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Motivation

Motivation: what is a “generic” planar geometry?

Definition: planar map =

• finite connected planar graph,

• embedded on the 2-dimensional sphere,

• up to orientation-preserving deformations.

(embedding fixed ; some rigidity)

Goal: understand the geometry of large random planar maps.
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Motivation

For instance, quadrangulation:

(rooted on a vertex + edge)



UIPQ: main properties Bernoulli percolation Conclusion

Motivation

Universality: the macroscopic object should not depend on the
local combinatorics

(↔ Simple Random Walk gives rise to Brownian Motion)

⇒ One can work with large triangulations, quadrangulations. . . or
more sophisticated structures.
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Motivation

Two main approaches:

(i) scaling limit: (pioneered by Chassaing - Schaeffer) view
quadrangulation Qn as a metric space (with the graph
distance dgr ). Then

Theorem (Le Gall, Miermont)

We have the following convergence

(Qn, n
−1/4dgr )

(d)−→ cst · (m∞, d∗)

for the Gromov-Hausdorff distance.
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Motivation

(m∞, d
∗) is a random compact metric space (the “Brownian

map”), which is

• a.s. homeomorphic to the 2-sphere (Le Gall - Paulin),

• a.s. of Hausdorff dimension 4 (Le Gall).

For this approach, quadrangulations work best: bipartite structure
⇒ Cori - Vauquelin - Schaeffer bijection (can be generalized to
2p-angulations: Bouttier - Di Francesco - Guitter)
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Motivation

(ii) local limit: (Angel - Schramm) look at finite neighborhoods
of the root

Theorem (Angel, Schramm)

For every r ≥ 0, we have the following convergence:

BTn(r)
(d)−→

n→∞
BT∞(r)

where T∞ is a random (rooted) infinite triangulation (called the
Uniform Infinite Planar Triangulation, or UIPT).
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Motivation
It works for any family of maps, as soon as one is able to derive
explicit counting formulas. For triangulations:

φn,m =
2n+1(2m + 1)!(2m + 3n)!

m!2n!(2m + 2n + 2)!
.

m+ 2 boundary vertices

n internal vertices

rooted on a
boundary edge
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Counting quadrangulations
an,p = number of quadrangulations of the 2p-gon with n internal
faces (rooted on the boundary face):

an,p = 3n
(2p)!

p!(p − 1)!

(2n + p − 1)!

n!(n + p + 1)!
.

2p boundary vertices

n internal faces

rooted on a
boundary edge
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Counting quadrangulations

• asymptotic behavior:

an,p ∼
n→∞

Cp12nn−5/2,

with Cp = 1
2
√
π

(
2
3

)p (3p)!
p!(2p−1)! .

• corresponding generating function:

Zp(t) :=
∑
n>0

an,pt
n.

• Zp has 1/12 as a convergence radius, and

Zp := Zp(1/12) = 2

(
2

3

)p (3p − 3)!

p!(2p − 1)!
.
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Main properties
Main properties of the UIPQ (proved by Angel and Schramm for
the UIPT – same proofs here):

• well-defined: there exists

q∞ = lim
N→∞

qN

in the local sense.

• degree distribution: exponential tail

• a.s. one-ended
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Spatial Markov property for the UIPQ

Consider q a rigid quadrangulation with n internal faces and k
boundary faces, with perimeters 2p1, . . . , 2pk .

(i) One has

τ (q ⊂ q∞) =
12−n

C1

(
k∏

i=1

Zpi

)
k∑

i=1

Cpi

Zpi

. (1)
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Spatial Markov property for the UIPQ

When q ⊂ q∞, denote qi = component of the UIPQ in the ith
face. Then,

(ii) A.s., only one of these components is infinite: it is qj with
probability

τ (q ⊂ q∞,qj is infinite) =
12−n

C1
Cpj

 k∏
i=1
i 6=j

Zpi


(jth term in the previous sum).
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Spatial Markov property for the UIPQ

(iii) If we condition on {q ⊂ q∞}, and that the external faces of q
all contain finitely many vertices of q∞ except the jth one,

• the quadrangulations (qi )1≤i≤k are independent,

• qj has the same distribution as the UIPQ of the 2pj -gon,

• and for i 6= j , qi is distributed as the free quadrangulation of a
2pi -gon.

free quadrangulation of a 2p-gon = probability measure µp s.t.

µp(q) =
12−n

Zp(1/12)

for each quadrangulation q of the 2p-gon with n internal faces.
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Peeling process for the UIPQ

peeling process (Angel) = sequence (qn)n≥0 of (finite) random
quadrangulations with simple boundary, such that:

• q0 is the root edge of q∞,

• q0 ⊂ q1 ⊂ · · · ⊂ qn ⊂ · · · ⊂ q∞,

• Conditionally on Fn (fitration generated by q0,q1, . . . ,qn),
the part of q∞ that has not been discovered yet, that is
q∞ \ qn, is the UIPQ of the |∂qn|-gon.

(one adds quadrangles “one by one”)
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Peeling process for the UIPQ

Conditional distribution of qn+1 knowing Fn?

• choose an oriented edge e on ∂qn such that qn lies on the
right-hand side of e (any choice, deterministic or random, is
acceptable as long as it depends only on Fn),

• q∞ \ qn rooted at e is a UIPQ of the |∂qn|-gon,

• reveal the face of q∞ \ qn containing e.
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Peeling process for the UIPQ

Let p = |∂qn| /2. Four cases may occur for the new face
(x2p, x1, y0, y1), depending on whether y0 and / or y1 belong to
∂qn:

x2p x1 x2p x1 x2p x1 x2p x1

y0y1 y0

y1 = x2i+1

y1

y0 = x2i y0 = x2i
y1 = x2j+1

ql

qr

qr

qr

ql

ql

qm

(note that y1 can coincide with x1, and y0 can coincide with x2p)
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Peeling process for the UIPQ
Case 2: y0 /∈ ∂qn and y1 = x2i+1 ; two separate
quadrangulations: qr

n with perimeter 2(i + 1) and ql
n with

perimeter 2(p − i) (exactly one is infinite)

If qr
n infinite, it is a UIPQ of the 2(i + 1)-gon, and ql

n is
independent of qr

n and is a free quadrangulation of the
2(p − i)-gon ; set qn+1 = qn + face discovered + ql

n

This has conditional probability

τ (y0 /∈ ∂qn, y1 = x2i+1,q
r
n infinite |Fn) =

Zp−iCi+1

12Cp
.

x2p x1

y0

y1 = x2i+1

ql

qr
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Peeling process for the UIPQ

Case 2: y0 /∈ ∂qn and y1 = x2i+1

If ql
n is infinite, set qn+1 = qn + face discovered + qr

n

The corresponding probability is

τ
(
y0 /∈ ∂qn, y1 = x2i+1,q

l
n infinite

∣∣∣Fn

)
=

Cp−iZi+1

12Cp
.

x2p x1

y0

y1 = x2i+1

ql

qr
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Peeling process for the UIPQ

If we write |∂qn+1| = |∂qn|+ 2Xn:

P
(
Xn = 1

∣∣|∂qn| = 2p
)

=
Cp+1

12Cp

(corresponding to case (1)), and for every k = 0, . . . , p − 1,

P
(
Xn = −k

∣∣|∂qn| = 2p
)

= 4
Cp−kZk+1

12Cp
+ 3

Cp−k
12Cp

k∑
i=1

ZiZk+1−i

(combining cases (2) and (3) for the first term, and (4) for the
second term).
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Peeling process for the UIPQ

Lemma (Angel, Benjamini - Curien)

If q0,q1, . . . ,qn, . . . is generated by a peeling procedure of the
UIPQ, then one has

|∂qn| ≈ n2/3,

|qn| ≈ n4/3.

We use only |∂qn| → ∞ a.s., and prove

E [Xn|Fn] −→
n→∞

0.
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Bernoulli percolation

The peeling process can be used to study bond percolation on the
UIPQ:

Theorem (Ménard, N.)

For bond percolation on the UIPQ, one has pbondc = 1/3 almost
surely.

Easier to apply it for the Uniform Infinite Planar Map (UIPM):

Theorem (Ménard, N.)

For site and bond percolation on the UIPM, one has, respectively,
psitec = 2/3 and pbondc = 1/2 almost surely.
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Uniform Infinite Planar Map

Uniform Infinite Planar Map (UIPM): n→∞ limit of uniform
planar map with n edges (no constraint on degree).

Bijection with quadrangulations (⇒ UIPM can be obtained from
UIPQ)

(circles = primal vertices / squares = dual vertices)



UIPQ: main properties Bernoulli percolation Conclusion

Site percolation on the UIPM

Now: Bernoulli site percolation on the UIPM: the vertices are
colored, independently of each other, black with probability q, and
white with probability (1− q).

; exploration process (Angel for triangulations): at each step,
choose the quadrangle revealed so that ∂qn remains divided in two
arcs: one arc of black sites and one arc of white sites.

⇒ all black vertices on ∂qn belong to the percolation cluster
containing the root vertex of m∞, as long as the boundary does
not become totally white (corresponds to detecting a white circuit).
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Site percolation on the UIPM

Denote Bn = number of black vertices on ∂qn, Wn = number of
white vertices. Also, write |∂qn| = 2p.

x2p x1 x2p x1 x2p x1

y0

y1 = x2i+1

y1

y0 = x2i y0 = x2i

y1 = x2j+1

x2p x1

y0y1
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Site percolation on the UIPM

Case 2: y0 /∈ ∂qn and y1 ∈ ∂qn, Xn = −k:

• if ql
n infinite, Bn+1 = min (Bn, p − k).

• if qr
n infinite, Bn+1 = max (Bn − k − 1, 0) + 1 with probability

q and Bn+1 = max (Bn − k − 1, 0) with probability (1− q).

x2p x1

y0

y1 = x2i+1
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Site percolation on the UIPM

⇒ if |∂qn| = 2p, when Xn = −k:

Bn+1 =



min (Bn, p − k) w. p. 2
Cp−kZk+1

12Cp
+

Cp−k

12Cp

∑k
i=1 ZiZk+1−i ,

max (Bn − k, 0) w. p.
Cp−kZk+1

12Cp
+

Cp−k

12Cp

∑k
i=1 ZiZk+1−i ,

max (Bn − k − 1, 0) + 1 w. p. q
Cp−kZk+1

12Cp
,

max (Bn − k − 1, 0) w. p. (1− q)
Cp−kZk+1

12Cp
,

max (Bn − i , 0) w. p.
Cp−k

12Cp
ZiZk+1−i for 1 6 i 6 k.

By analyzing carefully this chain, we prove: if q < 2/3, Bn comes
back to 0 i.o., and = O(log n).

For q > 2/3, use Wn instead to prove that Bn →∞.
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Site percolation on the UIPM

; modified Markov chain (B ′n) obtained by “simplifying” (Bn):

B ′n+1 =

{
B ′n + 1 with probability q

Cp+1

12Cp
,

B ′n with probability (1− q)
Cp+1

12Cp

(corresponding to Xn = 1), and

B ′n+1 =


B ′n w. p. 2

Cp−kZk+1

12Cp
+

Cp−k

12Cp

∑k
i=1 ZiZk+1−i ,

B ′n − k w. p. (1 + q)
Cp−kZk+1

12Cp
+

Cp−k

12Cp

∑k
i=1 ZiZk+1−i ,

B ′n − k − 1 w. p. (1− q)
Cp−kZk+1

12Cp
,

B ′n − i w. p.
Cp−k

12Cp
ZiZk+1−i for 1 6 i 6 k

for every k = 0, . . . , p − 1 (corresponding to Xn = −k).
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Site percolation on the UIPM
We find:

E
[
B ′n+1 − B ′n

∣∣|∂qn| = 2p
]

= qP (Xn = 1||∂qn| = 2p)−
p−1∑
k=0

k

(
2
Cp−kZk+1

12Cp
+

Cp−k

12Cp

k∑
i=1

ZiZk+1−i

)

− (1− q)

p−1∑
k=0

Cp−kZk+1

12Cp
−

p−1∑
k=1

k∑
i=1

i
Cp−k

12Cp
ZiZk+1−i

=

(
q − 1

2

)
P (Xn = 1||∂qn| = 2p) +

1

2
E [Xn||∂qn| = 2p]

− (1− q)

p−1∑
k=0

Cp−kZk+1

12Cp
+

p−1∑
k=1

k∑
i=1

(
k

2
− i

)
Cp−k

12Cp
ZiZk+1−i

=

(
q − 1

2

)
Cp+1

12Cp
+

1

2
E [Xn||∂qn| = 2p]

− (1− q)

p−1∑
k=0

Cp−kZk+1

12Cp
− 1

2

p−1∑
k=1

k∑
i=1

Cp−k

12Cp
ZiZk+1−i .
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Site percolation on the UIPM

Hence,

E
[
B ′n+1 − B ′n

∣∣Fn

]
−→

(
q − 1

2

)
3

8
− (1− q)

1

8
− 1

2

1

24
=

q

2
− 1

3

as n→∞.

In particular, negative and bounded away from 0 for q < 2/3.
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Conclusion

• Explicit counting formulas ; derivation of percolation
thresholds

• Recent (independent) work of Angel-Curien: pbondc and pfacec

for several random maps in the half-plane (and some critical
exponents) – in particular uniform quadrangulations

• Curien-Kortchemski: on the UIPT, scaling limit of the
boundary for large critical percolation clusters, and some
critical exponents
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End

Thank you!
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