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® Topological data analysis (TDA) is a relatively new field in
mathematics with the promise of many potential new
applications.

® Philosophy summarized by Carlsson as: data has shape,
and shape has meaning.

® Today: Mapper and persistent homology, and some sample
applications.
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Main philosophy

Geometry and topology are subfields of mathematics that
are concerned with shape

Geometry measures quantitative properties: distance,
volume, etc

Topology is concerned with more qualitative properties,
and algebraic topology transforms these into computable
algebraic language.

Applications of these techniques should be backed up with
the appropriate statistics. Today we ignore these statistical
issues.
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Data has sometimes a rather simple shape as indicated below.
Regression is an excellent technique in such cases.

Figure: Noisy linear data Figure: Noisy quadratic data
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Figure: the (transformed) amount versus time of the transaction

This shape appears in transaction data: the interpretation is
obvious: each of the seven clusters corresponds to a week day:
the smaller clusters are Saturday and Sunday.
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Koert the subfield of clustering deals with this particular problem. For

example, most of the following methods will work
e hierarchical clustering (single-linkage, complete linkage)
® k-means
e distribution-based methods such as
expectation-maximization (EM)
density-based methods (DB-scan)

A

Figure: Clusters found with EM
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More complicated shapes

Figure: Several of the
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Figure: (fake) transaction data: many categorical variables
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The previous example highlights some of the problems with
modern data.

® 3 large number of data points

® many different coordinates (or features) with no direct
meaning.
e related: distance does not have a direct meaning.
The last two points mean that direct geometric methods may
give weak or unstable results. TDA complements these
methods, because
e topology is by definition independent of the metric and

® shapes have different behavior at different scales: this will
be captured with the notion of persistence, which relies on
functoriality.
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Topology

We will need a couple of notions of topology, such as
connectedness (previous example). We will also need a suitable
class of topological spaces with a good decomposition

@ CW-complexes: preferred in algebraic topology. Examples
include general graphs

® Simplicial complexes: decomposes a topological space into
many, simple pieces. This class also includes many graphs,
but not all.

Simplicial complexes seem to be most useful for computational
work; we will use that class after a quick review.
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A geometric k-dimensional simplex is the topological space

k
A ={(x0,...,x) ERFT [ Y x; =1, x >0}
i=0

Figure: A 0-simplex, a 1-simplex and a 2-simplex:
a point, a line segment and a triangle
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® Roughly put, a simplicial complex is a topological space
constructed with simplices using combinatorial “gluing
recipe’. See the figure below.

® An abstract simplicial complex is this combinatorial recipe;
it is ideal for computers, but actually does not need any
geometry.
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Definition (Slightly confusing)

An abstract simplicial complex is a (finite) collection of
(finite) sets X such that if x € X, and y C x, then y € X.

Example

X = {{0}? {1}7 {2}7 {0? 1}}

We see that the definition holds.

For practical purposes, it is useful to think of
X =XpoUX{U...UX,, where

® X, consists of sets with k + 1 elements: X parametrizes
the k-simplices.

In the example we have

Xo = {{0}7 {1}7 {2}}7 X1 = {{07 1}}
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Here is a more complicated example of an abstract simplicial

complex.
Xo = {{0}, {1}, {2}, {3}, {4}}
X1 ={{0,1},{1,2},{1,3},{1,4},{2,3},{2,4}, {3,4}}
Xo ={{1,2,3},{1,2,4},{1,3,4},{2,3,4}}

We can construct a topological space out of this by replacing
each k-simplex by a geometric k-simplex.

3

Remark
For later purposes (orientations) we will always order vertices in
a simplex by increasing index.
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Given an abstract simplicial complex X = {X,}N_;, we will
define the geometric realization of X. Intuitively, this is just
the shape built from the Lego description.
Here is a simple way to make it explicit:
@ order Xp
@® choose N sufficiently large and an embedding i : Xg — RN
such that {i(x)}xex, are linearly independent (can be
weakened)
© for each o € X) we get a map £, : A — RN by linear
combination. Namely if x € Ay, then x = Zf:o tiej,
where ¢; is the standard basis of R¥*1.
Put f;(x) = >_; tji(o[j]), where o[j] is the j-th point of 0.
O the geometric realization is [X| = Uyexfy(A|q))
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Remark

In step 2 we asked for linear independence to prevent unwanted
intersections between the images of different simplices. In most
cases, linear independence is much stronger than necessary.

Remark
We will never really need geometric realization. The abstract
simplicial complex suffices for all computational work.

Remark
Ordering the vertices, i.e. Xy, is the standard way to deal with
orientations (which we only discuss implicitly).

Definition

A (finite) simplicial complex is a topological space that is
homeomorphic to the geometric realization of a (finite) abstract
simplicial complex.
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Simplicial complexes and

compression

Many interesting (but not all) topological spaces admit a
simplicial structure. If this is the case, we can see such a
simplicial structure as a compressed representation:

1

Figure: Circle as a simplicial
complex

Figure: The quasi-circle has no
simplicial structure
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Nerve of a covering
Let Y = {U;};c; be a covering of a topological space X.
Definition
The nerve of the covering U is the simplicial complex N(U),
whose simplices are defined as follows:

* vertices are N(U)° = {u;}jcs, so U; € U gives one vertex.

® [ug,...,ux] forms a k-simplex when ﬂjlfzo Ui # 0.

[U1]
Uo, U1]

[Uo]
Uo, U]

Us]

Figure: A covering of the circle and its nerve
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Suppose that X is a paracompact topological space, and
assume that U = {U;}; is a good cover, meaning that any finite
intersection

U,'Oﬁ...ﬂU,'k

is either empty or contractible. Then the nerve N'(U) is
homotopy equivalent to X.

Roughly speaking, this theorem says that the nerve of a good
cover can be deformed to the original space.

Remark

The mathematical-philosophical background (more later) is the
following. Most invariants from algebraic topology depend only
on the homotopy type of a space. So replacing a space by a
homotopy equivalent one that is easier, helps computations.
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A brief excursion to the Reeb graph

Suppose that X is a topological space, and f : X - R a
continuous function. Define an equivalence relation on X by

x ~¢ X' if and only if x, x’ are in the same component of f~1(y).
Define the Reeb graph of (X, f) as
Re(X) := X/ ~¢

H

/
N/

Figure: Reeb graph of a function
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nerve construction. Fix a continuous function f : X — R. Call

f a filter function or lens.
e Cover f(X) by intervals /;.
® The sets U; = f~1(I;) form a cover (almost never good)

® To improve our “chances’, we decmpose U; into its
connected components U; = U;C; ;. If the space X is
reasonable (locally connected), then C;; are open.

This results in an open cover X = U; ;G ;.
® we can now look at the nerve construction for this cover
® and to the Reeb graph of f

If the cover by intervals /; is sufficiently fine, we get the “same”
result.
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Reeb graph and mapper

Remark

The Reeb graph captures a rough version of the topology: a lot
of information is lost, but some is retained in a graph, which is
computationally easier to deal with.
We cannot directly apply the Reeb graph to point cloud data;
with only finitely many points in the cloud, most level sets are
empty. Hence replace a level-set by the preimage of an interval.

'f

Q

1

D

Y

N\

A
—0

Figure: An analog of the Reeb graph
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..Mapper

@ fix a data set and a function (filter function) from the data
set to R.

@® cover R with intervals that overlap on a smaller interval
(gain)

® put points whose filter value lies in interval Iy in bin b.

O cluster points in each bin b: these clusters are the vertices
of the mapper

@ connect the mapper vertices if the corresponding clusters
share a point.
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For the higher-dimensional version of mapper, the nerve
construction is our guide. Suppose we want to construct a
k-dimensional mapper for a pointcloud X. Then
@ choose filter functions f; : X — R for i = 1,... k. Collect
them in F : X — Rk

@® cover F(X) with overlapping boxes U;

© to obtain the analog of the pullback cover, cluster data
points in each U;. Call the clusters C;;

O The clusters form the vertices of mapper

© There is an edge if two clusters C;; and C/ j» overlap (i.e.

share a data point) This can be generalized to several
clusters to get higher-dimensional simplices.
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Some
applications

The main purposes of mapper are:

e visualization

e exploratory data analysis
It is flexible and can deal with large and diverse data sets:
mixed numerical and categorical data can be dealt with. One
only needs a dissimilarity measure.

Figure: Mapper of the first
PCA-function for a human model;
PCA stands for principal

_ component analysis
Figure: A model of a human
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Choices

There are lots of choices in mapper. This gives it a lot of
flexibility, but this comes at a price, namely complexity.

® \We need to choose filter functions of interest

® The number of bins, and the epsilon parameters need to be
chosen.

Here it should be pointed out that statistics gives us some
guidance.

® more bins speeds up the mapper algorithm

® but more bins results in fewer points per bin, which makes
the statistical data (mean, etc per bin) less reliable.
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Figure: Mapper of medical data with two filter functions, and colored

by a third filter function (disease: yes or no)
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The following picture is taken from
Topology based data analysis identifies a subgroup of breast

cancers with a unique mutational profile and excellent survival
by Monica Nicolau, Arnold J. Levine, and Gunnar Carlsson,
PNAS April 26, 2011. 108 (17) 7265-7270;
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