
A tutorial for
topological

data analysis
1

Otto van
Koert

Some
applications

A tutorial for topological data analysis 1

Otto van Koert

Seoul National University, South Korea



A tutorial for
topological

data analysis
1

Otto van
Koert

Some
applications • Topological data analysis (TDA) is a relatively new field in

mathematics with the promise of many potential new
applications.
• Philosophy summarized by Carlsson as: data has shape,

and shape has meaning.
• Today: Mapper and persistent homology, and some sample

applications.
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Main philosophy

• Geometry and topology are subfields of mathematics that
are concerned with shape
• Geometry measures quantitative properties: distance,

volume, etc
• Topology is concerned with more qualitative properties,

and algebraic topology transforms these into computable
algebraic language.
• Applications of these techniques should be backed up with

the appropriate statistics. Today we ignore these statistical
issues.
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Shape of data

Data has sometimes a rather simple shape as indicated below.
Regression is an excellent technique in such cases.

Figure: Noisy linear data Figure: Noisy quadratic data
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Other shapes
More complicated shapes appear, too.

Figure: the (transformed) amount versus time of the transaction

This shape appears in transaction data: the interpretation is
obvious: each of the seven clusters corresponds to a week day:
the smaller clusters are Saturday and Sunday.
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Clustering
Statistics is well-equipped to deal with the previous example:
the subfield of clustering deals with this particular problem. For
example, most of the following methods will work
• hierarchical clustering (single-linkage, complete linkage)
• k-means
• distribution-based methods such as

expectation-maximization (EM)
• density-based methods (DB-scan)

Figure: Clusters found with EM
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More complicated shapes

Figure: Several of the above clustering algorithms will fail here

Figure: (fake) transaction data: many categorical variables
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The previous example highlights some of the problems with
modern data.
• a large number of data points
• many different coordinates (or features) with no direct

meaning.
• related: distance does not have a direct meaning.

The last two points mean that direct geometric methods may
give weak or unstable results. TDA complements these
methods, because
• topology is by definition independent of the metric and
• shapes have different behavior at different scales: this will

be captured with the notion of persistence, which relies on
functoriality.
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Topology

We will need a couple of notions of topology, such as
connectedness (previous example). We will also need a suitable
class of topological spaces with a good decomposition

1 CW-complexes: preferred in algebraic topology. Examples
include general graphs

2 Simplicial complexes: decomposes a topological space into
many, simple pieces. This class also includes many graphs,
but not all.

Simplicial complexes seem to be most useful for computational
work; we will use that class after a quick review.
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Simplex as a generalized triangle

Definition
A geometric k-dimensional simplex is the topological space

∆k := {(x0, . . . , xk) ∈ Rk+1 |
k∑

i=0

xi = 1, xi ≥ 0}

1 1

1 1

1

1
0 0

0

Figure: A 0-simplex, a 1-simplex and a 2-simplex:
a point, a line segment and a triangle
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Simplicial complexes and abstract
simplicial complexes

• Roughly put, a simplicial complex is a topological space
constructed with simplices using combinatorial “gluing
recipe”. See the figure below.
• An abstract simplicial complex is this combinatorial recipe;

it is ideal for computers, but actually does not need any
geometry.
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Simplicial complexes: Lego-like
construction descriptions of spaces

Definition (Slightly confusing)
An abstract simplicial complex is a (finite) collection of
(finite) sets X such that if x ∈ X , and y ⊂ x , then y ∈ X .

Example
X = {{0}, {1}, {2}, {0, 1}}
We see that the definition holds.
For practical purposes, it is useful to think of
X = X0 ∪ X1 ∪ . . . ∪ Xn, where
• Xk consists of sets with k + 1 elements: Xk parametrizes

the k-simplices.
In the example we have

X0 = {{0}, {1}, {2}}, X1 = {{0, 1}}



A tutorial for
topological

data analysis
1

Otto van
Koert

Some
applications

Here is a more complicated example of an abstract simplicial
complex.

X0 = {{0}, {1}, {2}, {3}, {4}}

X1 = {{0, 1}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

X2 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}

We can construct a topological space out of this by replacing
each k-simplex by a geometric k-simplex.

0

3

4

2

1

Remark
For later purposes (orientations) we will always order vertices in
a simplex by increasing index.
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Geometric realization:

Given an abstract simplicial complex X = {Xn}Nn=0, we will
define the geometric realization of X . Intuitively, this is just
the shape built from the Lego description.
Here is a simple way to make it explicit:

1 order X0

2 choose N sufficiently large and an embedding i : X0 → RN

such that {i(x)}x∈X0 are linearly independent (can be
weakened)

3 for each σ ∈ Xk we get a map fσ : ∆k → RN by linear
combination. Namely if x ∈ ∆k , then x =

∑k
j=0 tjej ,

where ej is the standard basis of Rk+1.
Put fσ(x) =

∑
j tj i(σ[j ]), where σ[j ] is the j-th point of σ.

4 the geometric realization is |X | = ∪σ∈X fσ(∆|σ|)
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Remark
In step 2 we asked for linear independence to prevent unwanted
intersections between the images of different simplices. In most
cases, linear independence is much stronger than necessary.

Remark
We will never really need geometric realization. The abstract
simplicial complex suffices for all computational work.

Remark
Ordering the vertices, i.e. X0, is the standard way to deal with
orientations (which we only discuss implicitly).

Definition
A (finite) simplicial complex is a topological space that is
homeomorphic to the geometric realization of a (finite) abstract
simplicial complex.
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Simplicial complexes and
compression

Many interesting (but not all) topological spaces admit a
simplicial structure. If this is the case, we can see such a
simplicial structure as a compressed representation:

∼=

Figure: Circle as a simplicial
complex

Figure: The quasi-circle has no
simplicial structure
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Nerve of a covering
Let U = {Ui}i∈I be a covering of a topological space X .

Definition
The nerve of the covering U is the simplicial complex N(U),
whose simplices are defined as follows:
• vertices are N(U)0 = {ui}i∈I , so Ui ∈ U gives one vertex.
• [u0, . . . , uk ] forms a k-simplex when ∩kj=0Uj 6= ∅.

U0

U1

U2

[U0]

[U1]

[U2]

[U0,U1]

[U0,U2]

[U1,U2]

Figure: A covering of the circle and its nerve
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Nerve theorem

Theorem (Nerve theorem)
Suppose that X is a paracompact topological space, and
assume that U = {Ui}i is a good cover, meaning that any finite
intersection

Ui0 ∩ . . . ∩ Uik

is either empty or contractible. Then the nerve N (U) is
homotopy equivalent to X .
Roughly speaking, this theorem says that the nerve of a good
cover can be deformed to the original space.

Remark
The mathematical-philosophical background (more later) is the
following. Most invariants from algebraic topology depend only
on the homotopy type of a space. So replacing a space by a
homotopy equivalent one that is easier, helps computations.



A tutorial for
topological

data analysis
1

Otto van
Koert

Some
applications

A brief excursion to the Reeb graph
Suppose that X is a topological space, and f : X → R a
continuous function. Define an equivalence relation on X by

x ∼f x ′ if and only if x , x ′ are in the same component of f −1(y).

Define the Reeb graph of (X , f ) as

Rf (X ) := X/ ∼f

f

Figure: Reeb graph of a function
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Pullback covers

We have the following relation between the Reeb graph and the
nerve construction. Fix a continuous function f : X → R. Call
f a filter function or lens.
• Cover f (X ) by intervals Ii .
• The sets Ui = f −1(Ii ) form a cover (almost never good)
• To improve our “chances”, we decmpose Ui into its

connected components Ui = ∪jCi ,j . If the space X is
reasonable (locally connected), then Ci ,j are open.

This results in an open cover X = ∪i ,jCi ,j .
• we can now look at the nerve construction for this cover
• and to the Reeb graph of f

If the cover by intervals Ii is sufficiently fine, we get the “same”
result.
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Reeb graph and mapper
Remark
The Reeb graph captures a rough version of the topology: a lot
of information is lost, but some is retained in a graph, which is
computationally easier to deal with.
We cannot directly apply the Reeb graph to point cloud data;
with only finitely many points in the cloud, most level sets are
empty. Hence replace a level-set by the preimage of an interval.

f

Figure: An analog of the Reeb graph
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..Mapper
1 fix a data set and a function (filter function) from the data

set to R.
2 cover R with intervals that overlap on a smaller interval

(gain)
3 put points whose filter value lies in interval Ib in bin b.
4 cluster points in each bin b: these clusters are the vertices

of the mapper
5 connect the mapper vertices if the corresponding clusters

share a point.
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Multi-dimensional mapper

For the higher-dimensional version of mapper, the nerve
construction is our guide. Suppose we want to construct a
k-dimensional mapper for a pointcloud X . Then

1 choose filter functions fi : X → R for i = 1, . . . k . Collect
them in F : X → Rk

2 cover F (X ) with overlapping boxes Ui

3 to obtain the analog of the pullback cover, cluster data
points in each Ui . Call the clusters Ci ,j

4 The clusters form the vertices of mapper
5 There is an edge if two clusters Ci ,j and Ci ′,j ′ overlap (i.e.

share a data point) This can be generalized to several
clusters to get higher-dimensional simplices.



A tutorial for
topological

data analysis
1

Otto van
Koert

Some
applications

The main purposes of mapper are:
• visualization
• exploratory data analysis

It is flexible and can deal with large and diverse data sets:
mixed numerical and categorical data can be dealt with. One
only needs a dissimilarity measure.

Figure: A model of a human
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Figure: Mapper of the first
PCA-function for a human model;
PCA stands for principal
component analysis
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Choices

There are lots of choices in mapper. This gives it a lot of
flexibility, but this comes at a price, namely complexity.
• We need to choose filter functions of interest
• The number of bins, and the epsilon parameters need to be

chosen.
Here it should be pointed out that statistics gives us some
guidance.
• more bins speeds up the mapper algorithm
• but more bins results in fewer points per bin, which makes

the statistical data (mean, etc per bin) less reliable.
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Some applications
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Figure: Mapper of medical data with two filter functions, and colored
by a third filter function (disease: yes or no)
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The following picture is taken from
Topology based data analysis identifies a subgroup of breast
cancers with a unique mutational profile and excellent survival
by Monica Nicolau, Arnold J. Levine, and Gunnar Carlsson,
PNAS April 26, 2011. 108 (17) 7265-7270;
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The following picture is taken from Extracting insights from the
shape of complex data using topology
by P. Y. Lum, G. Singh, A. Lehman, T. Ishkanov, M.
Vejdemo-Johansson, M. Alagappan, J. Carlsson and G. Carlsson,
Nature, Scientific Reports volume 3, Article number: 1236
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