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Abstract. These are notes for a talk given in Academica Sinica: Sasakian

manifolds are an odd-dimensional analog of Kähler manifolds; they have played

an important role in the construction of new Einstein metrics. I will give a
short overview on some of the key results found by researchers in Sasakian

geometry. I will concentrate on results in the context of singularity theory,

where remarkable constructions of so-called Sasaki- Einstein metrics have been
found. Finally, I will combine these ingredients with an invariant derived from

symplectic homology to study the moduli space of Sasaki-Einstein metrics.

This is based on joint work with Charles Boyer and Leonardo Macarini

1. Basic definitions

By a contact metric manifold we mean a tuple (Y 2n−1, θ, Jθ, g) satisfying the
following:

• (Y,D = ker θ) is a contact manifold, so D is a maximally non-integrable
hyperplane field. The non-integrability condition is equivalent to

θ ∧ dθn−1 6= 0.

With this first piece of data we define the Reeb vector field T by

ιT dθ = 0, θ(T ) = 1.

1

• Jθ : TY → TY is an endomorphism of the tangent bundle that induces
a compatible (with dθ) complex structure on D and JθT = 0. Complex
structure on the bundle D means that

(Jθ|D)2 = − Id |D.

Compatible with dθ means that

dθ(·, Jθ·)

is a metric on D.
• The tensor θ ⊗ θ + dθ(·, Jθ·) is a Riemannian metric on Y .

A typical example of a contact metric manifold is (S2n−1 ⊂ CN , θ, i|TS2n−1 , g0)
with

• θ = i
2

∑
j zjdz̄j − z̄jdzj

• Jθ = i|TS2n−1 .
• g0 is the standard round metric.

1T stands for transverse to the contact structure D. In contact topology, the notation R is
standard, but this is not suitable for use in geometry.
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Definition 1.1. Call (Y, θ, Jθ) Sasakian if the cone

(R>0 × Y, dr2 + r2g, d(r2θ), J)

is Kähler. Here Jθ is extended to a complex structure on the tangent bundle of the
cone by requiring that Jr ∂∂r = T .

Proposition 1.2. If (Y, θ, Jθ) is Sasakian, then T is a Killing vectorfield. In other
words, Sasakian manifolds are always K-contact.

Proof. To see why this is true, write out the Nijenhuis tensor applied to the Reeb
field T and a tangent vector X to the contact manifold Y . A short computation
shows that LTJθ = 0. From there we see that g is preserved. �

It is maybe interesting to mention the relation with CR-geometry: consider the
Tanaka-Webster connection. A strictly pseudoconvex CR-manifold (Y, θ, Jθ) is K-
contact if and only if the pseudohermitian torsion of the associated Tanaka-Webster
vanishes.

The proposition tells us that the isometry group of a Sasakian manifold always
contains a 1-parameter subgroup. This is obviously very special. The following
gives us a topological consequence.

Proposition 1.3 (Weinstein). If (Y, θ, Jθ) is a compact K-contact manifold, then

the underlying cooriented contact manifold (Y, θ) is contactomorphic to (Y, θ̃), where

θ̃ has periodic Reeb flow.

Proof. The argument here can be found in the appendix of the paper of Chern and
Hamilton. Consider the 1-parameter subgroup G = {FlTt }t of the isometry group
Isom(Y, g). As Y is assumed to be contact, Isom(Y, g) is a compact Lie group.
Hence the closure Ḡ is a torus (R/Z)k for some k > 0. Fix a direction that is close to
G near the identity; we obtain a compact subgroup of (R/Z)k. The new (periodic)

direction corresponds to the Reeb vector field of a perturbed contact form θ̃. This
is contactomorphic to the original contact structure by Gray stability. �

Corollary 1.4. If (Y, θ, Jθ) is K-contact, then Y is diffeomorphic to an S1-orbibundle
over a symplectic orbifold (Q,ω). If (Y, θ, Jθ) is Sasakian, then (Q,ω) is Kähler.

The first part follows from symplectic reduction applied to a slice in the sym-
plectization R× Y . The second part can be checked by using the Nijenhuis tensor.

1.1. Links of singularities. The above suggests that Sasakian manifolds are ex-
tremely special, so one may wonder whether any interesting examples exist. The
following classical construction shows that many examples exist.

Assume that p is a weighted homogeneous polynomial with weights (w0, . . . , wn; d).
This means that

p(λw0z0, . . . λz
wn
n ) = λdp(z0, . . . , zn).

Assume in addition that 0 is an isolated singularity. Then p−1(0) is a variety with
an isolated singularity at 0. The link of p is defined as

L(p) := p−1(0) ∩ S2n+1

Remark 1.5. Usually links are defined by taking the intersection with a sufficiently
small sphere, but due to the C∗-action

λ · (z0, . . . , zn) = (λw0z0, . . . λz
wn
n ),

the size of the sphere does not matter.
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Lemma 1.6. The link of an isolated singularity carries a contact structure.

Proof. To see this, note that the function f(z) = |z|2 restricts to a strictly plurisub-
harmonic function on p−1(0)\{0}. The property that f is strictly plurisubharmonic
means that d(−df ◦ i)(·, i·) is a Kähler metric. Regular level sets are then strictly
pseudo-convex in the sense of complex analysis and this means that the contact
condition holds. �

The above argument works for the link of any isolated (holomorphic) singularity,
but the resulting contact form is not well-adapted to the geometric situation of
weighted homogeneous polynomials. In the weighted homogeneous space there are
contact forms with a periodic flow corresponding to the C∗-action. One such form2

is

θ =
i

2

∑
j

1

wj
(zjdz̄j − z̄jdzj)

The Reeb flow of this contact form defines a locally free circle action. It follows
that L(p)/S1 is a orbifold; it is, in fact, a hypersurface in weighted projective space
with the obvious defining equation p = 0.

Links of singularities have received attention for many reasons. Here are a couple
that are relevant to this talk.

(1) many exotic spheres arise as links of singularities: this includes all boundary
parallelizable spheres in dimension at least 7. To give an explicit example,
the Kervaire sphere is the links of the singularity

z30 +

n∑
j=1

z2j = 0.

(2) exotic involutions on spheres
(3) new Einstein metrics on spheres. Einstein metrics on exotic spheres.

How is the latter done? The first step is the following.

Proposition 1.7. Suppose that (Y 2n+1, θ, Jθ, g) is a Sasakian manifold with a
periodic Reeb flow. Denote the quotient Kähler orbifold by Q := Y/S1 and its
Kähler metric by h. Then g is Sasaki-Einstein if and only if h is Kähler-Einstein
with scalar curvature 4n(n+ 1).

The idea behind proposition is to think of π : Y → Q as a Riemannian sub-
mersion, and use a variation of O’Neill’s formula, which relates sectional curvature
on the base to the sectional curvature on the total space. Details can be found
for example in Blair’s book on “Riemannian geometry of contact and symplectic
manifolds”.

Remark 1.8. We see that this proposition can only yield Einstein metrics with
positive Einstein constant; this positivity is related to the Reeb vector field: for
contact metric manifolds, one has strong restrictions on Ric(T, T ) and for K-contact
manifolds of dimension 2n+ 1 one has Ric(T, T ) = 2n > 0.

2there are other expressions for a contact form with these properties that are more common
in Sasakian geometry; with the form we have chosen the link with pseudoconvexity is not clear

unless one is willing to deform the complex structure.
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Hence we come to the problem of constructing Kähler-Einstein metrics on man-
ifolds and orbifolds. There are too many people who have done important work
to list here, so we just give a couple of names: Yau, Aubin and Tian. Note that
Einstein constant must be positive due to the above proposition, so we are in the
Fano case, i.e. c1(Q) > 0; this case has additional obstructions.

1.2. Boyer-Galicki-Kollar. The earliest results treating the orbifold case and
yielding new Einstein metrics corresponding to the above proposition is due to
Boyer-Galicki-Kollar: They have proved remarkable results for weighted homoge-
neous polynomials of the form

p =
∑
j

z
aj
j .

Theorem 1.9 (Boyer-Galicki-Kollar). If

1 <

n∑
j=0

1

aj
< 1 +

n

n− 1
min
i,j

(
1

ai
,

1

bibj

)
,

where bi = gcd(ai, lcmi 6=j aj), then the links L(p) admits a Sasaki-Einstein metric.

We cannot prove this theorem here, but we briefly mention that the left hand
inequality is needed for the Fano condition, and the right hand inequality is used
to make the continuity method for solving the Monge-Ampère (the main technical
step in obtaining a Kähler-Einstein metric) work.

This theorem gaves huge collections of new examples, including Einstein metrics
on exotic spheres. We remark that there have been many improvements to this
theorem, as well as new work on Sasaki-Einstein metrics.

In addition, the methods of the theorem gave ways to construct positive-dimensional
families of Sasaki-Einstein metrics.

1.3. Finding different components in the moduli space of Sasaki-Einstein
metrics. The idea here is to use invariants of the underlying contact structure.
We sketch the construction, leaving out the technical details. Denote the Sasaki-
Einstein manifold by Y and assume that it is the boundary of a Stein domain,
say Y = ∂W where the boundary is the regular level set of a plurisubharmonic
function; we also assume that the induced contact structure is the constructure of
the Sasaki manifold.

We compute a version of Floer homology of the manifold W .

• roughly speaking, the equivairant Floer homology SHS1,+(W ) can be thought
of as the homology of a certain action functional defined on the loop space
of W .
• the chain complex of Floer homology consists of periodic Reeb orbits on Y ;

these are encoded in the different singular strate of Q = Y/S1.
• the boundary map is defined by counting solutions to a Cauchy-Riemann

type PDE.

The boundary map is very difficult to compute in general, so we use the mean
Euler characteristic, which in this case can be defined as

χm(Y,D) = lim
N→∞

1

N

N∑
j=−N

(−1)j rkSHS1,+(W ).
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Like the usual Euler characteristic, this Euler characteristic can here be computed
using only the dimensions of chain complex groups, and not the boundary map.

Theorem 1.10. Assume that p is a weighted homogeneous polynomial. Put Y :=
L(p). This contact manifold is filled by a Stein subdomain of p−1(1). In the case
that the quotient orbifold Q = Y/S1 is Fano or of general type, the mean Euler
characteristic can be computed as

χm(W ) =
χ(IQ)

|µP |
,

where IQ is the inertia orbifold of Q.
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