v] \colon \mathfrak{X}_n^{(x_0)} \to \mathbb{C}$ is independent of x_0 , thus defines a function $\mathcal{F}[v] \colon \mathfrak{X}_n \to \mathbb{C}$.
- (PDE) If v is a highest weight vector, then $\mathcal{F}[v]: \mathfrak{X}_n \to \mathbb{C}$ satisfies n linear homogeneous PDEs of orders d_1, \ldots, d_n .

(cov)
$$\mathcal{F}^{(x_0)}[v] \colon \mathfrak{X}_n^{(x_0)} \to \mathbb{C}$$
 is

- translation invariant
- homogeneous, if v is K-eigenvector
- Möbius covariant, if v is in trivial subrepresentation

(v highest weight vector, if $E \cdot v = 0$) (v in trivial subrepresentation, if $E \cdot v = 0$ and $K \cdot v = v$)

$$\mathcal{F}_{d_1,...,d_n}^{(\mathbf{x}_0)}$$
: $\bigotimes_{j=1}^n M_{d_j} \longrightarrow \{ ext{functions on } \mathfrak{X}_n^{(\mathbf{x}_0)} \}$

- (\mathfrak{X}_n) If v is a highest weight vector, then $\mathcal{F}^{(x_0)}[v] \colon \mathfrak{X}_n^{(x_0)} \to \mathbb{C}$ is independent of x_0 , thus defines a function $\mathcal{F}[v] \colon \mathfrak{X}_n \to \mathbb{C}$.
- (PDE) If v is a highest weight vector, then $\mathcal{F}[v]: \mathfrak{X}_n \to \mathbb{C}$ satisfies n linear homogeneous PDEs of orders d_1, \ldots, d_n .

(COV)
$$\mathcal{F}^{(x_0)}[v] \colon \mathfrak{X}_n^{(x_0)} \to \mathbb{C}$$
 is

- translation invariant
- homogeneous, if v is K-eigenvector
- Möbius covariant, if v is in trivial subrepresentation

$$\begin{array}{l} {}^{(\mathrm{ASY})} & M_{d_{j+1}} \otimes M_{d_j} \cong \bigoplus_d M_d \text{ induces a decomposition of } \bigotimes_{j=1}^n M_{d_j}. \\ & \text{If } v \in \big(\bigotimes_{i>j+1} M_{d_i}\big) \otimes M_d \otimes \big(\bigotimes_{i< j} M_{d_i}\big), \text{ then} \\ & \mathcal{F}_{\dots,d_j,d_{j+1},\dots}^{(x_0)}[v] \sim (x_{j+1}-x_j)^{\Delta_d} \times \mathcal{F}_{\dots,d,\dots}^{(x_0)}[v]. \end{array}$$

$$M_d \hookrightarrow M_{d_{j+1}} \otimes M_{d_j} \qquad \qquad d = d_j + d_{j+1} - 1 - 2m$$

- ∢ ≣ →

$$M_d \hookrightarrow M_{d_{j+1}} \otimes M_{d_j}, \quad \mu_0 \mapsto \tau_0^{(d;d_j,d_{j+1})}, \quad d = d_j + d_{j+1} - 1 - 2m$$

- ∢ ≣ →

$$\begin{split} M_d &\hookrightarrow M_{d_{j+1}} \otimes M_{d_j}, \quad \mu_0 \mapsto \tau_0^{(d;d_j,d_{j+1})}, \quad d = d_j + d_{j+1} - 1 - 2m \\ \tau_0^{(d;d_j,d_{j+1})} &\propto \sum_k (-1)^k \frac{[d_j - 1 - k]! [d_{j+1} - 1 - m + k]!}{[k]! [d_j - 1]! [m-k]! [d_2 - 1]!} \frac{q^{k(d_1 - k)}}{(q - q^{-1})^m} (\mu_k \otimes \mu_{m-k}) \end{split}$$

回 と く ヨ と く ヨ と

Э

$$\begin{split} & M_d \hookrightarrow M_{d_{j+1}} \otimes M_{d_j}, \quad \mu_0 \mapsto \tau_0^{(d;d_j,d_{j+1})}, \quad d = d_j + d_{j+1} - 1 - 2m \\ & \tau_0^{(d;d_j,d_{j+1})} \propto \sum_k (-1)^k \frac{[d_{j-1-k}]! \, [d_{j+1} - 1 - m + k]!}{[k]! \, [d_j - 1]! \, [m-k]! \, [d_2 - 1]!} \frac{q^{k(d_1 - k)}}{(q - q^{-1})^m} \left(\mu_k \otimes \mu_{m-k} \right) \end{split}$$

Calculation for $v = \mu_{l_n} \otimes \cdots \otimes \mu_{l_{j+2}} \otimes (F' \cdot \tau_0) \otimes \mu_{l_{j-1}} \otimes \cdots \otimes \mu_{l_1}$

A 3 3

$$\begin{split} & M_d \hookrightarrow M_{d_{j+1}} \otimes M_{d_j}, \quad \mu_0 \mapsto \tau_0^{(d;d_j,d_{j+1})}, \quad d = d_j + d_{j+1} - 1 - 2m \\ & \tau_0^{(d;d_j,d_{j+1})} \propto \sum_k (-1)^k \frac{[d_{j-1-k}]! \, [d_{j+1} - 1 - m + k]!}{[k]! \, [d_j - 1]! \, [m-k]! \, [d_2 - 1]!} \frac{q^{k(d_1 - k)}}{(q - q^{-1})^m} \left(\mu_k \otimes \mu_{m-k} \right) \end{split}$$

$$\begin{split} & M_d \hookrightarrow M_{d_{j+1}} \otimes M_{d_j}, \quad \mu_0 \mapsto \tau_0^{(d;d_j,d_{j+1})}, \quad d = d_j + d_{j+1} - 1 - 2m \\ & \tau_0^{(d;d_j,d_{j+1})} \propto \sum_k (-1)^k \frac{[d_j - 1 - k]! [d_{j+1} - 1 - m + k]!}{[k]! [d_j - 1]! [m-k]! [d_2 - 1]!} \frac{q^{k(d_1 - k)}}{(q - q^{-1})^m} (\mu_k \otimes \mu_{m-k}) \end{split}$$

Kalle Kytölä Hidden quantum group symmetry in SLEs

On the proof: anchor point independence

Write $\varphi_{l_1,...,l_n}^{(\mathbf{x}_0)}(\mathbf{x})$ in terms of $\alpha_{m_1,...,m_n}^{(\mathbf{x}_0)}(\mathbf{x})$

On the proof: anchor point independence

Write
$$\varphi_{l_1,...,l_n}^{(x_0)}(\mathbf{x})$$
 in terms of $\alpha_{m_1,...,m_n}^{(x_0)}(\mathbf{x})$

Highest weight vectors: If E.v = 0, then in $\mathcal{F}^{(x_0)}[v](\mathbf{x})$, the coefficient of $\alpha_{m_1,...,m_n}^{(x_0)}(\mathbf{x})$ vanishes whenever $m_1 \neq 0$.

(本間) (本語) (本語)
On the proof: anchor point independence

Write
$$\varphi_{l_1,...,l_n}^{(x_0)}(\mathbf{x})$$
 in terms of $\alpha_{m_1,...,m_n}^{(x_0)}(\mathbf{x})$

Highest weight vectors:

If E.v = 0, then in $\mathcal{F}^{(x_0)}[v](\mathbf{x})$, the coefficient of $\alpha_{m_1,\ldots,m_n}^{(x_0)}(\mathbf{x})$ vanishes whenever $m_1 \neq 0$.

$$\rightsquigarrow \mathcal{F}[v](\mathbf{x})$$
 well defined for $\mathbf{x} \in \mathfrak{X}_n$

イロト イポト イヨト イヨト

- \exists_{l_1,\ldots,l_n} the ℓ -dimensional integration surface of $\varphi_{l_1,\ldots,l_n}^{(x_0)}$
- $g(w_1; w_2, \dots, w_\ell)$ single valued, symmetric in last $\ell 1$ vars

K A B K A B K

- \exists_{l_1,\ldots,l_n} the ℓ -dimensional integration surface of $\varphi_{l_1,\ldots,l_n}^{(x_0)}$
- $g(w_1; w_2, \dots, w_\ell)$ single valued, symmetric in last $\ell 1$ vars
- Stokes formula / integration by parts:

$$\begin{split} &\int_{\mathbb{B}_{l_1,\ldots,l_n}} \sum_{r=1}^{\ell} \frac{\partial}{\partial w_r} \Big(g(w_r; w_1,\ldots,\bigvee_r,\ldots,w_\ell) f(\mathbf{x}; \mathbf{w}) \Big) \, \mathrm{d}w_1 \cdots \mathrm{d}w_\ell \\ &= \sum_{j=1}^{n} \Big\{ (q^{-1}-q) \left[l_j \right] \left[d_j - l_j \right] q^{\sum_{i < j} (d_i - 1 - 2l_i)} \\ &\times \int_{\mathbb{B}_{\ldots,l_j - 1,\ldots}} \left(\gamma(w_1,\ldots,w_{\ell-1}) f(\mathbf{x}; w_1,\ldots,w_{\ell-1}) \right) \, \mathrm{d}w_1 \cdots \mathrm{d}w_{\ell-1} \Big\} \end{split}$$

ト イラト イラト

- \exists_{l_1,\ldots,l_n} the ℓ -dimensional integration surface of $\varphi_{l_1,\ldots,l_n}^{(x_0)}$
- $g(w_1; w_2, \dots, w_\ell)$ single valued, symmetric in last $\ell 1$ vars
- Stokes formula / integration by parts: $\int \sum_{\ell=1}^{\ell} \int \sigma(w_{\ell}; w_{\ell}) f(\mathbf{x}; \mathbf{w}) dt$

$$\begin{split} \int_{\exists_{l_1,...,l_n}} \sum_{r=1}^{\infty} \frac{\partial}{\partial w_r} \left(g(w_r; w_1, \dots, w_r, \dots, w_\ell) f(\mathbf{x}; \mathbf{w}) \right) \, \mathrm{d}w_1 \cdots \mathrm{d}w_\ell \\ &= \sum_{j=1}^n \left\{ (q^{-1} - q) \left[l_j \right] \left[d_j - l_j \right] q^{\sum_{i < j} (d_i - 1 - 2l_i)} \\ &\times \int_{\exists_{\dots,l_j - 1,...}} \left(\gamma(w_1, \dots, w_{\ell-1}) f(\mathbf{x}; w_1, \dots, w_{\ell-1}) \right) \, \mathrm{d}w_1 \cdots \mathrm{d}w_{\ell-1} \right\} \\ &\text{where } \gamma(w_1, \dots, w_{\ell-1}) \\ &= \prod_{i=1}^n |x_0 - x_i|^{-\frac{4}{\kappa} (d_i - 1)} \prod_{r=1}^{\ell-1} |x_0 - w_r|^{\frac{8}{\kappa}} g(x_0; w_1, \dots, w_{\ell-1}). \end{split}$$

御 と く き と く き と … き

na a

- \exists_{l_1,\ldots,l_n} the ℓ -dimensional integration surface of $\varphi_{l_1,\ldots,l_n}^{(x_0)}$
- $g(w_1; w_2, \dots, w_\ell)$ single valued, symmetric in last $\ell-1$ vars
- Stokes formula / integration by parts: $\int_{\exists l_1,\dots,l_n} \sum_{r=1}^{\ell} \frac{\partial}{\partial w_r} \left(g(w_r; w_1, \dots, \bigvee_r, \dots, w_\ell) f(\mathbf{x}; \mathbf{w}) \right) dw_1 \cdots dw_\ell$ $= \sum_{j=1}^n \left\{ (q^{-1} - q) [l_j] [d_j - l_j] q^{\sum_{i < j} (d_i - 1 - 2l_i)} \\ \times \int_{\exists \dots, l_j - 1, \dots} \left(\gamma(w_1, \dots, w_{\ell-1}) f(\mathbf{x}; w_1, \dots, w_{\ell-1}) \right) dw_1 \cdots dw_{\ell-1} \right\}$ where $\gamma(w_1, \dots, w_{\ell-1})$ $= \prod_{i=1}^n |x_0 - x_i|^{-\frac{4}{\kappa} (d_i - 1)} \prod_{r=1}^{\ell-1} |x_0 - w_r|^{\frac{8}{\kappa}} g(x_0; w_1, \dots, w_{\ell-1}).$

Highest weight vect.: $v = \sum C_{l_1,...,l_n} (\mu_{l_n} \otimes \cdots \otimes \mu_{l_1})$ s.t. E.v = 0 $\sum C_{l_1,...,l_n} \int_{\exists l_1,...,l_n} \sum_{r=1}^{\ell} \frac{\partial}{\partial w_r} (g(w_r;...)f(\mathbf{x};\mathbf{w})) d\mathbf{w} = 0.$

On the proof: partial differential equations

Benoit & Saint-Aubin differential operators:

$$\mathcal{D}^{(j)} = \sum_{k=1}^{d_j} \sum_{\substack{n_1, \dots, n_k \ge 1 \\ n_1 + \dots + n_k = d_j}} \frac{(\kappa/4)^{d_j - k} (d_j - 1)!^2}{\prod_{j=1}^{k-1} (\sum_{i=1}^j n_i) (\sum_{i=j+1}^k n_i)} \times \mathcal{L}_{-n_1}^{(j)} \cdots \mathcal{L}_{-n_k}^{(j)}$$

where
$$\mathcal{L}_{p}^{(j)}$$
 $(j = 1, ..., n \text{ and } p \in \mathbb{Z})$ are 1st order diff. operators
 $\mathcal{L}_{p}^{(j)} = -\sum_{i \neq j} (x_i - x_j)^p \left((1+p) \frac{(d_i-1)(2(d_i+1)-\kappa)}{2\kappa} + (x_i - x_j) \frac{\partial}{\partial x_i} \right)$

回 と く ヨ と く ヨ と

Э

On the proof: partial differential equations

Benoit & Saint-Aubin differential operators:

$$\mathcal{D}^{(j)} = \sum_{k=1}^{d_j} \sum_{\substack{n_1, \dots, n_k \ge 1 \\ n_1 + \dots + n_k = d_j}} \frac{(\kappa/4)^{d_j - k} (d_j - 1)!^2}{\prod_{j=1}^{k-1} (\sum_{i=1}^j n_i) (\sum_{i=j+1}^k n_i)} \times \mathcal{L}_{-n_1}^{(j)} \cdots \mathcal{L}_{-n_k}^{(j)}$$

where
$$\mathcal{L}_{p}^{(j)}$$
 $(j = 1, ..., n \text{ and } p \in \mathbb{Z})$ are 1st order diff. operators
 $\mathcal{L}_{p}^{(j)} = -\sum_{i \neq j} (x_i - x_j)^p \left((1+p) \frac{(d_i-1)(2(d_i+1)-\kappa)}{2\kappa} + (x_i - x_j) \frac{\partial}{\partial x_i} \right)$

The integrand $f(\mathbf{x}; \mathbf{w})$ satisfies $\left(\mathcal{D}^{(j)}f\right)(\mathbf{x}; \mathbf{w}) = \sum_{r=1}^{\ell} \frac{\partial}{\partial w_r} \left(g(w_r; w_1, \dots, w_{\ell}) \times f(\mathbf{x}; \mathbf{w})\right).$

・ 回 ト ・ ヨ ト ・ ヨ ト

On the proof: partial differential equations

Benoit & Saint-Aubin differential operators:

$$\mathcal{D}^{(j)} = \sum_{k=1}^{d_j} \sum_{\substack{n_1, \dots, n_k \ge 1 \\ n_1 + \dots + n_k = d_j}} \frac{(\kappa/4)^{d_j - k} (d_j - 1)!^2}{\prod_{j=1}^{k-1} (\sum_{i=1}^j n_i) (\sum_{i=j+1}^k n_i)} \times \mathcal{L}_{-n_1}^{(j)} \cdots \mathcal{L}_{-n_k}^{(j)}$$

where
$$\mathcal{L}_{p}^{(j)}$$
 $(j = 1, ..., n \text{ and } p \in \mathbb{Z})$ are 1st order diff. operators
 $\mathcal{L}_{p}^{(j)} = -\sum_{i \neq j} (x_i - x_j)^p \left((1+p) \frac{(d_i-1)(2(d_i+1)-\kappa)}{2\kappa} + (x_i - x_j) \frac{\partial}{\partial x_i} \right)$

The integrand $f(\mathbf{x}; \mathbf{w})$ satisfies $\left(\mathcal{D}^{(j)}f\right)(\mathbf{x}; \mathbf{w}) = \sum_{r=1}^{\ell} \frac{\partial}{\partial w_r} \left(g(w_r; w_1, \dots, w_{\ell}) \times f(\mathbf{x}; \mathbf{w})\right).$

Highest weight vectors: If E.v = 0, Stokes formula gives $\mathcal{D}^{(j)} \mathcal{F}[v](\mathbf{x}) = 0$.

A 3 3

On the proof: covariance under Möbius transformations

$$\varphi_{l_1,\ldots,l_n}^{(x_0)}(x_1,\ldots,x_n) = \int_{\exists_{l_1,\ldots,l_n}} f(x_1,\ldots,x_n;w_1,\ldots,w_\ell) \,\mathrm{d}w_1\cdots\mathrm{d}w_\ell$$

Möbius covariance: if $\nu(x_1) < \cdots < \nu(x_n)$ for $\nu(z) = \frac{az+b}{cz+d}$, want

$$\mathcal{F}[v](\nu(x_1),\ldots,\nu(x_n)) \times \prod_{j=1}^n \nu'(x_j)^{\frac{(d_j-1)(2(d_j+1)-\kappa)}{2\kappa}} = \mathcal{F}[v](x_1,\ldots,x_n)$$

• translation invariance, $z \mapsto z + \xi$: $\varphi_{h}^{(x_0+\xi)}(x_1+\xi,\ldots,x_n+\xi) = \varphi_{h}^{(x_0)}(x_1,\ldots,x_n)$ * make changes of variables $w'_r = w_r + \xi$ • homogeneity, $z \mapsto \lambda z$: $\varphi_{h}^{(\lambda x_0)}(\lambda x_1, \dots, \lambda x_n) = \lambda^{\Delta} \varphi_{h}^{(x_0)}(x_1, \dots, x_n)$ * make changes of variables $w'_r = \lambda w_r$ • special conformal transformations, $z \mapsto \frac{z}{1+az}$: * vary a infinitesimally * use a property of the integrand f* apply Stokes formula Kalle Kytölä

Summary of "spin chain - Coulomb gas correspondence"

Theorem (K. & Peltola)

$$\mathcal{F}_{d_1,\ldots,d_n}^{(x_0)} \colon \bigotimes_{j=1}^n M_{d_j} \longrightarrow \{ \text{functions on } \mathfrak{X}_n^{(x_0)} \}$$

 (\mathfrak{X}_n) If E.v = 0, then $\mathcal{F}[v]: \mathfrak{X}_n \to \mathbb{C}$ is well-defined. (PDE) If E.v = 0, then $\mathcal{D}^{(j)}\mathcal{F}[v] = 0$ for i = 1, ..., n. (COV) $\mathcal{F}^{(\nu(x_0))}[\nu](\nu(\mathbf{x})) \times \prod_{j} \nu'(x_j)^{h_{d_j}} = \mathcal{F}^{(x_0)}[\nu](\mathbf{x})$ - for any translation ν - for any affine ν , if $K \cdot v = q^{d-1}v$ - for any Möbius transformation ν , if $K \cdot v = v$ and $E \cdot v = 0$ (ASY) If $v \in (\bigotimes_{i>i+1} M_{d_i}) \otimes M_d \otimes (\bigotimes_{i < i} M_{d_i})$, then $\frac{\mathcal{F}_{\dots,d_{j},d_{j+1},\dots}^{(x_{0})}[v](\dots)}{(x_{i+1}-x_{i})^{\Delta_{d}^{d_{j},d_{j+1}}}} \xrightarrow{x_{j},x_{j+1} \to \xi} \mathcal{F}_{\dots,d,\dots}^{(x_{0})}[v](\dots,\xi,\dots)$ • • = •

3

$$\mathsf{P}_{\mathbb{H};x,\infty}\Big[\mathrm{SLE}_{\kappa} \text{ visits } B_{\varepsilon}(y_1), \text{ then } B_{\varepsilon}(y_2), \text{ then } \dots \text{ then } B_{\varepsilon}(y_N) \\ \sim \mathrm{const.} \times \varepsilon^{N\frac{8-\kappa}{\kappa}} \times \zeta_N(x; y_1, y_2, \dots, y_N)\Big]$$

$$\mathsf{P}_{\mathbb{H};x,\infty}\Big[\mathrm{SLE}_{\kappa} \text{ visits } B_{\varepsilon}(y_1), \text{ then } B_{\varepsilon}(y_2), \text{ then } \dots \text{ then } B_{\varepsilon}(y_N) \\ \sim \mathrm{const.} \times \varepsilon^{N\frac{8-\kappa}{\kappa}} \times \zeta_N(x; y_1, y_2, \dots, y_N)\Big]$$

• relabel points $y_L^- < \cdots < y_2^- < y_1^- < x < y_1^+ < y_2^+ < \cdots y_R^+$

$$\mathsf{P}_{\mathbb{H};x,\infty}\Big[\mathrm{SLE}_{\kappa} \text{ visits } B_{\varepsilon}(y_1), \text{ then } B_{\varepsilon}(y_2), \text{ then } \dots \text{ then } B_{\varepsilon}(y_N) \\ \sim \mathrm{const.} \times \varepsilon^{N\frac{8-\kappa}{\kappa}} \times \zeta_N(x; y_1, y_2, \dots, y_N)\Big]$$

• relabel points $y_L^- < \cdots < y_2^- < y_1^- < x < y_1^+ < y_2^+ < \cdots y_R^+$

• order of visits
$$\omega \in \{+,-\}^N$$

* $\omega_t = -/+ \quad \Leftrightarrow \quad t$:th visit on left/right

$$\mathsf{P}_{\mathbb{H};x,\infty}\Big[\mathrm{SLE}_{\kappa} \text{ visits } B_{\varepsilon}(y_1), \text{ then } B_{\varepsilon}(y_2), \text{ then } \dots \text{ then } B_{\varepsilon}(y_N) \\ \sim \mathrm{const.} \times \varepsilon^{Nrac{8-\kappa}{\kappa}} imes \zeta_N(x;y_1,y_2,\dots,y_N)$$

- relabel points $y_L^- < \cdots < y_2^- < y_1^- < x < y_1^+ < y_2^+ < \cdots y_R^+$
- order of visits $\omega \in \{+, -\}^N$ * $\omega_t = -/+ \Leftrightarrow t$:th visit on left/right • $\zeta_{\omega}(y_L^-, \dots, y_1^-, x, y_1^+, \dots, y_R^+) = \zeta_N(x; y_1, y_2, \dots, y_N)$

(cov) ζ_{ω} is translation invariant

(cov) ζ_{ω} is homogeneous of degree $-N\frac{8-\kappa}{\kappa}$

Kalle Kytölä Hidden quantum group symmetry in SLEs

▶ < E ▶ < E ▶</p>

$$\begin{array}{l} \text{(cov)} \quad \zeta_{\omega} \text{ is translation invariant} \\ \text{(cov)} \quad \zeta_{\omega} \text{ is homogeneous of degree} & -N\frac{8-\kappa}{\kappa} \\ \text{(PDE)} \quad \left\{ \frac{\kappa}{2} \frac{\partial^2}{\partial x^2} + \sum \left(\frac{2}{y_j^{\pm} - x} \frac{\partial}{\partial y_j^{\pm}} + \frac{2\frac{\kappa-8}{\kappa}}{(y_j^{\pm} - x)^2} \right) \right\} \quad \zeta_{\omega}(y_L^-, \dots, x, \dots, y_R^+) = 0 \\ \quad \rightsquigarrow \text{ martingale} \prod g_t'(y_l^{\pm})^{\frac{8-\kappa}{\kappa}} \times \zeta_{\omega}(g_t(y_L^-), \dots, X_t, \dots, g_t(y_R^+)) \end{array}$$

< 注入 < 注入 -

$$\begin{array}{l} \text{(cov)} \quad \zeta_{\omega} \text{ is translation invariant} \\ \text{(cov)} \quad \zeta_{\omega} \text{ is homogeneous of degree} & -N\frac{8-\kappa}{\kappa} \\ \text{(PDE)} \quad \left\{ \frac{\kappa}{2} \frac{\partial^2}{\partial x^2} + \sum \left(\frac{2}{y_j^{\pm} - x} \frac{\partial}{\partial y_j^{\pm}} + \frac{2\frac{\kappa-8}{\kappa}}{(y_j^{\pm} - x)^2} \right) \right\} \zeta_{\omega}(y_L^-, \dots, x, \dots, y_R^+) = 0 \\ \quad \rightsquigarrow \text{ martingale} \prod g_t'(y_l^{\pm})^{\frac{8-\kappa}{\kappa}} \times \zeta_{\omega}(g_t(y_L^-), \dots, X_t, \dots, g_t(y_R^+)) \end{array}$$

(ASY) As
$$y_1^{\pm} \to x$$
, asymptotics are
 $|y_1^{\pm} - x|^{\frac{8-\kappa}{\kappa}} \times \zeta_{\omega}(\ldots) \to \begin{cases} \zeta_{\hat{\omega}}(\ldots, y_1^{\pm}, \ldots) & \text{if } y_1^{\pm} \text{ first in } \omega \\ 0 & \text{otherwise} \end{cases}$
where $\hat{\omega} = (\omega_2, \omega_3, \ldots, \omega_{L+R}) \in \{+, -\}^{L+R-1}$

٠

3

回 と く ヨ と く ヨ と …

$$\begin{array}{l} \text{(COV)} \quad \zeta_{\omega} \text{ is translation invariant} \\ \text{(COV)} \quad \zeta_{\omega} \text{ is homogeneous of degree} & -N\frac{8-\kappa}{\kappa} \\ \text{(PDE)} \quad \left\{ \frac{\kappa}{2} \frac{\partial^2}{\partial x^2} + \sum \left(\frac{2}{y_j^{\pm} - x} \frac{\partial}{\partial y_j^{\pm}} + \frac{2\frac{\kappa-8}{\kappa}}{(y_j^{\pm} - x)^2} \right) \right\} \quad \zeta_{\omega}(y_L^-, \dots, x, \dots, y_R^+) = 0 \\ \quad \rightsquigarrow \text{ martingale} \prod g_t'(y_j^{\pm})^{\frac{8-\kappa}{\kappa}} \times \zeta_{\omega}(g_t(y_L^-), \dots, X_t, \dots, g_t(y_R^+)) \end{array}$$

(ASY) As
$$y_1^{\pm} \to x$$
, asymptotics are
 $|y_1^{\pm} - x|^{\frac{8-\kappa}{\kappa}} \times \zeta_{\omega}(...) \to \begin{cases} \zeta_{\hat{\omega}}(..., y_1^{\pm}, ...) & \text{if } y_1^{\pm} \text{ first in } \omega \\ 0 & \text{otherwise} \end{cases}$.
where $\hat{\omega} = (\omega_2, \omega_3, ..., \omega_{L+R}) \in \{+, -\}^{L+R-1}$
(ASY) As $y_j^{\pm}, y_{j+1}^{\pm} \to y$, asymptotics are
 $|y_j^{\pm} - y_{j+1}^{\pm}|^{\frac{8-\kappa}{\kappa}} \times \zeta_{\omega}(...) \to \begin{cases} \zeta_{\hat{\omega}}(..., y_1^{\pm}, ...) & \text{if consecutive} \\ 0 & \text{otherwise} \end{cases}$.
where $\hat{\omega} \in \{+, -\}^{L+R-1}$ is obtained by omitting one

(cov)
$$\zeta_{\omega}$$
 is translation invariant
(cov) ζ_{ω} is homogeneous of degree $-N\frac{8-\kappa}{\kappa}$
(PDE) $\left\{\frac{\kappa}{2}\frac{\partial^2}{\partial x^2} + \sum \left(\frac{2}{y_j^{\pm}-x}\frac{\partial}{\partial y_j^{\pm}} + \frac{2\frac{\kappa-8}{\kappa}}{(y_j^{\pm}-x)^2}\right)\right\} \zeta_{\omega}(y_L^-, \dots, x, \dots, y_R^+) = 0$
 \rightarrow martingale $\prod g'_t(y_j^{\pm})^{\frac{8-\kappa}{\kappa}} \times \zeta_{\omega}(g_t(y_L^-), \dots, X_t, \dots, g_t(y_R^+))$
(PDE) moreover $L + R$ third order linear homogeneous PDEs for ζ_{ω}
(ASY) As $y_1^{\pm} \rightarrow x$, asymptotics are
 $|y_1^{\pm} - x|^{\frac{8-\kappa}{\kappa}} \times \zeta_{\omega}(\dots) \rightarrow \begin{cases} \zeta_{\hat{\omega}}(\dots, y_1^{\pm}, \dots) & \text{if } y_1^{\pm} \text{ first in } \omega \\ 0 & \text{otherwise} \end{cases}$.
where $\hat{\omega} = (\omega_2, \omega_3, \dots, \omega_{L+R}) \in \{+, -\}^{L+R-1}$
(ASY) As $y_j^{\pm}, y_{j+1}^{\pm} \rightarrow y$, asymptotics are
 $|y_j^{\pm} - y_{j+1}^{\pm}|^{\frac{8-\kappa}{\kappa}} \times \zeta_{\omega}(\dots) \rightarrow \begin{cases} \zeta_{\hat{\omega}}(\dots, y_j^{\pm}, \dots) & \text{if consecutive} \\ 0 & \text{otherwise} \end{cases}$.
where $\hat{\omega} \in \{+, -\}^{L+R-1}$ is obtained by omitting one

< 注→ 注

• $\zeta_{\omega}(y_{L}^{-}, \ldots, x, \ldots, y_{R}^{+})$ defined on \mathfrak{X}_{L+R+1} will be $\zeta_{\omega} = \mathcal{F}[v_{\omega}]$, with judiciously chosen $v_{\omega} \in M_{3}^{\otimes R} \otimes M_{2} \otimes M_{3}^{\otimes L}$

御 と くき とくき とうき

- $\zeta_{\omega}(y_{L}^{-}, \ldots, x, \ldots, y_{R}^{+})$ defined on \mathfrak{X}_{L+R+1} will be $\zeta_{\omega} = \mathcal{F}[v_{\omega}]$, with judiciously chosen $v_{\omega} \in M_{3}^{\otimes R} \otimes M_{2} \otimes M_{3}^{\otimes L}$
- $_{(COV)} \ \ {\cal K}.v_{\omega} = q \ v_{\omega} \qquad ({\it K}\mbox{-eigenvalue for correct homogeneity}) \\ _{(PDE)} \ \ {\cal E}.v_{\omega} = 0 \qquad (\mbox{highest weight vector for well-def. and PDEs})$

伺下 イヨト イヨト 二日

• $\zeta_{\omega}(y_{L}^{-}, \ldots, x, \ldots, y_{R}^{+})$ defined on \mathfrak{X}_{L+R+1} will be $\zeta_{\omega} = \mathcal{F}[v_{\omega}]$, with judiciously chosen $v_{\omega} \in M_{3}^{\otimes R} \otimes M_{2} \otimes M_{3}^{\otimes L}$

(cov) $K.v_{\omega} = q v_{\omega}$ (*K*-eigenvalue for correct homogeneity) (PDE) $E.v_{\omega} = 0$ (highest weight vector for well-def. and PDEs) Decompose $M_3 \otimes M_2 \cong M_2 \oplus M_4$. Denote projection to M_2 by $\pi^{(2)}$, and on $M_3^{\otimes R} \otimes M_2 \otimes M_3^{\otimes L}$ define $\pi^{(2)}_+ = \operatorname{id}_{M_3}^{\otimes (R-1)} \otimes \pi^{(2)} \otimes \operatorname{id}_{M_3}^{\otimes L}$.

• $\zeta_{\omega}(y_{L}^{-}, \ldots, x, \ldots, y_{R}^{+})$ defined on \mathfrak{X}_{L+R+1} will be $\zeta_{\omega} = \mathcal{F}[v_{\omega}]$, with judiciously chosen $v_{\omega} \in M_{3}^{\otimes R} \otimes M_{2} \otimes M_{3}^{\otimes L}$

(cov) $K.v_{\omega} = q v_{\omega}$ (*K*-eigenvalue for correct homogeneity) (PDE) $E.v_{\omega} = 0$ (highest weight vector for well-def. and PDEs) Decompose $M_3 \otimes M_2 \cong M_2 \oplus M_4$. Denote projection to M_2 by $\pi^{(2)}$, and on $M_3^{\otimes R} \otimes M_2 \otimes M_3^{\otimes L}$ define $\pi^{(2)}_+ = \operatorname{id}_{M_3}^{\otimes (R-1)} \otimes \pi^{(2)} \otimes \operatorname{id}_{M_3}^{\otimes L}$. (ASY) $\pi^{(2)}_{\pm}(v_{\omega}) = \begin{cases} v_{\hat{\omega}} & \text{if } y_1^{\pm} \text{ first in } \omega \\ 0 & \text{otherwise} \end{cases}$, where $\hat{\omega} = (\omega_2, \dots, \omega_{L+R})$

• $\zeta_{\omega}(y_{L}^{-}, \ldots, x, \ldots, y_{R}^{+})$ defined on \mathfrak{X}_{L+R+1} will be $\zeta_{\omega} = \mathcal{F}[v_{\omega}]$, with judiciously chosen $v_{\omega} \in M_{3}^{\otimes R} \otimes M_{2} \otimes M_{3}^{\otimes L}$

 $\begin{array}{ll} \label{eq:cov} (\text{cov}) \ \ K.v_{\omega} = q \ v_{\omega} & (K\text{-eigenvalue for correct homogeneity}) \\ \text{(PDE)} \ \ E.v_{\omega} = 0 & (\text{highest weight vector for well-def. and PDEs}) \\ \text{Decompose} \ \ M_3 \otimes M_2 \cong M_2 \oplus M_4 \ \text{and} \ \ M_2 \otimes M_3 \cong M_2 \oplus M_4. \\ \text{Denote projection to} \ \ M_2 \ \text{by} \ \ \pi^{(2)}, \ \text{and on} \ \ M_3^{\otimes R} \otimes M_2 \otimes M_3^{\otimes L} \ \text{define} \\ \pi^{(2)}_+ = \mathrm{id}_{M_3}^{\otimes (R-1)} \otimes \pi^{(2)} \otimes \mathrm{id}_{M_3}^{\otimes L} \ \text{and} \ \ \pi^{(2)}_- = \mathrm{id}_{M_3}^{\otimes R} \otimes \pi^{(2)} \otimes \mathrm{id}_{M_3}^{\otimes (L-1)}. \\ \text{(Asy)} \ \ \pi^{(2)}_{\pm}(v_{\omega}) = \begin{cases} v_{\omega} & \text{if} \ y_1^{\pm} \ \text{first in} \ \omega \\ 0 & \text{otherwise} \end{cases}, \text{where} \ \hat{\omega} = (\omega_2, \ldots, \omega_{L+R}) \end{cases}$

(本部) ((日) (日) (日)

• $\zeta_{\omega}(y_{L}^{-}, ..., x, ..., y_{R}^{+})$ defined on \mathfrak{X}_{L+R+1} will be $\zeta_{\omega} = \mathcal{F}[v_{\omega}]$, with judiciously chosen $v_{\omega} \in M_{3}^{\otimes R} \otimes M_{2} \otimes M_{3}^{\otimes L}$

(cov) $K.v_{\omega} = q v_{\omega}$ (*K*-eigenvalue for correct homogeneity) (PDE) $E.v_{\omega} = 0$ (highest weight vector for well-def. and PDEs) Decompose $M_3 \otimes M_2 \cong M_2 \oplus M_4$ and $M_2 \otimes M_3 \cong M_2 \oplus M_4$. Denote projection to M_2 by $\pi^{(2)}$, and on $M_3^{\otimes R} \otimes M_2 \otimes M_3^{\otimes L}$ define $\pi^{(2)}_+ = \mathrm{id}_{M_3}^{\otimes (R-1)} \otimes \pi^{(2)} \otimes \mathrm{id}_{M_3}^{\otimes L}$ and $\pi^{(2)}_- = \mathrm{id}_{M_3}^{\otimes R} \otimes \pi^{(2)} \otimes \mathrm{id}_{M_3}^{\otimes (L-1)}$. (ASY) $\pi^{(2)}_{\pm}(v_{\omega}) = \begin{cases} v_{\hat{\omega}} & \mathrm{if} \ y_1^{\pm} \ \mathrm{first} \ \mathrm{in} \ \omega \\ 0 & \mathrm{otherwise} \end{cases}$, where $\hat{\omega} = (\omega_2, \dots, \omega_{L+R})$

Decompose $M_3 \otimes M_3 \cong M_1 \oplus M_3 \oplus M_5$. On $M_3^{\otimes R} \otimes M_2 \otimes M_3^{\otimes L}$, define $\pi_{\pm;j}^{(d)}$ projecting to M_d in positions of y_j^{\pm}, y_{j+1}^{\pm} .

イロト イポト イヨト イヨト 三日

•
$$\zeta_{\omega}(y_{L}^{-}, \dots, x, \dots, y_{R}^{+})$$
 defined on \mathfrak{X}_{L+R+1} will be $\zeta_{\omega} = \mathcal{F}[v_{\omega}]$,
with judiciously chosen $v_{\omega} \in M_{3}^{\otimes R} \otimes M_{2} \otimes M_{3}^{\otimes L}$
(COV) $K.v_{\omega} = q v_{\omega}$ (*K*-eigenvalue for correct homogeneity)
(PDE) $E.v_{\omega} = 0$ (highest weight vector for well-def. and PDEs)
Decompose $M_{3} \otimes M_{2} \cong M_{2} \oplus M_{4}$ and $M_{2} \otimes M_{3} \cong M_{2} \oplus M_{4}$.
Denote projection to M_{2} by $\pi^{(2)}$, and on $M_{3}^{\otimes R} \otimes M_{2} \otimes M_{3}^{\otimes L}$ define
 $\pi^{(2)}_{+} = \mathrm{id}_{M_{3}}^{\otimes (R-1)} \otimes \pi^{(2)} \otimes \mathrm{id}_{M_{3}}^{\otimes L}$ and $\pi^{(2)}_{-} = \mathrm{id}_{M_{3}}^{\otimes R} \otimes \pi^{(2)} \otimes \mathrm{id}_{M_{3}}^{\otimes (L-1)}$.
(ASY) $\pi^{(2)}_{\pm}(v_{\omega}) = \begin{cases} v_{\omega} & \text{if } y_{1}^{\pm} \text{ first in } \omega \\ 0 & \text{otherwise} \end{cases}$, where $\hat{\omega} = (\omega_{2}, \dots, \omega_{L+R})$

Decompose $M_3 \otimes M_3 \cong M_1 \oplus M_3 \oplus M_5$. On $M_3^{\otimes R} \otimes M_2 \otimes M_3^{\otimes L}$, define $\pi_{\pm;j}^{(d)}$ projecting to M_d in positions of y_j^{\pm}, y_{j+1}^{\pm} .

$$\begin{array}{ll} \mbox{\tiny (ASY)} & \pi^{(1)}_{\pm;j}(v_{\omega}) = 0, \ \pi^{(3)}_{\pm;j}(v_{\omega}) = \begin{cases} v_{\hat{\omega}} & \mbox{if } y_j^{\pm}, y_{j+1}^{\pm} \mbox{ consecutive in } \omega \\ 0 & \mbox{otherwise} \end{cases} \\ \mbox{where } \hat{\omega} \in \{+, -\}^{L+R-1} \mbox{ is obtained by omitting one, } \end{array} .$$

 The linear problem for (v_ω) is well posed — solutions exist and are unique up to an overall normalization

個 ト イヨ ト イヨ ト

 The linear problem for (v_ω) is well posed — solutions exist and are unique up to an overall normalization

$$\begin{array}{ll} {}^{(N\,=\,1)} & v_+ = \frac{q^2}{1-q^2} \ \mu_0 \otimes \mu_1 - \frac{q^2}{1-q^4} \ \mu_1 \otimes \mu_0 & \text{ and } v_- = \cdots \\ & \zeta_+(x;y_1) = \text{const.} \times |y_1 - x|^{\frac{\kappa-8}{\kappa}} \end{array}$$

個 ト イヨ ト イヨ ト

• The linear problem for (v_{ω}) is well posed — solutions exist and are unique up to an overall normalization

$$\begin{array}{ll} (\textit{\textit{N}}=1) & \textit{\textit{V}}_{+} = \frac{q^{2}}{1-q^{2}} \; \mu_{0} \otimes \mu_{1} - \frac{q^{2}}{1-q^{4}} \; \mu_{1} \otimes \mu_{0} & \text{ and } \textit{\textit{V}}_{-} = \cdots \\ & \zeta_{+}(x;\textit{\textit{y}}_{1}) = \text{const.} \times |\textit{\textit{y}}_{1} - x|^{\frac{\kappa - 8}{\kappa}} & \text{(obvious)} \\ (\textit{\textit{N}}=2) & \textit{\textit{V}}_{++}^{(2)} = \frac{q^{4}(1+q^{2}+q^{4})}{(1-q^{4})^{2}(1+q^{4})} \Big((q^{2}+q^{4})\mu_{011} - \mu_{020} \\ & -(1+q^{2})\mu_{101} - (1-q^{2})\mu_{110} + \mu_{200} \Big) & \text{and } 3 \text{ more} \\ & \zeta_{++}(x;\textit{\textit{y}}_{1},\textit{\textit{y}}_{2}) = \text{const.} \times {}_{2}F_{1} \left(\frac{4}{\kappa}, \frac{\kappa - 8}{\kappa}; \frac{8}{\kappa}; \frac{y_{2}-y_{1}}{y_{2}-x} \right) & \text{[Schramm \& Zhou]} \end{array}$$

個 ト イヨ ト イヨ ト

 The linear problem for (v_ω) is well posed — solutions exist and are unique up to an overall normalization

$$\begin{array}{ll} (\textit{N}=1) & \textit{V}_{+} = \frac{q^{2}}{1-q^{2}} \ \mu_{0} \otimes \mu_{1} - \frac{q^{2}}{1-q^{4}} \ \mu_{1} \otimes \mu_{0} & \text{and } \textit{V}_{-} = \cdots \\ & \zeta_{+}(x;\textit{y}_{1}) = \text{const.} \times |\textit{y}_{1} - x|^{\frac{\kappa - 8}{\kappa}} & \text{(obvious)} \\ (\textit{N}=2) & \textit{V}_{++}^{(2)} = \frac{q^{4}(1+q^{2}+q^{4})}{(1-q^{4})^{2}(1+q^{4})} \Big((q^{2}+q^{4})\mu_{011} - \mu_{020} \\ & -(1+q^{2})\mu_{101} - (1-q^{2})\mu_{110} + \mu_{200} \Big) & \text{and } 3 \text{ more} \\ & \zeta_{++}(x;\textit{y}_{1},\textit{y}_{2}) = \text{const.} \times {}_{2}F_{1} \left(\frac{4}{\kappa}, \frac{\kappa - 8}{\kappa}; \frac{8}{\kappa}; \frac{y_{2}-y_{1}}{y_{2}-x} \right) & \text{[Schramm \& Zhou]} \end{array}$$

(N = 3) 8 explicit vectors v_{ω} in 54-dimensional space

:

1

(N = 4) 16 explicit vectors v_{ω} in 162-dimensional space

回 ト イヨ ト イヨ ト

- < ≣ →

A ►

→ 포 → - 포

$$\begin{array}{l} \mathsf{P}_{\mathbb{H};x,\infty}\left[\mathrm{SLE}_{\kappa} \text{ hits } B_{\varepsilon}(y)\right] \\ \sim \ \mathrm{const.} \times \varepsilon^{\frac{8-\kappa}{\kappa}} \times |y-x|^{\frac{8-\kappa}{\kappa}} \\ \sim \ \mathrm{const.} \times \varepsilon^{\frac{8-\kappa}{\kappa}} \times \zeta_{1}(x;y) \end{array}$$

Kalle Kytölä Hidden quantum group symmetry in SLEs

- < ≣ →

A ►

→ 포 → - 포

$$\begin{array}{l} \mathsf{P}_{\mathbb{H};x,\infty}\left[\mathrm{SLE}_{\kappa} \text{ hits } B_{\varepsilon}(y)\right] \\ \sim \ \mathrm{const.} \times \varepsilon^{\frac{8-\kappa}{\kappa}} \times |y-x|^{\frac{8-\kappa}{\kappa}} \\ \sim \ \mathrm{const.} \times \varepsilon^{\frac{8-\kappa}{\kappa}} \times \zeta_{1}(x;y) \end{array}$$

• Covariant local martingale $Z_t = |g'_t(y)|^{\frac{8-\kappa}{\kappa}} \zeta_1(X_t; g_t(y))$

Image: 1

3

$$\begin{array}{l} \mathsf{P}_{\mathbb{H};x,\infty}\left[\mathrm{SLE}_{\kappa} \text{ hits } B_{\varepsilon}(y)\right] \\ \sim \ \mathrm{const.} \times \varepsilon^{\frac{8-\kappa}{\kappa}} \times |y-x|^{\frac{8-\kappa}{\kappa}} \\ \sim \ \mathrm{const.} \times \varepsilon^{\frac{8-\kappa}{\kappa}} \times \zeta_{1}(x;y) \end{array}$$

• Covariant local martingale $Z_t = |g'_t(y)|^{\frac{8-\kappa}{\kappa}} \zeta_1(X_t; g_t(y))$

• $\tilde{\mathsf{P}}$ measure of SLE_κ in $\mathbb H$ from x to ∞ conditioned to visit y

$$\begin{array}{l} \mathsf{P}_{\mathbb{H};x,\infty}\left[\mathrm{SLE}_{\kappa} \text{ hits } B_{\varepsilon}(y)\right] \\ \sim \ \mathrm{const.} \times \varepsilon^{\frac{8-\kappa}{\kappa}} \times |y-x|^{\frac{8-\kappa}{\kappa}} \\ \sim \ \mathrm{const.} \times \varepsilon^{\frac{8-\kappa}{\kappa}} \times \zeta_{1}(x;y) \end{array}$$

• Covariant local martingale $Z_t = |g'_t(y)|^{\frac{8-\kappa}{\kappa}} \zeta_1(X_t; g_t(y))$

• $\tilde{\mathsf{P}}$ measure of SLE_{κ} in \mathbb{H} from x to ∞ conditioned to visit y- $\frac{\mathrm{d}\tilde{\mathsf{P}}}{\mathrm{d}\mathsf{P}_{\mathbb{H};x,\infty}}\Big|_{\mathcal{F}_{t}} = \frac{Z_{t}}{Z_{0}} \propto |g_{t}'(y)|^{\frac{8-\kappa}{\kappa}} \zeta_{1}(X_{t};g_{t}(y))$

$$\begin{array}{l} \mathsf{P}_{\mathbb{H};x,\infty}\left[\mathrm{SLE}_{\kappa} \text{ hits } B_{\varepsilon}(y)\right] \\ \sim \ \mathrm{const.} \times \varepsilon^{\frac{8-\kappa}{\kappa}} \times |y-x|^{\frac{8-\kappa}{\kappa}} \\ \sim \ \mathrm{const.} \times \varepsilon^{\frac{8-\kappa}{\kappa}} \times \zeta_{1}(x;y) \end{array}$$

• Covariant local martingale $Z_t = |g_t'(y)|^{\frac{8-\kappa}{\kappa}} \zeta_1(X_t; g_t(y))$

• $\tilde{\mathsf{P}}$ measure of SLE_κ in $\mathbb H$ from x to ∞ conditioned to visit y

$$- \frac{\mathrm{d}\tilde{P}}{\mathrm{d}P_{\mathbb{H};x,\infty}}\Big|_{\mathcal{F}_t} = \frac{Z_t}{Z_0} \propto |g_t'(y)|^{\frac{8-\kappa}{\kappa}} \zeta_1(X_t;g_t(y))$$

- under $\hat{\mathsf{P}}$ driving process is $\mathrm{d}X_t = \sqrt{\kappa} \,\mathrm{d}\hat{B}_t + \frac{\kappa - 8}{X_t - g_t(y)} \mathrm{d}t$
Girsanov transform and the proof strategy

$$\begin{array}{l} \mathsf{P}_{\mathbb{H};x,\infty}\left[\mathrm{SLE}_{\kappa} \text{ hits } B_{\varepsilon}(y)\right] \\ \sim \ \mathrm{const.} \times \varepsilon^{\frac{8-\kappa}{\kappa}} \times |y-x|^{\frac{8-\kappa}{\kappa}} \\ \sim \ \mathrm{const.} \times \varepsilon^{\frac{8-\kappa}{\kappa}} \times \zeta_{1}(x;y) \end{array}$$

• Covariant local martingale $Z_t = |g_t'(y)|^{\frac{8-\kappa}{\kappa}} \zeta_1(X_t; g_t(y))$

• $\tilde{\mathsf{P}}$ measure of SLE_κ in $\mathbb H$ from x to ∞ conditioned to visit y

$$\left.-\left.\frac{\mathrm{d}\tilde{\mathsf{P}}}{\mathrm{d}\mathsf{P}_{\mathbb{H}:\times,\infty}}\right|_{\mathcal{F}_t}=\frac{Z_t}{Z_0}\propto |g_t'(y)|^{\frac{8-\kappa}{\kappa}}\,\zeta_1(X_t;g_t(y))\right.$$

- under $\tilde{\mathsf{P}}$ driving process is $\mathrm{d}X_t = \sqrt{\kappa} \,\mathrm{d}\tilde{B}_t + \frac{\kappa - 8}{X_t - g_t(y)} \mathrm{d}t$

• Recursive method for getting ζ_N in terms of ζ_{N-1} :

Girsanov transform and the proof strategy

$$\begin{array}{l} \mathsf{P}_{\mathbb{H};x,\infty}\left[\mathrm{SLE}_{\kappa} \text{ hits } B_{\varepsilon}(y)\right] \\ \sim \ \mathrm{const.} \times \varepsilon^{\frac{8-\kappa}{\kappa}} \times |y-x|^{\frac{8-\kappa}{\kappa}} \\ \sim \ \mathrm{const.} \times \varepsilon^{\frac{8-\kappa}{\kappa}} \times \zeta_{1}(x;y) \end{array}$$

• Covariant local martingale $Z_t = |g_t'(y)|^{\frac{8-\kappa}{\kappa}} \zeta_1(X_t; g_t(y))$

• $ilde{\mathsf{P}}$ measure of SLE_κ in $\mathbb H$ from x to ∞ conditioned to visit y

$$- \left. \frac{\mathrm{d}\tilde{\mathsf{P}}}{\mathrm{d}\mathsf{P}_{\mathbb{H}:\times\infty}} \right|_{\mathcal{F}_t} = \frac{Z_t}{Z_0} \propto \left| g_t'(y) \right|^{\frac{8-\kappa}{\kappa}} \zeta_1(X_t;g_t(y))$$

- under $\tilde{\mathsf{P}}$ driving process is $\mathrm{d}X_t = \sqrt{\kappa} \,\mathrm{d}\tilde{B}_t + \frac{\kappa - 8}{X_t - g_t(y)} \mathrm{d}t$

- Recursive method for getting ζ_N in terms of ζ_{N-1} :
 - condition on first visit to y₁
 - after y_1 visit, continuation is SLE_{κ} , still to visit y_2, y_3, \ldots, y_N

Girsanov transform and the proof strategy

$$\begin{array}{l} \mathsf{P}_{\mathbb{H};x,\infty}\left[\mathrm{SLE}_{\kappa} \text{ hits } B_{\varepsilon}(y)\right] \\ \sim \ \mathrm{const.} \times \varepsilon^{\frac{8-\kappa}{\kappa}} \times |y-x|^{\frac{8-\kappa}{\kappa}} \\ \sim \ \mathrm{const.} \times \varepsilon^{\frac{8-\kappa}{\kappa}} \times \zeta_{1}(x;y) \end{array}$$

• Covariant local martingale $Z_t = |g_t'(y)|^{\frac{8-\kappa}{\kappa}} \zeta_1(X_t; g_t(y))$

• $ilde{\mathsf{P}}$ measure of SLE_κ in $\mathbb H$ from x to ∞ conditioned to visit y

$$- \frac{\mathrm{d}\tilde{\mathsf{P}}}{\mathrm{d}\mathsf{P}_{\mathbb{H};\mathsf{x},\infty}}\Big|_{\mathcal{F}_t} = \frac{Z_t}{Z_0} \propto |g_t'(y)|^{\frac{8-\kappa}{\kappa}} \zeta_1(X_t;g_t(y))$$

- under $\tilde{\mathsf{P}}$ driving process is $\mathrm{d}X_t = \sqrt{\kappa} \,\mathrm{d}\tilde{B}_t + \frac{\kappa - 8}{X_t - g_t(\gamma)} \mathrm{d}t$

- Recursive method for getting ζ_N in terms of ζ_{N-1} :
 - condition on first visit to y_1
 - after y_1 visit, continuation is SLE_{κ} , still to visit y_2, y_3, \ldots, y_N
 - the solution ζ_N is used to build a martingale w.r.t. $\tilde{\mathsf{P}}$, whose end value is ζ_{N-1} — use optional stopping to conclude

(E) < E) </p>

as lattice mesh $\delta \searrow 0$

as lattice mesh $\delta \searrow 0$

• sample configuration and find the curve (interface)

as lattice mesh $\delta \searrow 0$

- sample configuration and find the curve (interface)
- collect frequencies of boundary visits from the samples

as lattice mesh $\delta \searrow 0$

- sample configuration and find the curve (interface)
- collect frequencies of boundary visits from the samples
- $P[\gamma \text{ visits } x_1, \ldots, x_N] \approx \text{const.} \times \prod_j (\delta f'(x_j))^{\frac{8-\kappa}{\kappa}} \zeta_N(f(x_1), \ldots),$ where $f = \text{conformal map to } (\mathbb{H}; 0, \infty)$

N = 1, one-point visit frequencies, log-log-scale

$$\zeta_1(x;y_1) \propto |y_1-x|^{\frac{\kappa-8}{\kappa}}$$

(set x = 0)

N = 2, two-point visit frequencies, log-scale

the 4 pieces of $\zeta_2(x; y_1, y_2)$ are hypergeometric functions

 $(set x = 0, y_1 = 1)$

N = 3, three-point visit frequencies, log-scale

solving for the 8 pieces of $\zeta_3(x; y_1, y_2, y_3)$ not reducible to ODE

 $(set x = 0, y_1 = 1, y_3 = 2)$

 $(set x = 0, y_1 = 1, y_3 = -1)$

N = 3, three-point visit frequencies, log-scale

solving for the 8 pieces of $\zeta_3(x; y_1, y_2, y_3)$ not reducible to ODE

Q = 3 FK model

 $(set x = 0, y_1 = 1, y_3 = 2)$

N = 4, four-point visit frequencies, log-scale

solving for the 16 pieces of $\zeta_4(x; y_1, y_2, y_3, y_4)$ not reducible to ODE

・ロト ・四ト ・ヨト ・ヨト

Э

999

Thank you!

Kalle Kytölä Hidden quantum group symmetry in SLEs