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Motivation

Motivation: what is a “generic’ planar geometry?

Definition: planar map =
e finite connected planar graph,
e embedded on the 2-dimensional sphere,

e up to orientation-preserving deformations.

(embedding fixed ~» some rigidity)

Goal: understand the geometry of large random planar maps.
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Motivation

For instance, quadrangulation:

(rooted on a vertex + edge)



Motivation

Universality: the macroscopic object should not depend on the
local combinatorics

(«» Simple Random Walk gives rise to Brownian Motion)

= One can work with large triangulations, quadrangulations. .. or
more sophisticated structures.



Motivation

Two main approaches:

(i) scaling limit: (pioneered by Chassaing - Schaeffer) view
quadrangulation @, as a metric space (with the graph
distance dg-). Then

Theorem (Le Gall, Miermont)

We have the following convergence

(Qny 1~ Y4dg) 1% est - (oo, d*)

for the Gromov-Hausdorff distance.



Motivation
(Mo, d*) is a random compact metric space (the “Brownian
map” ), which is
e a.s. homeomorphic to the 2-sphere (Le Gall - Paulin),
e a.s. of Hausdorff dimension 4 (Le Gall).
For this approach, quadrangulations work best: bipartite structure

= Cori - Vauquelin - Schaeffer bijection (can be generalized to
2p-angulations: Bouttier - Di Francesco - Guitter)



Motivation

(i) local limit: (Angel - Schramm) look at finite neighborhoods
of the root

Theorem (Angel, Schramm)

For every r > 0, we have the following convergence:

d
Br,(r) % Br_(r)

n—o0

where T, is a random (rooted) infinite triangulation (called the
Uniform Infinite Planar Triangulation, or UIPT).



Motivation
It works for any family of maps, as soon as one is able to derive

explicit counting formulas. For triangulations:
~ 2" (2m +1)1(2m + 3n)!
T mi2pl(2m + 2n + 2)!

m + 2 boundary vertices

rooted on a
boundary edge

n internal vertices
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Counting quadrangulations

anp = number of quadrangulations of the 2p-gon with n internal
faces (rooted on the boundary face):

2p)! (2n+p-—1)!
pl(p—1)nl(n+p+1)"

apnp =3"

2p boundary vertices

rooted on a
boundary edge

n internal faces
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Counting quadrangulations

e asymptotic behavior:

anp ~ Cp12”n_5/2,

n—oo

3p)!
with C = 7 (2)/3 7;)!((2511)!.

e corresponding generating function:

t):=> anpt".

n=>0

e Z, has 1/12 as a convergence radius, and

Z, = (1/12)2(2> w'

Conclusion
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Main properties
Main properties of the UIPQ (proved by Angel and Schramm for
the UIPT — same proofs here):

o well-defined: there exists
= |lim
Ao Nesoo an
in the local sense.
e degree distribution: exponential tail

e a.s. one-ended



UIPQ: main properties Bernoulli percolation Conclusion

Spatial Markov property for the UIPQ

Consider q a rigid quadrangulation with n internal faces and k
boundary faces, with perimeters 2p1, ..., 2pk.

(i) One has
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Spatial Markov property for the UIPQ

When q C qu, denote q; = component of the UIPQ in the jth
face. Then,

(ii) A.s., only one of these components is infinite: it is g; with
probability

12-" a

7 (9 C 9o, qj is infinite) = TCPJ HZ,
1 T
i

(jth term in the previous sum).

Conclusion



UIPQ: main properties

Spatial Markov property for the UIPQ

(iii) If we condition on {gq C g}, and that the external faces of q
all contain finitely many vertices of q., except the jth one,

e the quadrangulations (q;)1<;< are independent,
e q; has the same distribution as the UIPQ of the 2p;-gon,

e and for i # j, q; is distributed as the free quadrangulation of a
2p;-gon.
free quadrangulation of a 2p-gon = probability measure uP s.t.

127"

for each quadrangulation q of the 2p-gon with n internal faces.
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Peeling process for the UIPQ

peeling process (Angel) = sequence (qy),>, of (finite) random
quadrangulations with simple boundary, such that:
e (o is the root edge of (o,
®*qQoCqrC---CgpC - CQeo,
e Conditionally on F, (fitration generated by qo,q1,.-.,dn),

the part of qu that has not been discovered yet, that is
doo \ Qn, is the UIPQ of the |0q,|-gon.

(one adds quadrangles “one by one")
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Peeling process for the UIPQ

Conditional distribution of q,1 knowing F,?
e choose an oriented edge e on dq, such that q, lies on the

right-hand side of e (any choice, deterministic or random, is
acceptable as long as it depends only on F},),

® 4 \ g, rooted at e is a UIPQ of the |0q,|-gon,

e reveal the face of g \ g, containing e.
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Peeling process for the UIPQ

Let p = |0q,| /2. Four cases may occur for the new face

(x2p, X1, Y0, y1), depending on whether yy and / or y; belong to
oqn:

(note that y;1 can coincide with x1, and yp can coincide with x2p)
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Peeling process for the UIPQ
Case 2: yp ¢ Jq, and y1 = xpj11 ~ two separate
quadrangulations: qf, with perimeter 2(i 4 1) and q/, with
perimeter 2(p — i) (exactly one is infinite)

If 7, infinite, it is a UIPQ of the 2(i + 1)-gon, and q/, is
independent of qf, and is a free quadrangulation of the
2(p — i)-gon ~+ set qn41 = q, + face discovered + q/,

This has conditional probability
Zp iCiv1

T(_VO ¢ 3CIn,)/1 = X2,'+1,q; infinite |fn) = ]_2Cp
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Peeling process for the UIPQ
Case 2: yo ¢ 9q, and y1 = X241
If q/, is infinite, set qn,11 = q, + face discovered + q,
The corresponding probability is

Co-iZis1

T (YO ¢ 0qn, y1 = X2i+1,q£, infinite ‘]—',,) = e
P
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Peeling process for the UIPQ

If we write [0qn+1| = |0dn| + 2X:

Cot1

P (X, = 1||0q,| = 2p) = 2~

( |10an| = 2p) 12C,
(corresponding to case (1)), and for every k =0,...,p—1,

Co—kZr+1
P (Xo = —K||0as| = 2p) = 4 p12Cp+ 12C ,ZZZM '

(combining cases (2) and (3) for the first term, and (4) for the
second term).
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Peeling process for the UIPQ

Lemma (Angel, Benjamini - Curien)
Ifqo,91,---,qn,- .. is generated by a peeling procedure of the
UIPQ, then one has

|8CIn‘ ~ n2/37

lan| ~ n*/3.

We use only |0q,| — oo a.s., and prove

E [Xn|Fn] — 0.
n—o00
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Bernoulli percolation

The peeling process can be used to study bond percolation on the
UIPQ:

Theorem (Ménard, N.)

For bond percolation on the UIPQ, one has p2°"® = 1/3 almost
surely.

Easier to apply it for the Uniform Infinite Planar Map (UIPM):
Theorem (Ménard, N.)

For site and bond percolation on the UIPM, one has, respectively,
piite = 2/3 and plond = 1/2 almost surely.



Bernoulli percolation

Uniform Infinite Planar Map

Uniform Infinite Planar Map (UIPM): n — oo limit of uniform
planar map with n edges (no constraint on degree).

Bijection with quadrangulations (= UIPM can be obtained from
UIPQ)

(circles = primal vertices / squares = dual vertices)



Bernoulli percolation

Site percolation on the UIPM

Now: Bernoulli site percolation on the UIPM: the vertices are
colored, independently of each other, black with probability g, and
white with probability (1 — q).

~> exploration process (Angel for triangulations): at each step,
choose the quadrangle revealed so that dq, remains divided in two
arcs: one arc of black sites and one arc of white sites.

= all black vertices on 0q, belong to the percolation cluster
containing the root vertex of my,, as long as the boundary does
not become totally white (corresponds to detecting a white circuit).
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Site percolation on the UIPM

Denote B, = number of black vertices on dq,,, W,, = number of
white vertices. Also, write |0q,| = 2p.

Y1 = T2i41 O Yo = T2; Y1 = T2j+1

Yo = T2i

Top T1 29y Ty Top Ty
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Site percolation on the UIPM

Case 2: yo ¢ 0q, and y1 € 0q,, X, = —k:
o if g/, infinite, B, 1 = min(B,, p — k).
e if qJ, infinite, Bpy1 = max (B, — k — 1,0) + 1 with probability
q and Bj+1 = max(B, — k — 1,0) with probability (1 — q).

Y1 = T2i4+1

Top T1
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Site percolation on the UIPM

= if |0qs| = 2p, when X, = —k:

i CorZ,
mln(Bn,p— k) X }’12ka+1 + 1zck Z, 1ZZI<+1 i
CorZ,
max (B, — k, 0) : '@'12kck+1 + 12ck S ZiZksr i,
By ={max(B,—k—1,0)+1 _CICp%CZkH7

) (1_q) p ka+1
. 12CpZZk+1*’ for 1 < i < k.

NN
T T T T T

(
max (B, — k —1,0)
max (B, — i,0)

By analyzing carefully this chain, we prove: if g < 2/3, B,, comes
back to 0 i.0., and = O(log n).

For g > 2/3, use W, instead to prove that B, — cc.
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Site percolation on the UIPM

~» modified Markov chain (BJ,) obtained by “simplifying” (B,):

, {B,’, +1 with probability qlﬁ’(*:l,

k1 = B! with probability (1 — )16'2,,21
P

(corresponding to X, = 1), and

B, W. Pp. 2Cp12kcz:+1 + 12Ck Z, 1Zikv1-is
z
B . — B, — k W. Pp. (1+q) e, + 12c: Zi:l ZiZk41-is
il Bl —k—1 w. p. (17q)%7
B —i w. p. 12CZZ;(+1,for1 i<k

for every k =0,...,p — 1 (corresponding to X, = —k).
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Site percolation on the UIPM
We find:

E (B}, — By/l0a| = 2]

p—1
Zk+1
= qP (Xo = 1][0q,] = 2p) = Y k[ 222 §ZZ j
qP ( ||0qn| p) k_()( 12, 12C k+1>

L c kZk s K
—(1-— CokZit .Sy % A
I D WL

1 1
— (a-3) PO = 1lar] = 20) + 3E Xl 100,] = 25

p—1 p—1

C _ka+1 k C

—(1—= P XKTRTL - ZZ ;
( q) kz:zo 12Cp " k=1 Zl: 2 12C o

1\ Gt 1
= - = —E[X =2
(q 2) 12Cp + 5 [ n||8qn| p]

p—1 p 1 k

Co—kZ
_(1_q)z%(::+1_72212C i k+11

k=0 k=1 i=1
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Site percolation on the UIPM

Hence,
1\3 1 11 gq
E[3+1Bﬁ|fn]ﬁ<q)8(1q)8:2
as n — oQ.

In particular, negative and bounded away from 0 for g < 2/3.

Conclusion



Conclusion

Conclusion

e Explicit counting formulas ~» derivation of percolation
thresholds

bond face

e Recent (independent) work of Angel-Curien: p2°"“ and p;
for several random maps in the half-plane (and some critical
exponents) — in particular uniform quadrangulations

e Curien-Kortchemski: on the UIPT, scaling limit of the
boundary for large critical percolation clusters, and some
critical exponents



End

Thank you!
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