One sided invertibility of matrices over commutative rings, corona problems, and Toeplitz operators with matrix symbols

Ilya M. Spitkovsky

Cheongpung, Korea. August 10, 2014
Based on joint work with Cristina Câmara and Leiba Rodman.
Introduction

Given $p \in (1, \infty)$, an L^p-factorization of a function $G \in L^\infty(\mathbb{R})^{n \times n}$ is defined as a representation

$$G = G^- + DG^-,$$

where D is a diagonal rational matrix of the form

$$D = \text{diag}(r_{kj})_{j=1,2,...,n},$$

for all $j = 1, 2, ..., n$,

$$r(\xi) = \xi - i\xi + i, \quad \xi \in \mathbb{R},$$

and the factors G_{\pm} are such that, for $p' = p - 1$,

$$\lambda_{\pm}(\xi) = \xi \pm i(\xi \in \mathbb{R}),$$

we have

$$\lambda_{\pm} + G_{\pm} \in (H^p)^{n \times n},$$

$$\lambda_{\pm} - G_{\pm} \in (H^{p'}^p)^{n \times n}.$$
Given $p \in (1, \infty)$, an L_p-factorization of a function $G \in (L_\infty(\mathbb{R}))^{n \times n}$ is defined as a representation

$$G = G_- D G_+,$$ \hspace{1cm} (1)

where D is a diagonal rational matrix of the form

$$D = \text{diag} \left(r^{k_j} \right)_{j=1,2,\ldots,n}, \quad k_j \in \mathbb{Z} \text{ for all } j = 1, 2, \ldots, n,$$ \hspace{1cm} (2)

and the factors G_{\pm} are such that, for $p' = \frac{p}{p-1}$,

$$\lambda_{\pm}(\xi) = \xi \pm i, \quad \text{for } \xi \in \mathbb{R},$$ \hspace{1cm} (3)

we have

$$\lambda_{\pm}^{-1} + G_{\pm} \in (H_p)^{n \times n}, \quad \lambda_{\pm}^{-1} + G_{\pm} \in (H_{p'}^{+})^{n \times n},$$ \hspace{1cm} (5)

$$\lambda_{\pm}^{-1} - G_{\pm} \in (H_{p}^{-})^{n \times n}, \quad \lambda_{\pm}^{-1} - G_{\pm} \in (H_{p'}^{-})^{n \times n}.$$ \hspace{1cm} (6)
Given $p \in (1, \infty)$, an L_p-factorization of a function $G \in (L_\infty(\mathbb{R}))^{n \times n}$ is defined as a representation

$$G = G_-DG_+,$$ \hspace{1cm} (1)

where D is a diagonal rational matrix of the form

$$D = \text{diag} (r^{k_j})_{j=1,2,...,n}, \quad k_j \in \mathbb{Z} \quad \text{for all } j = 1, 2, \ldots n,$$ \hspace{1cm} (2)

$$r(\xi) = \frac{\xi - i}{\xi + i}, \quad \text{for } \xi \in \mathbb{R},$$ \hspace{1cm} (3)

and the factors G_\pm are such that, for

$$p' = \frac{p}{p - 1}, \quad \lambda_\pm(\xi) = \xi \pm i \quad (\xi \in \mathbb{R}),$$ \hspace{1cm} (4)

we have

$$\lambda_+^{-1}G_+ - 1 \in (H_p^+)^{n \times n}, \quad \lambda_+^{-1}G_+ \in (H_p^+)^{n \times n}$$ \hspace{1cm} (5)

$$\lambda_-^{-1}G_- \in (H_p^-)^{n \times n}, \quad \lambda_-^{-1}G_-^{-1} \in (H_p^-)^{n \times n}. $$ \hspace{1cm} (6)
Under conditions (5), (6), \(G_- P^+ G_-^{-1} I \) can be considered as a closable operator on \((L_p(\mathbb{R}))^n \) defined on a dense linear manifold \(\lambda_{-1}^{-1} G_+ \mathcal{R}^n \).

If, in addition, \(G_- P^+ G_-^{-1} \) is bounded in the metric of \((L_p(\mathbb{R}))^n \) (and therefore extends onto \((L_p(\mathbb{R}))^n \) by continuity), we say that (1) is a Wiener-Hopf (WH) \(p \)-factorization of \(G \).

For each \(p \), the diagonal middle factor in (1) is unique up to the order of its diagonal elements, and the integers \(k_j \) are called the partial indices of \(G \), its sum \(\text{Ind}_p(G) \) being the (total) \(p \)-index of \(G \).

In the case of a scalar symbol possessing a WH \(p \)-factorization, the partial and the total indices coincide and will be simply called the \(p \)-index of \(G \).

Ilya M. Spitkovsky

One sided invertibility, corona problem, and applications
Under conditions (5), (6), $G_- P^+ G_-^{-1} I$ can be considered as a closable operator on $(L_p(\mathbb{R}))^n$ defined on a dense linear manifold $\lambda_-^{-1} G_+ \mathcal{R}^n$.

If, in addition,

$$G_- P^+ G_-^{-1} I$$

is bounded in the metric of $(L_p(\mathbb{R}))^n$ (7) (and therefore extends onto $(L_p(\mathbb{R}))^n$ by continuity), we say that (1) is a *Wiener-Hopf (WH) p-factorization of G.
Under conditions (5), (6), \(G_-P^+G_-^{-1}I\) can be considered as a closable operator on \((L_p(\mathbb{R}))^n\) defined on a dense linear manifold \(\lambda_+^{-1}G_+\mathcal{R}^n\).

If, in addition,

\[
G_-P^+G_-^{-1}I \text{ is bounded in the metric of } (L_p(\mathbb{R}))^n \quad (7)
\]

(and therefore extends onto \((L_p(\mathbb{R}))^n\) by continuity), we say that (1) is a \textit{Wiener-Hopf (WH) \(p\)-factorization} of \(G\).

For each \(p\), the diagonal middle factor in (1) is unique up to the order of its diagonal elements, and the integers \(k_j\) are called the \textit{partial indices} of \(G\), its sum \(\text{Ind}_p(G)\) being the (total) \textit{\(p\)-index} of \(G\).
Under conditions (5), (6), \(G_- P^+ G_-^{-1} I \) can be considered as a closable operator on \((L_p(\mathbb{R}))^n\) defined on a dense linear manifold \(\lambda_+^{-1} G_+ \mathcal{R}^n\).

If, in addition,

\[
G_- P^+ G_-^{-1} I \text{ is bounded in the metric of } (L_p(\mathbb{R}))^n
\]

(7)

(and therefore extends onto \((L_p(\mathbb{R}))^n\) by continuity), we say that (1) is a \textit{Wiener-Hopf (WH) }\(p \)-factorization of \(G\).

For each \(p\), the diagonal middle factor in (1) is unique up to the order of its diagonal elements, and the integers \(k_j\) are called the \textit{partial indices} of \(G\), its sum \(\text{Ind}_p(G)\) being the (total) \(p\)-\textit{index} of \(G\). In the case of a scalar symbol possessing a WH \(p\)-factorization, the partial and the total indices coincide and will be simply called the \(p\)-\textit{index} of \(G\).
The factorization (1) is said to be \textit{bounded} if

\[\begin{align*}
G_+ & \in \mathcal{G}(H_\infty^+)^{n\times n}, & G_- & \in \mathcal{G}(H_\infty^-)^{n\times n}.
\end{align*} \] (8)

Clearly, a bounded factorization is a WH \(p \)-factorization for all \(p \in]1, +\infty[. \)
The factorization (1) is said to be *bounded* if

\[G_+ \in \mathcal{G}(H^+_{\infty})^{n \times n}, \quad G_- \in \mathcal{G}(H^-_{\infty})^{n \times n}. \]

(8)

Clearly, a bounded factorization is a WH p-factorization for all $p \in]1, +\infty[.$

Any matrix function in $\mathcal{GR}^{n \times n}$ admits a factorization (1) with $G_{\pm} \in \mathcal{G}(\mathcal{R}^{\pm})^{n \times n}.$ In particular, every scalar function in \mathcal{GR} is the product of functions in $\mathcal{GR}^+, \mathcal{GR}^-$, and some integer power of the function r defined by (3).
The factorization (1) is said to be \textit{bounded} if

\[G_+ \in \mathcal{G}(H_\infty^+)_{n \times n}, \quad G_- \in \mathcal{G}(H_\infty^-)_{n \times n}. \]

(8)

Clearly, a bounded factorization is a WH \(p \)-factorization for all \(p \in]1, +\infty[. \)

Any matrix function in \(\mathcal{GR}^n \) admits a factorization (1) with \(G_\pm \in \mathcal{G}(\mathcal{R}^\pm)_{n \times n} \). In particular, every scalar function in \(\mathcal{GR} \) is the product of functions in \(\mathcal{GR}^+, \mathcal{GR}^- \), and some integer power of the function \(r \) defined by (3).

Factorization (1) is called \textit{canonical} if all the \(k_j \)'s are zeros, in which case \(D = I \).
Representation (1) in which G_{\pm} satisfy

$$G_+ \in \mathcal{G}(AP^+)^{n \times n}, \quad G_- \in \mathcal{G}(AP^-)^{n \times n} \quad (9)$$

and the diagonal elements of D have the form e_{μ_j}, as opposed to (2), is called a (right) AP factorization of G. Of course, a canonical (that is, satisfying $\mu_1 = \ldots = \mu_n = 0$) AP factorization of G is at the same time a bounded canonical factorization.
Representation (1) in which G_\pm satisfy

$$G_+ \in \mathcal{G}(AP^+)^{n\times n}, \quad G_- \in \mathcal{G}(AP^-)^{n\times n} \quad (9)$$

and the diagonal elements of D have the form e_{μ_j}, as opposed to (2), is called a (right) AP factorization of G. An AP factorization of G is by definition its APW factorization if conditions (9) are strengthened to

$$G_+ \in \mathcal{G}(APW^+)^{n\times n}, \quad G_- \in \mathcal{G}(APW^-)^{n\times n}.$$

The real parameters μ_j are defined uniquely, provided that an AP (or APW) factorization of G exists, and are called its partial AP indices. Of course, a canonical (that is, satisfying $\mu_1 = \ldots = \mu_n = 0$) AP factorization of G is at the same time a bounded canonical factorization.
Representation (1) in which G_{\pm} satisfy

$$
G_+ \in \mathcal{G}(AP^+)^{n \times n}, \quad G_- \in \mathcal{G}(AP^-)^{n \times n}
$$

(9)

and the diagonal elements of D have the form e_{μ_j}, as opposed to (2), is called a (right) AP factorization of G. An AP factorization of G is by definition its APW factorization if conditions (9) are strengthened to

$$
G_+ \in \mathcal{G}(APW^+)^{n \times n}, \quad G_- \in \mathcal{G}(APW^-)^{n \times n}.
$$

The real parameters μ_j are defined uniquely, provided that an AP (or APW) factorization of G exists, and are called its partial AP indices. Of course, a canonical (that is, satisfying $\mu_1 = \ldots = \mu_n = 0$) AP factorization of G is at the same time a bounded canonical factorization.
Toeplitz operators with matrix *symbol* $G \in (L_\infty(\mathbb{R}))^{n \times n}$ are defined as follows:

\[
T_G : (H_p^+)^n \rightarrow (H_p^+)^n, \quad T_G \phi^+ = P^+ G \phi^+ \quad (p \in]1, +\infty[). \tag{10}
\]
Toeplitz operators with matrix symbol $G \in (L_\infty(\mathbb{R}))^{n \times n}$ are defined as follows:

$$T_G : (H_p^+)^n \rightarrow (H_p^+)^n, \quad T_G \phi^+ = P^+ G \phi^+ \quad (p \in]1, +\infty[).$$

The relation between Fredholm properties of T_G and factorization (1) is well known.

Theorem

Let $G \in (L_\infty(\mathbb{R}))^{n \times n}$, $p \in]1, +\infty[$. Then T_G is Fredholm on $(H_p^+)^n$ if and only if G admits a WH p-factorization.
The partial indices are related to the dimension of the kernel and the cokernel of T_G ($\text{coker } T_G := (H_p^+)^n/\text{Im } T_G$) by

$$\dim \ker T_G = \sum_{k_j \leq 0} |k_j|, \quad \dim \text{coker } T_G = \sum_{k_j \geq 0} k_j.$$ \hspace{1cm} (11)

Thus, the index of T_G, $\text{Ind } T_G$, is given by

$$\text{Ind } T_G := \dim (\ker T_G) - \dim (\text{coker } T_G) = -\text{Ind}_p G.$$
The partial indices are related to the dimension of the kernel and the cokernel of T_G (coker $T_G := (H_p^+)^n/\text{Im } T_G$) by

$$\dim \ker T_G = \sum_{k_j \leq 0} |k_j|, \quad \dim \text{coker } T_G = \sum_{k_j \geq 0} k_j. \quad (11)$$

Thus, the index of T_G, Ind T_G, is given by

$$\text{Ind } T_G := \dim (\ker T_G) - \dim (\text{coker } T_G) = -\text{Ind}_p G.$$

We see thus that the existence of a canonical p-factorization for G is particularly interesting, since it is equivalent to invertibility for T_G. Moreover, the inverse operator can then be defined in terms of G_\pm by

$$T_G^{-1} = G_+^{-1} P^+ G_-^{-1} I. \quad (12)$$
Factorability criteria are known for several important classes of matrix functions. In particular, a matrix function $G \in C^{n \times n}$ is WH p-factorable if and only if it is invertible. This result does not depend on $p \in]1, \infty [$, and also implies that G is factorable only simultaneously with the scalar function $\det G$.
Factorability criteria are known for several important classes of matrix functions. In particular, a matrix function $G \in C^{n \times n}$ is WH p-factorable if and only if it is invertible. This result does not depend on $p \in]1, \infty [$, and also implies that G is factorable only simultaneously with the scalar function $\det G$. These nice properties both fail when passing to more general classes, starting already with piecewise continuous on \mathbb{R} with at least one point of discontinuity.
Factorability criteria are known for several important classes of matrix functions. In particular, a matrix function $G \in \mathbb{C}^{n \times n}$ is WH p-factorable if and only if it is invertible. This result does not depend on $p \in]1, \infty[$, and also implies that G is factorable only simultaneously with the scalar function $\det G$. These nice properties both fail when passing to more general classes, starting already with piecewise continuous on \mathbb{R} with at least one point of discontinuity. For AP (and even APW matrix functions the situation is even more intriguing: while scalar APW functions admit an APW factorization if and only if they are invertible, starting with $n = 2$ the AP factorability criteria are presently not known.
One sided invertibility of matrices with elements from an abstract commutative ring

Let \(A \) be a unital commutative ring. We say that an element \(a \in A^{n \times k}, \ k \leq n \), is left invertible over \(A \) if there exists \(b \in A^{k \times n} \) such that \(ba = I_k \), the identity matrix in \(A^{k \times k} \). The notion of right invertibility over \(A \) is introduced in a similar way.

Lemma
Let \(\Phi \in A^{n \times m} \) with \(m \leq n \), and let \(\Phi_I \) be some \(m \times m \) submatrix of \(\Phi \). Denote by \(\Delta_{\Phi_I}^{pq} \) the determinant of the matrix obtained from \(\Phi_I \) by deleting its \(p \)-th row and \(q \)-th column. Define \(\Phi^*_I \in A^{m \times n} \) by setting its \((q,p)\)-entry according to the formula

\[
\Phi^*_q \Phi = \text{det} \Phi_I \text{diag}[(-1)^p q]_{q=1}^{m}.
\]

Ilya M. Spitkovsky
One sided invertibility, corona problem, and applications
Let A be a unital commutative ring. We say that an element $a \in A^{n \times k}$, $k \leq n$, is \textit{left invertible} over A if there exists $b \in A^{k \times n}$ such that $ba = I_k$, the identity matrix in $A^{k \times k}$. The notion of right invertibility over A is introduced in a similar way.
Let A be a unital commutative ring. We say that an element $a \in A^{n \times k}$, $k \leq n$, is left invertible over A if there exists $b \in A^{k \times n}$ such that $ba = I_k$, the identity matrix in $A^{k \times k}$. The notion of right invertibility over A is introduced in a similar way.

Lemma

Let $\Phi \in A^{n \times m}$ with $m \leq n$, and let Φ_I be some $m \times m$ submatrix of Φ. Denote by $\Delta_P^{\Phi_I}$ the determinant of the matrix obtained from Φ_I by deleting its p-th row and q-th column. Define $\Phi^*_I \in A^{m \times n}$ by setting its (q, p)-entry according to the formula

$$
\Phi^*_{qp} = \begin{cases}
(-1)^{p+q} \Delta_P^{\Phi_I} & \text{if } p \in I, \\
0 & \text{otherwise.}
\end{cases}
$$

(13)

Then

$$
\Phi^*_I \Phi = \det \Phi_I \text{diag}[(-1)^q]_{q=1,\ldots,m}.
$$
For $m \leq n$, label by I_1, I_2, \ldots, I_N all $N = \binom{n}{m}$ subsets of $\{1, \ldots, n\}$ with m elements. If $\Phi \in \mathcal{A}^{n \times m}$, let us denote $d_k^\Phi := \det \Phi_{I_k}$.
Theorem

(i) An element Φ of $\mathcal{A}^{n \times m}$ is left invertible over \mathcal{A} if and only if

$$\Delta = \begin{bmatrix} d_1^\Phi, d_2^\Phi, \ldots, d_N^\Phi \end{bmatrix}^T$$

is left invertible in \mathcal{A}.

(ii) If $\Phi \in \mathcal{A}^{n \times m}$ is left invertible over \mathcal{A} with left inverse $\Psi \in \mathcal{A}^{m \times n}$, then $\Delta^* = \begin{bmatrix} d_{1}^\Psi, d_{2}^\Psi, \ldots, d_{N}^\Psi \end{bmatrix}$ is a left inverse of Δ.

(iii) If Δ is left invertible in \mathcal{A} with a left inverse $\Delta^* = \begin{bmatrix} \Delta^*_1, \Delta^*_2, \ldots, \Delta^*_N \end{bmatrix}$, then

$$\Psi = \text{diag}\left[(-1)^q \right]_{q=1}^{nN} \sum_{k=1}^{N} \Delta^*_k \Phi^* I_k,$$

where $\Phi^* I_k$ are defined in accordance with (13) for $I = I_k$, is a left inverse of Φ.

Ilya M. Spitkovsky
One sided invertibility, corona problem, and applications
Theorem

(i) An element Φ of $\mathcal{A}^{n \times m}$ is left invertible over \mathcal{A} if and only if

$$
\Delta = \begin{bmatrix} d_1^\Phi, d_2^\Phi, \ldots, d_N^\Phi \end{bmatrix}^T
$$

is left invertible in \mathcal{A}. (ii) If $\Phi \in \mathcal{A}^{n \times m}$ is left invertible over \mathcal{A} with left inverse $\Psi \in \mathcal{A}^{m \times n}$, then $\Delta^* = \begin{bmatrix} d_1^{\Psi^T}, d_2^{\Psi^T}, \ldots, d_N^{\Psi^T} \end{bmatrix}$ is a left inverse of Δ.
Theorem

(i) An element Φ of $\mathbb{A}^{n \times m}$ is left invertible over \mathbb{A} if and only if

$$\Delta = \begin{bmatrix} d_1^\Phi, d_2^\Phi, \ldots, d_N^\Phi \end{bmatrix}^T$$

is left invertible in \mathbb{A}. (ii) If $\Phi \in \mathbb{A}^{n \times m}$ is left invertible over \mathbb{A} with left inverse $\Psi \in \mathbb{A}^{m \times n}$, then $\Delta^* = \begin{bmatrix} d_1^\Psi^T, d_2^\Psi^T, \ldots, d_N^\Psi^T \end{bmatrix}$ is a left inverse of Δ. (iii) If Δ is left invertible in \mathbb{A} with a left inverse $\Delta^* = \begin{bmatrix} \Delta_1^*, \Delta_2^*, \ldots, \Delta_N^* \end{bmatrix}$, then

$$\Psi = \text{diag}[(\frac{-1}{2})^q]_{q=1}^{\frac{n}{2}} \sum_{k=1}^{N} \Delta_k^* \Phi_{l_k}^*,$$

where $\Phi_{l_k}^*$ are defined in accordance with (13) for $l = l_k$, is a left inverse of Φ.

Ilya M. Spitkovsky

One sided invertibility, corona problem, and applications
The “if” part of this theorem is an abstract form of its H_∞ version contained in the proof of [Fuhrman’68], Theorem 3.1.
The “if” part of this theorem is an abstract form of its H_∞ version contained in the proof of [Fuhrman’68], Theorem 3.1. In what follows, we adapt the notation to the special case $m = n - 1$ which is of particular relevance to the main results of the paper.
The “if” part of this theorem is an abstract form of its \(H_\infty \) version contained in the proof of [Fuhrman’68], Theorem 3.1. In what follows, we adapt the notation to the special case \(m = n - 1 \) which is of particular relevance to the main results of the paper. Given \(\Phi \in \mathcal{A}^{n \times (n-1)} \) we denote by \(\Delta_p;.(\Phi) \) the determinant of the \((n-1) \times (n-1)\) matrix obtained by omitting the row \(p \) in \(\Phi \); we denote by \(\Delta_{p,s;j}(\Phi) \) the determinant of the \((n-2) \times (n-2)\) submatrix of \(\Phi \) obtained by omitting the rows \(p \) and \(s \) \((p \neq s)\) and column \(j \) (we take \(p, s \in \{1, 2, \ldots, n\}, j \in \{1, 2, \ldots, n-1\} \)). Analogously, for \(\Psi \in \mathcal{A}^{(n-1) \times n} \), we use the notation \(\Delta_.;p(\Psi) \) for the determinant of the \((n-1) \times (n-1)\) matrix obtained by omitting the column \(p \) in \(\Psi \); and \(\Delta_{j;p,s}(\Phi) \) stands for the determinant of the \((n-2) \times (n-2)\) submatrix of \(\Psi \) obtained by omitting the columns \(p \) and \(s \) \((p \neq s)\) and row \(j \).
Corollary

An element $\Phi \in \mathcal{A}^{n \times (n-1)}$ is left invertible over \mathcal{A} if and only if

$$
\begin{bmatrix}
\Delta_1;(\Phi) \\
\vdots \\
\Delta_n;(\Phi)
\end{bmatrix}
$$

is left invertible over \mathcal{A}.

Moreover, in this case a left inverse of Φ is given by

$$
\begin{bmatrix}
\Psi_1 \\
\Psi_2 \\
\vdots \\
\Psi_{n-1}
\end{bmatrix}
$$

with

$$
\Psi_j \in \mathcal{A}^{1 \times n}, \quad j = 1, 2, \ldots, n-1.
$$
Corollary

An element $\Phi \in \mathcal{A}^{n \times (n-1)}$ is left invertible over \mathcal{A} if and only if

$$
\begin{bmatrix}
\Delta_1;\cdot(\Phi) \\
\vdots \\
\Delta_n;\cdot(\Phi)
\end{bmatrix}
$$

is left invertible over \mathcal{A}. Moreover, in this case a left inverse of Φ is given by

$$
\psi = \begin{bmatrix}
\psi_1 \\
\psi_2 \\
\vdots \\
\psi_{n-1}
\end{bmatrix}, \quad \psi_j \in \mathcal{A}^{1 \times n}, \quad j = 1, 2, \ldots, n-1,
$$

with
\(\psi_j = (-1)^j \Delta^* \begin{bmatrix} 0 & \Delta_{1,2;j} & \Delta_{1,3;j} & \ldots & \Delta_{1,n;j} \\ -\Delta_{1,2;j} & 0 & \Delta_{2,3;j} & \ldots & \Delta_{2,n;j} \\ -\Delta_{1,3;j} & -\Delta_{2,3;j} & 0 & \ldots & \Delta_{3,n;j} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -\Delta_{1,n;j} & -\Delta_{2,n;j} & -\Delta_{3,n;j} & \ldots & 0 \end{bmatrix} \cdot \tilde{I}_n, \)

for \(j = 1, 2, \ldots, n - 1 \), where \(\Delta_{p,s;j} := \Delta_{p,s;j}(\Phi) \), and

\[
\Delta^* = \begin{bmatrix} \Delta_{1;(\psi^T)}, \ldots \Delta_{n;(\psi^T)} \end{bmatrix} \]

is a left inverse of (14) over \(\mathcal{A} \), and

\[
\tilde{I}_n = \text{diag} [1, -1, 1, \ldots, (-1)^{n+1}].
\]
Having these results in mind, we now establish necessary and sufficient conditions for the left invertibility of n-tuples in the concrete unital algebras of interest: H^+_∞, AP^+_∞, M^+_∞.
Having these results in mind, we now establish necessary and sufficient conditions for the left invertibility of \(n \)-tuples in the concrete unital algebras of interest: \(H_\infty^+, AP^+, M_\infty^+ \). We define \textit{corona tuples}, with respect to one of the unital algebras \(H_\infty^+, AP^+, M_\infty^+ \), as follows:

\[
HCT_n^\pm := \left\{ (h_1^\pm, h_2^\pm, \ldots, h_n^\pm): h_j^\pm \in H_\infty^\pm \text{ and } \inf_{z \in \mathbb{C}^\pm} \left(\sum_{j=1}^n |h_j^\pm(z)| \right) > 0 \right\}
\]
Having these results in mind, we now establish necessary and sufficient conditions for the left invertibility of n-tuples in the concrete unital algebras of interest: H_∞^\pm, AP^\pm, M_∞^\pm. We define *corona tuples*, with respect to one of the unital algebras H_∞^\pm, AP^\pm, M_∞^\pm, as follows:

$$HCT_n^\pm := \left\{ (h_1^\pm, h_2^\pm, \ldots, h_n^\pm): h_j^\pm \in H_\infty^\pm \text{ and } \inf_{z \in \mathbb{C}^\pm} \left(\sum_{j=1}^{n} |h_j^\pm(z)| \right) > 0 \right\}$$

$$APCT_n^\pm := \left\{ (h_1^\pm, h_2^\pm, \ldots, h_n^\pm)_{j}^\pm \in AP^\pm \text{ and } \inf_{z \in \mathbb{C}^\pm} \left(\sum_{j=1}^{n} |h_j^\pm(z)| \right) > 0 \right\}$$
Having these results in mind, we now establish necessary and sufficient conditions for the left invertibility of n-tuples in the concrete unital algebras of interest: $H^+_\infty, AP^+, M^+_\infty$. We define \textit{corona tuples}, with respect to one of the unital algebras $H^\pm_\infty, AP^\pm, M^\pm_\infty$, as follows:

\[
\text{HCT}_n^\pm := \left\{ (h_1^\pm, h_2^\pm, \ldots, h_n^\pm) : h_j^\pm \in H^\pm_\infty \text{ and } \inf_{z \in \mathbb{C}^\pm} \left(\sum_{j=1}^{n} |h_j^\pm(z)| \right) > 0 \right\}
\]

\[
\text{APCT}_n^\pm := \left\{ (h_1^\pm, h_2^\pm, \ldots, h_n^\pm)_j^\mp \in AP^\pm \text{ and } \inf_{z \in \mathbb{C}^\pm} \left(\sum_{j=1}^{n} |h_j^\pm(z)| \right) > 0 \right\}
\]

\[
\text{MCT}_n^\pm := \left\{ (r_1 h_1^\pm, r_2 h_2^\pm, \ldots, r_n h_n^\pm) : (h_1^\pm, \ldots, h_n^\pm) \in \text{HCT}_n^\pm \text{ and } r_1, \ldots, r_n \in \mathcal{GR} \right\}
\]
Theorem

(a) Let $h_1^\pm, h_2^\pm, \ldots, h_n^\pm \in H_\infty^\pm$. Then $(h_1^\pm, h_2^\pm, \ldots, h_n^\pm) \in HCT_n^\pm$ if and only if \[
\begin{bmatrix}
h_1^\pm \\
h_2^\pm \\
\vdots \\
h_n^\pm
\end{bmatrix}
\] is left invertible over H_∞^\pm, i.e. there exist $g_j \in H_\infty^\pm, j = 1, 2, \ldots, n$, such that $\sum_{j=1}^n g_j h_j = 1$.

(b) Let $h_1^\pm, h_2^\pm, \ldots, h_n^\pm \in AP_\infty^\pm$. Then $(h_1^\pm, h_2^\pm, \ldots, h_n^\pm) \in APCT_n^\pm$ if and only if
\[
\begin{bmatrix}
h_1^\pm \\
h_2^\pm \\
\vdots \\
h_n^\pm
\end{bmatrix}
\] is left invertible over AP_∞^\pm.

Ilya M. Spitkovsky
One sided invertibility, corona problem, and applications
Theorem

(a) Let $h_1^\pm, h_2^\pm, \ldots, h_n^\pm \in H_\infty^\pm$. Then $(h_1^\pm, h_2^\pm, \ldots, h_n^\pm) \in HCT_n^\pm$ if and only if

$$\begin{bmatrix} h_1^\pm \\ \vdots \\ h_n^\pm \end{bmatrix}$$

is left invertible over H_∞^\pm, i.e. there exist $g_j \in H_\infty^\pm, j = 1, 2, \ldots, n$, such that $\sum_{j=1}^n g_j h_j = 1$.

(b) Let $h_1^\pm, h_2^\pm, \ldots, h_n^\pm \in AP^\pm$. Then $(h_1^\pm, h_2^\pm, \ldots, h_n^\pm) \in APCT_n^\pm$ if and only if

$$\begin{bmatrix} h_1^\pm \\ \vdots \\ h_n^\pm \end{bmatrix}$$

is left invertible over AP^\pm.
The following statements are equivalent for
\(h_1^\pm, h_2^\pm, \ldots, h_n^\pm \in M_\infty^\pm: \)

(1) \((h_1^\pm, h_2^\pm, \ldots, h_n^\pm) \in \text{MCT}_n^\pm;\)

(2) There exist \(r \in G\mathcal{R} \) and \((g_1, \ldots, g_n) \in \text{HCT}_n^\pm\) such that
\[h_j^\pm = rg_j, \quad j = 1, 2, \ldots, n; \]

(3) \[
\begin{bmatrix}
 h_1^\pm \\
 \vdots \\
 h_n^\pm
\end{bmatrix}
\]
is left invertible over \(M_\infty^\pm. \)
(c) The following statements are equivalent for $h_1^\pm, h_2^\pm, \ldots, h_n^\pm \in M_\infty^\pm$:

1. $(h_1^\pm, h_2^\pm, \ldots, h_n^\pm) \in MCT_n^\pm$;

2. There exist $r \in G\mathcal{R}$ and $(g_1, \ldots, g_n) \in HCT_n^\pm$ such that $h_j^\pm = rg_j$, $j = 1, 2, \ldots, n$;

3. \[
\begin{bmatrix}
 h_1^\pm \\
 \vdots \\
 h_n^\pm
\end{bmatrix}
\]
is left invertible over M_∞^\pm.

Part (a) is the classical corona theorem, going back to Carleson [3]. Part (b) is its almost periodic version, in principle contained already in [ArensSinger'56] and stated explicitly in [Xia'85].
The following statements are equivalent for $h_{1}^{\pm}, h_{2}^{\pm}, \ldots, h_{n}^{\pm} \in M_{\infty}^{\pm}$:

1. $(h_{1}^{\pm}, h_{2}^{\pm}, \ldots, h_{n}^{\pm}) \in MCT_{n}^{\pm}$;
2. There exist $r \in GR$ and $(g_{1}, \ldots, g_{n}) \in HCT_{n}^{\pm}$ such that $h_{j}^{\pm} = rg_{j}$, $j = 1, 2, \ldots, n$;
3. $\begin{bmatrix} h_{1}^{\pm} \\ \vdots \\ h_{n}^{\pm} \end{bmatrix}$ is left invertible over M_{∞}^{\pm}.

Part (a) is the classical corona theorem, going back to Carleson [3]. Part (b) is its almost periodic version, in principle contained already in [ArensSinger'56] and stated explicitly in [Xia'85]. Corollary therefore admits the following interpretation.
Theorem

(a) Let $\Phi \in (H^\pm_\infty)^{n \times (n-1)}$. Then Φ is left invertible over H^\pm_∞ if and only if $(\Delta_1,(\Phi),\ldots,\Delta_n,(\Phi)) \in HCT^\pm_n$.
Theorem

(a) Let $\Phi \in (H_\infty^\pm)^{n \times (n-1)}$. Then Φ is left invertible over H_∞^\pm if and only if $(\Delta_1,.(\Phi), \ldots, \Delta_n,.(\Phi)) \in HCT_n^\pm$.
(b) Let $\Phi \in (AP^\pm)^{n \times (n-1)}$. Then Φ is left invertible over AP^\pm if and only if $(\Delta_1,.(\Phi), \ldots, \Delta_n,.(\Phi)) \in APCT_n^\pm$.
Theorem

(a) Let $\Phi \in (H^\pm_{\infty})^{n \times (n-1)}$. Then Φ is left invertible over H^\pm_{∞} if and only if $(\Delta_1,. (\Phi), \ldots, \Delta_n,. (\Phi)) \in HCT^\pm_n$.

(b) Let $\Phi \in (AP^\pm)^{n \times (n-1)}$. Then Φ is left invertible over AP^\pm if and only if $(\Delta_1,. (\Phi), \ldots, \Delta_n,. (\Phi)) \in APCT^\pm_n$.

(c) Let $\Phi \in (M^\pm_{\infty})^{n \times (n-1)}$. Then Φ is left invertible over M^\pm_{∞} if and only if $(\Delta_1,. (\Phi), \ldots, \Delta_n,. (\Phi)) \in MCT^\pm_n$.

In all cases (a), (b), (c), formula (15) applies provided Φ is left invertible over the respective algebra.
Theorem

(a) Let $\Phi \in (H_\infty^\pm)^{n \times (n-1)}$. Then Φ is left invertible over H_∞^\pm if and only if $(\Delta_1, (\Phi), \ldots, \Delta_n, (\Phi)) \in HCT_n^\pm$.

(b) Let $\Phi \in (AP^\pm)^{n \times (n-1)}$. Then Φ is left invertible over AP^\pm if and only if $(\Delta_1, (\Phi), \ldots, \Delta_n, (\Phi)) \in APCT_n^\pm$.

(c) Let $\Phi \in (M_\infty^\pm)^{n \times (n-1)}$. Then Φ is left invertible over M_∞^\pm if and only if $(\Delta_1, (\Phi), \ldots, \Delta_n, (\Phi)) \in MCT_n^\pm$.

In all cases (a), (b), (c), formula (15) applies provided Φ is left invertible over the respective algebra.
According to [2, Theorem 2.7], $\Phi \in (M_{\infty}^+)^{2 \times 1}$ is left invertible in M_{∞}^+ if and only if there exists a matrix function $R \in \mathcal{GR}^{2 \times 2}$ and $f_+ \in HCT_1^+$ such that $\Phi = RF_+$. We here extend this result to include $\Phi \in (M_{\infty}^{\pm})^{n \times (n-1)}$ with arbitrary $n \in \mathbb{N}$.
According to [2, Theorem 2.7], \(\Phi \in (M_\infty^\pm)^{2 \times 1} \) is left invertible in \(M_\infty^+ \) if and only if there exists a matrix function \(R \in \mathcal{G}\mathcal{R}^{2 \times 2} \) and \(f_+ \in HCT_1^+ \) such that \(\Phi = Rf_+ \). We here extend this result to include \(\Phi \in (M_\infty^\pm)^{n \times (n-1)} \) with arbitrary \(n \in \mathbb{N} \).

Theorem

Let \(\Phi \in (M_\infty^\pm)^{n \times (n-1)} \). Then \(\Phi \) is left invertible over \(M_\infty^\pm \) if and only if there exist \(R \in \mathcal{G}\mathcal{R}^{n \times n} \), \(Q \in \mathcal{G}\mathcal{R}^{(n-1) \times (n-1)} \) and \(F \in (H_\infty^\pm)^{n \times (n-1)} \), the latter being left invertible over \(H_\infty^\pm \), such that

\[
\Phi = RFQ. \tag{19}
\]
The following result will be crucial in establishing relations between left invertibility of some matrix functions and Fredholmness of Toeplitz operators.

Theorem

Let $\Phi \in A^{n \times (n-1)}$ be left invertible over A, and let $\Psi \in A^{(n-1) \times n}$ be its left inverse:

$$
\Psi \Phi = I_{n-1}.
$$

(20)

Let moreover

$$
\Phi_e = [\Phi \ N], \quad \Psi_e = \begin{bmatrix} \Psi \\ \tilde{N} \end{bmatrix}, \quad \text{with} \quad N \in A^{n \times 1}, \quad \tilde{N} \in A^{1 \times n}.
$$

(21)

Then:
(i) if

\[N = \begin{bmatrix} N_1 \\ N_2 \\ \vdots \\ N_n \end{bmatrix}, \quad N_j = (-1)^{j-1} \Delta_{..j}(\psi), \quad (22) \]

then

\[\psi_e \Phi_e = \begin{bmatrix} I_{n-1} & 0_{(n-1) \times 1} \\ \hat{N} \Phi & \hat{N} \hat{N} \end{bmatrix}. \quad (23) \]
(i) if

$$
\mathbf{N} = \begin{bmatrix}
N_1 \\
N_2 \\
\vdots \\
N_n
\end{bmatrix}, \quad N_j = (-1)^{j-1} \Delta_{j;\cdot}(\Psi),
$$

then

$$
\psi_e \Phi_e = \begin{bmatrix}
I_{n-1} & 0_{(n-1) \times 1} \\
\mathbf{N} \Phi & \mathbf{NN}
\end{bmatrix}.
$$

(ii) if

$$
\tilde{\mathbf{N}} = \begin{bmatrix}
\tilde{N}_1 \\
\tilde{N}_2 \\
\vdots \\
\tilde{N}_n
\end{bmatrix} \quad \text{with} \quad \tilde{N}_j = (-1)^{j-1} \Delta_{j;\cdot}(\Phi),
$$

then

$$
\psi_e \Phi_e = \begin{bmatrix}
I_{n-1} & \psi \mathbf{N} \\
0_{1 \times (n-1)} & \tilde{\mathbf{NN}}
\end{bmatrix}.
$$
(iii) if N and \tilde{N} satisfy (22) and (24), respectively, then

$$\Psi_e \Phi_e = \Phi_e \Psi_e = I_n \quad \text{and} \quad \det \Phi_e = \det \Psi_e = (-1)^{n-1}.$$

(26)
Let $T_j : X_j \rightarrow Y_j$, $j = 1, 2$, be bounded linear operators between Banach spaces X_j, Y_j. We say that T_1 and T_2 are nearly Fredholm equivalent if and only if they are either both Fredholm or both not Fredholm. In the former case we say that they are Fredholm equivalent if in addition $\text{Ind} T_1 = \text{Ind} T_2$, and strictly Fredholm equivalent if their defect numbers coincide, that is, $\dim \ker T_1 = \dim \ker T_2$, $\dim \text{coker} T_1 = \dim \text{coker} T_2$.

Thus, for instance, a Toeplitz operator with matrix symbol $G \in (C(\dot{\mathbb{R}}))^{n \times n}$ is nearly Fredholm equivalent to the Toeplitz operator (with scalar symbol) $T_{\det G}$; the operators T_G and T_G^* are Fredholm equivalent, and if G admits a Wiener-Hopf factorization (1), then T_G is strictly Fredholm equivalent to T_D.

Ilya M. Spitkovsky

One-sided invertibility, corona problem, and applications
One-sided invertibility and Fredholmness of Toeplitz operators

Let $T_j : X_j \rightarrow Y_j$ be bounded linear operators between Banach spaces $X_j, Y_j, j = 1, 2$.

Ilya M. Spitkovsky
One-sided invertibility and Fredholmness of Toeplitz operators

Let $T_j : X_j \to Y_j$ be bounded linear operators between Banach spaces $X_j, Y_j, j = 1, 2$. We say that T_1 and T_2 are nearly Fredholm equivalent if and only if they are either both Fredholm or both not Fredholm.
One-sided invertibility and Fredholmness of Toeplitz operators

Let $T_j : X_j \rightarrow Y_j$ be bounded linear operators between Banach spaces $X_j, Y_j, j = 1, 2$. We say that T_1 and T_2 are \textit{nearly Fredholm equivalent} if and only if they are either both Fredholm or both not Fredholm. In the former case we say that they are \textit{Fredholm equivalent} if in addition $\text{Ind } T_1 = \text{Ind } T_2$, and \textit{strictly Fredholm equivalent} if their defect numbers coincide, that is, $\dim \ker T_1 = \dim \ker T_2$, $\dim \text{coker } T_1 = \dim \text{coker } T_2$.

Thus, for instance, a Toeplitz operator with matrix symbol $G \in C(\dot{\mathbb{R}})$ is nearly Fredholm equivalent to the Toeplitz operator (with scalar symbol) $T_{\det G}$; the operators T_G and T_{G^*} are Fredholm equivalent, and if G admits a Wiener-Hopf factorization (1), then T_G is strictly Fredholm equivalent to T_D. Ilya M. Spitkovsky
Let $T_j : X_j \to Y_j$ be bounded linear operators between Banach spaces $X_j, Y_j, j = 1, 2$. We say that T_1 and T_2 are \textit{nearly Fredholm equivalent} if and only if they are either both Fredholm or both not Fredholm. In the former case we say that they are \textit{Fredholm equivalent} if in addition $\text{Ind } T_1 = \text{Ind } T_2$, and \textit{strictly Fredholm equivalent} if their defect numbers coincide, that is, $\dim \ker T_1 = \dim \ker T_2$, $\dim \text{coker } T_1 = \dim \text{coker } T_2$.

Ilya M. Spitkovsky
Let $T_j : X_j \to Y_j$ be bounded linear operators between Banach spaces $X_j, Y_j, j = 1, 2$. We say that T_1 and T_2 are nearly Fredholm equivalent if and only if they are either both Fredholm or both not Fredholm. In the former case we say that they are Fredholm equivalent if in addition $\text{Ind } T_1 = \text{Ind } T_2$, and strictly Fredholm equivalent if their defect numbers coincide, that is, $\dim \ker T_1 = \dim \ker T_2$, $\dim \coker T_1 = \dim \coker T_2$.

Thus, for instance, a Toeplitz operator with matrix symbol $G \in (C(\hat{\mathbb{R}}))^{n \times n}$ is nearly Fredholm equivalent to the Toeplitz operator (with scalar symbol) $T_{\det G}$; the operators T_G and T_{G^*} are Fredholm equivalent, and if G admits a Wiener-Hopf factorization (1), then T_G is strictly Fredholm equivalent to T_D.
Here we show that one-sided invertibility over the algebras M^+_{∞} or H^+_{∞} of certain matrix functions associated with the $n \times n$ matrix function G implies that the Toeplitz operators T_G with the symbol G and $T_{\det G}$ are at least nearly, and for some classes of G, even strictly, Fredholm equivalent. In particular, Coburn’s theorem holds in the latter case.
Here we show that one-sided invertibility over the algebras M^+_{∞} or H^+_{∞} of certain matrix functions associated with the $n \times n$ matrix function G implies that the Toeplitz operators T_G with the symbol G and $T_{\det G}$ are at least nearly, and for some classes of G, even strictly, Fredholm equivalent. In particular, Coburn’s theorem holds in the latter case.

In what follows, we use \tilde{P}^\pm to denote the projections, from $L_\infty(\mathbb{R})$ into $L^\pm_p := (\xi \pm i)H^\pm_p$, $p \in]1, \infty[$, defined by

$$\tilde{P}^\pm \phi = (\xi + i)P^\pm \left(\frac{\phi}{\xi + i} \right). \quad (27)$$
Given $\Phi^\pm \in (M^\pm_\infty)^{n\times(n-1)}$, $\Psi^\pm \in (M^\pm_\infty)^{(n-1)\times n}$ such that $\Psi^\pm \Phi^\pm = I_{n-1}$, let moreover Φ^\pm_e, Ψ^\pm_e be defined by

$$\Phi^\pm_e = \begin{bmatrix} \Phi^\pm & N^\pm \end{bmatrix}, \quad \Psi^\pm_e = \begin{bmatrix} \Psi^\pm \\ \tilde{N}^\pm \end{bmatrix},$$

(28)

where

$$N^\pm = \begin{bmatrix} \Delta_{\cdot,1}(\Psi^\pm) \\ -\Delta_{\cdot,2}(\Psi^\pm) \\ \vdots \\ (-1)^{n-1}\Delta_{\cdot,n}(\Psi^\pm) \end{bmatrix} \in (M^\pm_\infty)^{n\times 1},$$

(29)

$$\tilde{N}^\pm = \begin{bmatrix} \Delta_{1,\cdot}(\Phi^\pm), \Delta_{2,\cdot}(\Phi^\pm), \ldots, (-1)^{n-1}\Delta_{n,\cdot}(\Phi^\pm) \end{bmatrix} \in (M^\pm_\infty)^{1\times 30}.$$
The next theorem is stated in the framework of the algebras M^+_{∞} and H^+_{∞}.

Theorem
Let $G \in (L^\infty(R))^{n \times n}$, and let Ψ be an $(n-1) \times n$ submatrix of G obtained by omitting one row in G.

(a) If $\Psi \in (M^+_{\infty})^{(n-1) \times n}$, and if Ψ is right invertible over M^+_{∞}, then T_G is nearly Fredholm equivalent to $T_{\det G}$, for every fixed $p \in [1, \infty[$.

(b) If moreover $\Psi \in (H^+_{\infty})^{(n-1) \times n}$, and if Ψ is right invertible over H^+_{∞}, then, for any fixed $p \in [1, \infty[$, T_G is strictly Fredholm equivalent to $T_{\det G}$. In particular, it is (at least) one sided invertible, and is two sided invertible simultaneously with $T_{\det G}$.

(c) If, in the setting of (b), in addition $\text{Ind} T_{\det G} \geq 0$ and the omitted row \hat{G}_n of G is its last one, then a WH p-factorization of G is given by

\[
(1)
\]
The next theorem is stated in the framework of the algebras M_{∞}^+ and H_{∞}^+.

Theorem

Let $G \in (L_\infty(\mathbb{R}))^{n \times n}$, and let Ψ be an $(n-1) \times n$ submatrix of G obtained by omitting one row in G.

(a) If $\Psi \in (M_{\infty}^+)^{(n-1) \times n}$, and if Ψ is right invertible over M_{∞}^+, then T_G is nearly Fredholm equivalent to $T_{\det G}$, for every fixed $p \in \]1, \infty[.$

(b) If moreover $\Psi \in (H_{\infty}^+)^{(n-1) \times n}$, and if Ψ is right invertible over H_{∞}^+, then, for any fixed $p \in \]1, \infty[,$ T_G is strictly Fredholm equivalent to $T_{\det G}$. In particular, it is (at least) one sided invertible, and is two sided invertible simultaneously with $T_{\det G}$.

(c) If, in the setting of (b), in addition $\text{Ind} T_{\det G} \geq 0$ and the omitted row \hat{G}_n of G is its last one, then a WH p-factorization of G is given by (1) with

$$ Ilya M. Spitkovsky
One sided invertibility, corona problem, and applications $$
The next theorem is stated in the framework of the algebras M_∞^+ and H_∞^+.

Theorem

Let $G \in (L_\infty(\mathbb{R}))^{n \times n}$, and let Ψ be an $(n-1) \times n$ submatrix of G obtained by omitting one row in G.

(a) If $\Psi \in (M_\infty^+)^{(n-1) \times n}$, and if Ψ is right invertible over M_∞^+, then T_G is nearly Fredholm equivalent to $T_{\text{det } G}$, for every fixed $p \in]1, \infty[$.

(b) If moreover $\Psi \in (H_\infty^+)^{(n-1) \times n}$, and if Ψ is right invertible over H_∞^+, then, for any fixed $p \in]1, \infty[$, T_G is strictly Fredholm equivalent to $T_{\text{det } G}$. In particular, it is (at least) one sided invertible, and is two sided invertible simultaneously with $T_{\text{det } G}$.

(c) If, in the setting of (b), in addition $\text{Ind } T_{\text{det } G} \geq 0$ and the omitted row \hat{G} of G is its last one, then a WH$_p$-factorization of G is given by (1)
The next theorem is stated in the framework of the algebras M_∞^+ and H_∞^+.

Theorem

Let $G \in (L_\infty(\mathbb{R}))^{n \times n}$, and let Ψ be an $(n-1) \times n$ submatrix of G obtained by omitting one row in G.

(a) If $\Psi \in (M_\infty^+)^{(n-1) \times n}$, and if Ψ is right invertible over M_∞^+, then T_G is nearly Fredholm equivalent to $T_{\det G}$, for every fixed $p \in]1, \infty[$.

(b) If moreover $\Psi \in (H_\infty^+)^{(n-1) \times n}$, and if Ψ is right invertible over H_∞^+, then, for any fixed $p \in]1, \infty[$, T_G is strictly Fredholm equivalent to $T_{\det G}$. In particular, it is (at least) one sided invertible, and is two sided invertible simultaneously with $T_{\det G}$.
The next theorem is stated in the framework of the algebras M^+_∞ and H^+_∞.

Theorem

Let $G \in (L_\infty(\mathbb{R}))^{n \times n}$, and let Ψ be an $(n-1) \times n$ submatrix of G obtained by omitting one row in G.

(a) If $\Psi \in (M^+_\infty)^{(n-1) \times n}$, and if Ψ is right invertible over M^+_∞, then T_G is nearly Fredholm equivalent to $T_{\det G}$, for every fixed $p \in]1, \infty[$.

(b) If moreover $\Psi \in (H^+_\infty)^{(n-1) \times n}$, and if Ψ is right invertible over H^+_∞, then, for any fixed $p \in]1, \infty[$, T_G is strictly Fredholm equivalent to $T_{\det G}$. In particular, it is (at least) one sided invertible, and is two sided invertible simultaneously with $T_{\det G}$.

(c) If, in the setting of (b), in addition $\text{Ind } T_{\det G} \geq 0$ and the omitted row \hat{G}_n of G is its last one, then a WH p-factorization of G is given by (1) with
\[\begin{align*}
G_- &= \begin{bmatrix}
I_{n-1} & 0 \\
0 & \gamma_-
\end{bmatrix}
\begin{bmatrix}
I_{n-1} & 0 \\
\tilde{P}^-(\hat{G}_n\Phi^+\gamma_-^{-1}) & 1
\end{bmatrix}, \\
D &= \begin{bmatrix}
I_{n-1} & 0 \\
0 & r^k
\end{bmatrix}; \\
G_+ &= \begin{bmatrix}
\tilde{P}^+(\hat{G}_n\Phi^+\gamma_-^{-1}) \cdot r^{-k} & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
I_{n-1} & 0 \\
0 & (-1)^{n-1}\gamma_+
\end{bmatrix} \cdot \Psi_e^+.
\end{align*} \]
\[G_- = \begin{bmatrix} l_{n-1} & 0 \\ 0 & \gamma_- \end{bmatrix} \begin{bmatrix} l_{n-1} & 0 \\ \tilde{P}^-(\hat{G}_n\Phi^+\gamma_-^{-1}) & 1 \end{bmatrix}, \quad (31) \]

\[D = \begin{bmatrix} l_{n-1} & 0 \\ 0 & r^k \end{bmatrix}; \quad (32) \]

\[G_+ = \begin{bmatrix} l_{n-1} & 0 \\ \tilde{P}^+(\hat{G}_n\Phi^+\gamma_-^{-1}) \cdot r^{-k} & 1 \end{bmatrix} \begin{bmatrix} l_{n-1} & 0 \\ 0 & (-1)^{n-1}\gamma_+ \end{bmatrix} \cdot \psi^+_e. \quad (33) \]

Here

\[\det G = \gamma_- r^k \gamma_+ \quad (34) \]

is a WH \(p \)-factorization of \(\det G \) and \(\Phi^+ \) is a right inverse of \(\Psi \).
\[G_- = \begin{bmatrix} l_{n-1} & 0 \\ 0 & \gamma_- \end{bmatrix} \begin{bmatrix} l_{n-1} & 0 \\ \tilde{P}^-(\hat{G}_n\Phi^+\gamma_-^{-1}) & 1 \end{bmatrix}, \quad (31) \]

\[D = \begin{bmatrix} l_{n-1} & 0 \\ 0 & r^k \end{bmatrix}; \quad (32) \]

\[G_+ = \begin{bmatrix} l_{n-1} & 0 \\ \tilde{P}^+(\hat{G}_n\Phi^+\gamma_-^{-1}) \cdot r^{-k} & 1 \end{bmatrix} \begin{bmatrix} l_{n-1} & 0 \\ 0 & (-1)^{n-1}\gamma_+ \end{bmatrix} \cdot \Psi_e^+. \quad (33) \]

Here

\[\det G = \gamma_- r^k \gamma_+ \quad (34) \]

is a WH p-factorization of \(\det G \) and \(\Phi^+ \) is a right inverse of \(\Psi \). Note that in (34) \(k \leq 0 \) since it is opposite to \(\text{Ind } T_{\det G} \). This condition is essential for the statement (c) to be valid, while of course omitting the \(n \)-th row (as opposed to some other row) is just to simplify the notation.
The next result is a dual version of the previous theorem.
The next result is a dual version of the previous theorem.

Theorem

Let $G \in (L_\infty(\mathbb{R}))^{n \times n}$, and let Φ be an $n \times (n - 1)$ submatrix of G obtained by omitting one column in G (it will be assumed that the nth column is omitted, essentially without loss of generality).

(a) If $\Phi \in (M^{-\infty})^{n \times (n - 1)}$, and if Φ is left invertible over $M^{-\infty}$, then T_G is Fredholm if and only if $T_{\det G}$ is Fredholm, for every fixed $p \in [1, \infty]$.

(b) If moreover $\Phi \in (H^{-\infty})^{n \times (n - 1)}$ and Φ is left invertible over $H^{-\infty}$, then, for any fixed $p \in (1, \infty)$, the operator T_G is strictly Fredholm equivalent to $T_{\det G}$, and thus either $\ker T_G = \{0\}$ or $\ker T^*_G = \{0\}$. In particular, T_G is invertible if and only if so is $T_{\det G}$.

(c) If, in the setting of (b), in addition $\text{Ind} \det G \leq 0$ and the omitted column of G is \hat{G}_n, its last one, then a WH p-factorization of G is given by (1) with I_{n-1}.
The next result is a dual version of the previous theorem.

Theorem

Let $G \in (L_\infty(\mathbb{R}))^{n \times n}$, and let Φ be an $n \times (n - 1)$ submatrix of G obtained by omitting one column in G (it will be assumed that the nth column is omitted, essentially without loss of generality).

(a) If $\Phi \in (M_\infty^-)^{n \times (n-1)}$, and if Φ is left invertible over M_∞^-, then T_G is Fredholm if and only if $T_{\det G}$ is Fredholm, for every fixed $p \in]1, \infty[$.

(b) If moreover $\Phi \in (H_\infty^-)^{n \times (n-1)}$ and Φ is left invertible over H_∞^-, then, for any fixed $p \in (1, \infty)$, the operator T_G is strictly Fredholm equivalent to $T_{\det G}$, and thus either $\ker T_G = \{0\}$ or $\ker T_G^* = \{0\}$. In particular, T_G is invertible if and only if so is $T_{\det G}$.

(c) If, in the setting of (b), in addition $\text{Ind} \det G \leq 0$ and the omitted column of G is \hat{G}, its last one, then a WH p-factorization of G is given by (1) with $I_
abla$.
The next result is a dual version of the previous theorem.

Theorem

Let $G \in (L_\infty(\mathbb{R}))^{n \times n}$, and let Φ be an $n \times (n - 1)$ submatrix of G obtained by omitting one column in G (it will be assumed that the nth column is omitted, essentially without loss of generality).

(a) If $\Phi \in (M^-_\infty)^{n \times (n-1)}$ and if Φ is left invertible over M^-_∞, then T_G is Fredholm if and only if $T_{\det G}$ is Fredholm, for every fixed $p \in]1, \infty[$.

(b) If moreover $\Phi \in (H^-_\infty)^{n \times (n-1)}$ and Φ is left invertible over H^-_∞, then, for any fixed $p \in (1, \infty)$, the operator T_G is strictly Fredholm equivalent to $T_{\det G}$, and thus either $\ker T_G = \{0\}$ or $\ker T_G^* = \{0\}$. In particular, T_G is invertible if and only if so is $T_{\det G}$.

(3) If, in the setting of (2), in addition $\text{Ind det } G \leq 0$ and the omitted column of G is \hat{G}_n, its last one, then a WH p-factorization of G is given by

\[(1)\]
The next result is a dual version of the previous theorem.

Theorem

Let $G \in (L_\infty(\mathbb{R}))^{n \times n}$, and let Φ be an $n \times (n-1)$ submatrix of G obtained by omitting one column in G (it will be assumed that the nth column is omitted, essentially without loss of generality).

(a) If $\Phi \in (M^-_\infty)^{n \times (n-1)}$, and if Φ is left invertible over M^-_∞, then T_G is Fredholm if and only if $T_{\det G}$ is Fredholm, for every fixed $p \in]1, \infty[$.

(b) If moreover $\Phi \in (H^-_\infty)^{n \times (n-1)}$ and Φ is left invertible over H^-_∞, then, for any fixed $p \in (1, \infty)$, the operator T_G is strictly Fredholm equivalent to $T_{\det G}$, and thus either $\ker T_G = \{0\}$ or $\ker T_G^* = \{0\}$. In particular, T_G is invertible if and only if so is $T_{\det G}$.

(c) If, in the setting of (b), in addition $\Ind \det G \leq 0$ and the omitted column of G is G_n, its last one, then a WH p-factorization of G is given by (1) with
Here $\det G = \gamma - r k \gamma + \gamma_0$ is a WH p-factorization of $\det G$, Ψ is a left inverse of Φ, and $\Phi^{-e} = (\Psi^{-e})^{-1}$ is given by (28)–(30).

Of course, formulas similar to those given in part (c) hold when the removed column is not the last one.

In the previous results we have used the one sided invertibility of a submatrix of G to study the Fredholmness, and other associated properties, of the Toeplitz operator T_G. Now we turn to the study of the same properties of T_G based on one sided invertibility of a solution to a Riemann-Hilbert problem with coefficient G.
\[G_- = \Phi_e^{-} \begin{bmatrix} I_{n-1} & r^{-k} \tilde{P}_-(\gamma_+^{-1}\psi_- \hat{G}_n) \\ 0 & (-1)^{n-1}\gamma_- \end{bmatrix}, \quad D = \begin{bmatrix} I_{n-1} & 0 \\ 0 & r^k \end{bmatrix}, \]

\[G_+ = \begin{bmatrix} I_{n-1} & \gamma_+ \tilde{P}_+(\gamma_+^{-1}\psi_- \hat{G}_n) \\ 0 & \gamma_+ \end{bmatrix}. \]

Here \(\det G = \gamma_- r^k \gamma_+ \) is a \(WH \) \(p \)-factorization of \(\det G \), \(\Psi_- \) is a left inverse of \(\Phi \), and \(\Phi_e^{-} = (\Psi_e^{-})^{-1} \) is given by (28)–(30).
\[G_{-} = \Phi_{e}^{-} \begin{bmatrix} l_{n-1} & r^{-k} \tilde{P}_{-}(\gamma_{+}^{-1}\psi_{-}\hat{G}_{n}) \\ 0 & (-1)^{n-1}\gamma_{-} \end{bmatrix}, \quad D = \begin{bmatrix} l_{n-1} & 0 \\ 0 & r^{k} \end{bmatrix}, \]

\[G_{+} = \begin{bmatrix} l_{n-1} & \gamma_{+}\tilde{P}_{+}(\gamma_{+}^{-1}\psi_{-}\hat{G}_{n}) \\ 0 & \gamma_{+} \end{bmatrix}. \]

Here \(\det G = \gamma_{-} r^{k} \gamma_{+} \) is a WH \(p \)-factorization of \(\det G \), \(\Psi_{-} \) is a left inverse of \(\Phi \), and \(\Phi_{e}^{-} = (\Psi_{e}^{-})^{-1} \) is given by (28)–(30).

Of course, formulas similar to those given in part (c) hold when the removed column is not the last one.
\[G_- = \Phi_e^- \begin{bmatrix} I_{n-1} & r^{-k} \hat{P}_- (\gamma_{+}^{-1} \Psi_- \hat{G}_n) \\ 0 & (-1)^{n-1} \gamma_- \end{bmatrix}, \quad D = \begin{bmatrix} I_{n-1} & 0 \\ 0 & r^k \end{bmatrix}, \]

\[G_+ = \begin{bmatrix} I_{n-1} & \gamma_+ \hat{P}_+ (\gamma_{+}^{-1} \Psi_- \hat{G}_n) \\ 0 & \gamma_+ \end{bmatrix}. \]

Here \(\det G = \gamma_- r^k \gamma_+ \) is a \(WH \ p \)-factorization of \(\det G \), \(\Psi_- \) is a left inverse of \(\Phi \), and \(\Phi_e^- = (\Psi_e^-)^{-1} \) is given by (28)–(30). Of course, formulas similar to those given in part (c) hold when the removed column is not the last one.

In the previous results we have used the one sided invertibility of a submatrix of \(G \) to study the Fredholmness, and other associated properties, of the Toeplitz operator \(T_G \). Now we turn to the study of the same properties of \(T_G \) based on one sided invertibility of a solution to a Riemann-Hilbert problem with coefficient \(G \).
Theorem

Let \(G \in (L_\infty(\mathbb{R}))^{n\times n} \), and let

\[G\Phi^+ = \Phi^-, \quad \Phi^\pm \in (M^\pm_\infty)^{n\times(n-1)}, \]

(35)

where \(\Phi^\pm \) are left invertible over \(M^\pm_\infty \). Then:

(i) \(T_G \) is Fredholm equivalent to \(T_{\det G} \);

(ii) If moreover \(\Phi^\pm \) are left invertible over \(H^\pm_\infty \), with left inverses \(\Psi^\pm \in (H^\pm_\infty)^{(n-1)\times n} \) for \(\Phi^\pm \), respectively, then \(T_G \) is strictly Fredholm equivalent to \(T_{\det G} \) and either \(\ker T_G = \{0\} \) or \(\ker T^*_G = \{0\} \). In particular, \(T_G \) is invertible if and only \(T_{\det G} \) is invertible.
Theorem

Let $G \in (L_\infty(\mathbb{R}))^{n \times n}$, and let

$$G \Phi^+ = \Phi^-, \quad \Phi^\pm \in (M_\infty^\pm)^{n \times (n-1)}, \quad (35)$$

where Φ^\pm are left invertible over M_∞^\pm. Then:

(i) T_G is Fredholm equivalent to $T_{\det G}$;
Theorem

Let $G \in (L_\infty(\mathbb{R}))^{n \times n}$, and let

$$G \Phi^+ = \Phi^-, \quad \Phi^\pm \in (M_{\infty}^\pm)^{n \times (n-1)},$$

(35)

where Φ^\pm are left invertible over M_{∞}^\pm. Then:

(i) T_G is Fredholm equivalent to $T_{\det G}$;

(ii) If moreover Φ^\pm are left invertible over H_{∞}^\pm, with left inverses $\Psi^\pm \in (H_{\infty}^\pm)^{(n-1) \times n}$ for Φ^\pm, respectively, then T_G is strictly Fredholm equivalent to $T_{\det G}$ and either $\ker T_G = \{0\}$ or $\ker T_G^* = \{0\}$. In particular, T_G is invertible if and only $T_{\det G}$ is invertible.
(iii) Assuming that

$$\det G = \gamma_- r^k \gamma_+ \quad \text{with } k \geq 0 \quad (36)$$

is a WH p-factorization for $\det G$, a WH p-factorization for G is given by (1) with

$$G_- = \Phi_e^- \cdot \begin{bmatrix} I_{n-1} & 0 \\ 0 & \gamma_- \end{bmatrix} \begin{bmatrix} I_{n-1} & \alpha_- \\ 0 & 1 \end{bmatrix}, \quad (37)$$

$$D = \begin{bmatrix} I_{n-1} & 0_{(n-1) \times 1} \\ 0_{1 \times (n-1)} & r^k \end{bmatrix} \quad (38)$$

$$G_+ = \begin{bmatrix} I_{n-1} & \alpha_+ \\ 0_{1 \times (n-1)} & 1 \end{bmatrix} \begin{bmatrix} I_{n-1} & 0 \\ 0 & \gamma_+ \end{bmatrix} \cdot \Psi_e^+,$$ \quad (39)

where Φ_e^-, Ψ_e^+ are given by (28)–(30),
\[
\alpha_+ = \tilde{P}^+ (Q) \in (\mathcal{L}_p^+)^{(n-1) \times 1},
\]

\[
\alpha_- = r^{-k} \tilde{P}^- (Q) \in (\mathcal{L}_p^-)^{(n-1) \times 1},
\]

and where

\[
Q := \Psi^- G N^+ \in (L_\infty(\mathbb{R}))^{(n-1) \times 1},
\]

with \(N^+ \) as in (29).
Proof. (i) Let Φ_e^\pm, Ψ_e^\pm be defined as in (28), (30), where $\Psi^\pm \in (M_\infty^\pm)^{(n-1) \times n}$ is a left inverse of Φ^\pm over M_∞^\pm. From Theorem it follows that $\Psi_e^\pm \in G((M_\infty^\pm)^{n \times n})$ and $(\Psi_e^\pm)^{-1} = \Phi_e^\pm$.

Defining

$$G_0 = \Psi_e^- G \Phi_e^+,$$

we can rewrite (35) as

$$G_0 \Psi_e^+ \Phi^+ = \Psi_e^- \Phi^-.$$ \hfill (44)

On the other hand, it follows from Theorem (see (25) or (26), taking (21) into account) that

$$\Psi_e^\pm \Phi^\pm = \begin{bmatrix} I_{n-1} \\ 0_{1 \times (n-1)} \end{bmatrix},$$ \hfill (45)
therefore (44) implies that G_0 has the form

$$G_0 = \begin{bmatrix} I_{n-1} & Q \\ 0_{1 \times (n-1)} & \det G \end{bmatrix}.$$ \hspace{1cm} (46)

In particular, $\det G = \det G_0$. From (43) it follows that T_G is Fredholm if and only if T_{G_0} is Fredholm, and this in turn is equivalent to $T_{\det G}$ being Fredholm (by (46)).
therefore (44) implies that G_0 has the form

$$G_0 = \begin{bmatrix}
I_{n-1} & Q \\
0_{1 \times (n-1)} & \det G
\end{bmatrix}.$$ \hspace{2cm} (46)

In particular, $\det G = \det G_0$.

From (43) it follows that T_G is Fredholm if and only if T_{G_0} is Fredholm, and this in turn is equivalent to $T_{\det G}$ being Fredholm (by (46)).

(ii) If $\Phi^\pm \in (H^\pm_\infty)^{n \times (n-1)}$ and Φ^\pm is left invertible over H^\pm_∞, with a left inverse Ψ^\pm, then

$$\Psi^-_e \in \mathcal{G} \left((H^-_\infty)^{n \times n} \right), \quad \Phi^+_e \in \mathcal{G} \left((H^+_\infty)^{n \times n} \right),$$

and it follows that T_G is strictly Fredholm equivalent to $T_{\det G}$ and that either $\ker T_G = \{0\}$ or $\ker T_G^* = \{0\}$.

Ilya M. Spitkovsky
One sided invertibility, corona problem, and applications
(iii) The formulas for G_\pm and D follow from

$$G = \Phi_e^- G_0 \psi_e^+, \quad$$

together with (46) and (36).
In the AP setting the results are as follows.
In the AP setting the results are as follows.

Theorem

Let $G \in AP^{n \times n}$ be invertible, and suppose that it contains a submatrix $\Psi \in (AP^+)^{(n-1) \times n}$ which is right invertible over AP^+. Then the operator T_G is invertible (resp. right invertible, or left invertible) on $(H_p^+)^n$ for any (equivalently, all) $p \in (1, \infty)$ if and only if $\det G$ has zero (resp. non-positive, or non-negative) mean motion κ. If in addition $G \in APW^{n \times n}$ and $\kappa \geq 0$, then G is APW factorable, and its partial AP indices are $0, \ldots, 0$ ($n - 1$ times) and κ.

Ilya M. Spitkovsky

One sided invertibility, corona problem, and applications
In the AP setting the results are as follows.

Theorem

Let $G \in AP^{n \times n}$ be invertible, and suppose that it contains a submatrix $\Psi \in (AP^+)^{(n-1) \times n}$ which is right invertible over AP^+. Then the operator T_G is invertible (resp. right invertible, or left invertible) on $(H_p^+)^n$ for any (equivalently, all) $p \in (1, \infty)$ if and only if $\det G$ has zero (resp. non-positive, or non-negative) mean motion κ. If in addition $G \in APW^{n \times n}$ and $\kappa \geq 0$, then G is APW factorable, and its partial AP indices are $0, \ldots, 0$ ($n-1$ times) and κ.

The proof runs along the same lines as for the H^∞ case, taking into consideration that $\det G$ is an invertible AP function and thus the operator $T_{\det G}$ is automatically one sided invertible. To construct the APW factorization, one can still use formulas (31)–(33) substituting r^k by $e_{\kappa(\det G)}$ and \tilde{P}^\pm by the projections of APW onto APW^\pm.

Ilya M. Spitkovsky
One sided invertibility, corona problem, and applications
Theorem

Let $G \in APW^{n \times n}$ be invertible, with $\kappa(\det G) \geq 0$. Moreover, let there exist $\Phi^\pm \in (APW^\pm)^{n-1 \times n}$ left invertible over APW^\pm and such that $G\Phi^+ = \Phi^-$. Then G is APW factorable, with the partial AP indices equal $0, \ldots, 0$ ($n - 1$ times) and $\kappa(\det G)$.
Particular cases

Some classes of matrix functions can be clearly identified, to which the previous results apply. Let \(G \in \mathbb{L}_{n \times n}^\infty \) with all rows but one having elements in \(\mathbb{M}_\infty^+ \) (the case of all columns but one having elements in \(\mathbb{M}_\infty^- \) can be treated analogously). Assume for simplicity that \(G = [\Psi \; g_n] \) with \(\Psi \in (\mathbb{M}_\infty^+)^{(n-1) \times n} \), \(g_n \in \mathbb{L}_1^{\infty \times n} \).

\[\tag{47} \]
Some classes of matrix functions can be clearly identified, to which the previous results apply.
Some classes of matrix functions can be clearly identified, to which the previous results apply.
Let $G \in L_{\infty}^{n \times n}$ with all rows but one having elements in M_∞^+ (the case of all columns but one having elements in M_∞^- can be treated analogously). Assume for simplicity that

$$G = \begin{bmatrix} \Psi \\ g_n \end{bmatrix} \quad \text{with} \quad \Psi \in (M_\infty^+)^{(n-1) \times n}, \ g_n \in L_\infty^{1 \times n}. \quad (47)$$

Then the following results hold.
Theorem
(i) If G is unitary with constant determinant and $g_n^T \in MCT_n^-$, then T_G is Fredholm for all $p \in (1, \infty)$. If moreover $\Psi \in (H_\infty^+)^{(n-1)\times n}$ and $g_n^T \in HCT_n^-$, then T_G is invertible.

(ii) If G is (complex) orthogonal with constant determinant and $g_n^T \in MCT_n^+$, then T_G is Fredholm for all $p \in (1, \infty)$. If moreover $\Psi \in (H_\infty^+)^{(n-1)\times n}$ and $g_n^T \in HCT_n^+$, then T_G is invertible.

(iii) If one of the $(n-1)\times (n-1)$ minors of Ψ is invertible in M_{∞}^+, then T_G is Fredholm equivalent to $T_{\det G}$. If the above mentioned minor is in fact invertible in H_∞^+, then T_G is strictly Fredholm equivalent to $T_{\det G}$ and either $\ker T_G = \{0\}$ or $\ker T_G^* = \{0\}$.

Of course $|\det G| = 1$ in case (i) and $\det G = \pm 1$ in case (ii).
Theorem

(i) If G is unitary with constant determinant and $g_n^T \in MCT_n^-$, then T_G is Fredholm for all $p \in (1, \infty)$. If moreover $\Psi \in (H_\infty^+)^{(n-1)\times n}$ and $g_n^T \in HCT_n^-$, then T_G is invertible.

(ii) If G is (complex) orthogonal with constant determinant and $g_n^T \in MCT_n^+$, then T_G is Fredholm for all $p \in (1, \infty)$. If moreover $\Psi \in (H_\infty^+)^{(n-1)\times n}$ and $g_n^T \in HCT_n^+$, then T_G is invertible.
Theorem

(i) If G is unitary with constant determinant and $g_n^T \in MCT_n^-$, then T_G is Fredholm for all $p \in (1, \infty)$. If moreover
\[\Psi \in (H_\infty^+)^{(n-1)\times n} \text{ and } g_n^T \in HCT_n^-, \] then T_G is invertible.

(ii) If G is (complex) orthogonal with constant determinant and $g_n^T \in MCT_n^+$, then T_G is Fredholm for all $p \in (1, \infty)$. If moreover
\[\Psi \in (H_\infty^+)^{(n-1)\times n} \text{ and } g_n^T \in HCT_n^+, \] then T_G is invertible.

(iii) If one of the $(n-1) \times (n-1)$ minors of Ψ is invertible in M_∞^+, then T_G is Fredholm equivalent to $T_{\det G}$. If the above mentioned minor is in fact invertible in H_∞^+, then T_G is strictly Fredholm equivalent to $T_{\det G}$ and either $\ker T_G = \{0\}$ or $\ker T_G^* = \{0\}$.

Of course $|\det G| = 1$ in case (i) and $\det G = \pm 1$ in case (ii).
Theorem

(i) If G is unitary with constant determinant and $g_n^T \in MCT_n^-$, then T_G is Fredholm for all $p \in (1, \infty)$. If moreover $\Psi \in (H_\infty^+)^{(n-1) \times n}$ and $g_n^T \in HCT_n^-$, then T_G is invertible.

(ii) If G is (complex) orthogonal with constant determinant and $g_n^T \in MCT_n^+$, then T_G is Fredholm for all $p \in (1, \infty)$. If moreover $\Psi \in (H_\infty^+)^{(n-1) \times n}$ and $g_n^T \in HCT_n^+$, then T_G is invertible.

(iii) If one of the $(n-1) \times (n-1)$ minors of Ψ is invertible in M_∞^+, then T_G is Fredholm equivalent to $T_{\det G}$. If the above mentioned minor is in fact invertible in H_∞^+, then T_G is strictly Fredholm equivalent to $T_{\det G}$ and either $\ker T_G = \{0\}$ or $\ker T_G^* = \{0\}$.

Of course $|\det G| = 1$ in case (i) and $\det G = \pm 1$ in case (ii).
Proof.

(i) Observe that the k-th entry g_{nk} of g_n coincides with $(-1)^{n+k} \det G \Delta_{.,k}(\Psi)$, $k = 1, \ldots, n$. Thus, condition $g_n^T \in MCT_n^-$ can be rewritten equivalently as

$$\left(\Delta_{.,k}(\Psi) \right)_{k=1,\ldots,n} \in MCT_n^+. \tag{48}$$

By the right invertibility analogue of the results above, it follows that Ψ is right invertible over M_∞^+, and T_G is Fredholm. The second part of (i) follows analogously.

(ii) If G is orthogonal, then $g_{nk} = (-1)^{n+k} \det G \Delta_{.,k}(\Psi)$, so that $g_n^T \in MCT_n^+$ can be rewritten as (48). The rest of the proof goes as in (i).

(iii) The invertibility of any $(n-1) \times (n-1)$ minor of $\Psi \in (M_\infty^+)^{n \times n}$ implies (48).
Proof.
(i) Observe that the \(k \)-th entry \(g_{nk} \) of \(g_n \) coincides with
\((-1)^{n+k} \det G \Delta_{., k}(\Psi)\), \(k = 1, \ldots, n \). Thus, condition \(g_n^T \in MCT_n^- \) can be rewritten equivalently as
\[
(\Delta_{., k}(\Psi))_{k=1,\ldots,n} \in MCT_n^+.
\] (48)

By the right invertibility analogue of the results above, it follows that \(\Psi \) is right invertible over \(M_{\infty}^+ \), and \(T_G \) is Fredholm. The second part of (i) follows analogously.
(ii) If \(G \) is orthogonal, then \(g_{nk} = (-1)^{n+k} \det G \Delta_{., k}(\Psi) \), so that now \(g_n^T \in MCT_n^+ \) can be rewritten as (48). The rest of the proof goes as in (i).

(iii) The invertibility of any \((n-1) \times (n-1)\) minor of \(\Psi \in (M_{\infty}^+)^{n-1} \times n \) implies (48).
Proof.

(i) Observe that the k-th entry g_{nk} of g_n coincides with $(-1)^{n+k} \det G \Delta,_{k}(\Psi)$, $k = 1, \ldots, n$. Thus, condition $g_n^T \in MCT_n^-$ can be rewritten equivalently as

$$ (\Delta,_{k}(\Psi))_{k=1,\ldots,n} \in MCT_n^+. \quad (48) $$

By the right invertibility analogue of the results above, it follows that Ψ is right invertible over M_∞^+, and T_G is Fredholm. The second part of (i) follows analogously.

(ii) If G is orthogonal, then $g_{nk} = (-1)^{n+k} \det G \Delta,_{k}(\Psi)$, so that now $g_n^T \in MCT_n^+$ can be rewritten as (48). The rest of the proof goes as in (i).

(iii) The invertibility of any $(n-1) \times (n-1)$ minor of $\Psi \in (M_\infty^+)^{(n-1)\times n}$ implies (48).
Remark
In the case of orthogonal (47) we automatically have $g_n \in (M_\infty^+)^{1 \times n}$, so that the relation $GG^T = I$ immediately provides the right inverse of Ψ over M_∞^+. It can then be used in factorization formulas (31)–(33).

A factorization of unitary matrices G with $\det G = 1$, $\Psi \in (H_\infty^+)^{(n-1) \times n}$ and $g^n \in HCT_n$, as in Theorem 0.14 was by different methods considered earlier in [EphremidzeJanashiaLagvilava'98].
Remark

In the case of orthogonal (47) we automatically have $g_n \in (M_\infty^+)^{1 \times n}$, so that the relation $GG^T = I$ immediately provides the right inverse of Ψ over M_∞^+. It can then be used in factorization formulas (31)–(33).

A factorization of unitary matrices G with $\det G = 1$, $\Psi \in (H_\infty^+)^{(n-1) \times n}$ and $g_n^T \in HCT_n^-$, as in Theorem 0.14 was by different methods considered earlier in [EphremidzeJanashiaLagvilava'98].
A well known property of Toeplitz operators T_G with matrix symbols G continuous on $\hat{\mathbb{R}}$ is that they are Fredholm if and only if $\det G$ does not vanish on $\hat{\mathbb{R}}$ which in its turn is equivalent to $T_{\det G}$ being Fredholm.

We generalize this result as follows.

Lemma
Let G be of the form (47) with $\Psi \in \mathbb{R}^{(n-1) \times n}$. Then T_G is Fredholm equivalent to $T_{\det G}$.
A well known property of Toeplitz operators T_G with matrix symbols G continuous on \mathbb{R} is that they are Fredholm if and only if $\det G$ does not vanish on \mathbb{R} which in its turn is equivalent to $T_{\det G}$ being Fredholm. We generalize this result as follows.
A well known property of Toeplitz operators T_G with matrix symbols G continuous on \mathbb{R} is that they are Fredholm if and only if $\det G$ does not vanish on \mathbb{R} which in its turn is equivalent to $T_{\det G}$ being Fredholm. We generalize this result as follows.

Lemma

Let G be of the form (47) with $\Psi \in \mathcal{R}^{(n-1) \times n}$. Then T_G is Fredholm equivalent to $T_{\det G}$.
Proof.
If the determinants $\Delta_{.,k}(\psi), \ k = 1, \ldots, n$ (which are rational functions in \mathcal{R}) have at least one common zero in $\dot{\mathbb{R}}$, then $\det G$ has the same zero and thus neither $T_{\det G}$ nor T_G is Fredholm. Suppose now there are no common zeros of $\Delta_{.,k}(\psi)$ in $\dot{\mathbb{R}}$. Since there are at most finitely many such zeros in \mathbb{C}^\pm, then (48) holds again. Thus, ψ is right invertible over M_∞^\pm. The statement now follows.
Theorem

Let $G \in L^{n \times n}$ be such that all its elements except maybe for those located in one row or one column are continuous on \mathbb{R}. Then T_G is Fredholm equivalent to $T_{\text{det } G}$.
Theorem

Let $G \in L^{n \times n}_\infty$ be such that all its elements except maybe for those located in one row or one column are continuous on \mathbb{R}. Then T_G is Fredholm equivalent to $T_{\det G}$.

Proof. Without loss of generality, G is of the form (47) with $\Psi \in C^{(n-1) \times n}$.
Necessity. Suppose T_G is Fredholm. Then $\det G$ is invertible in L_∞. Expanding $\det G$ across the last row, represent it as

$$\det G = \sum_{j=1}^{n} f_j g_{n,j},$$

where the cofactors f_j are continuous due to the continuity of Ψ.
Necessity. Suppose T_G is Fredholm. Then $\det G$ is invertible in L_∞. Expanding $\det G$ across the last row, represent it as

$$\det G = \sum_{j=1}^{n} f_j g_{n,j},$$

where the cofactors f_j are continuous due to the continuity of Ψ. Let us approximate Ψ by a rational matrix function $\tilde{\Psi}$ so closely that the Toeplitz operator with the modified symbol $G_1 = \begin{bmatrix} \tilde{\Psi} \\ g_n \end{bmatrix}$ remains Fredholm. In particular, $\det G_1 = \sum_{j=1}^{n} \tilde{f}_j g_{n,j}$ is still invertible.
Necessity. Suppose T_G is Fredholm. Then det G is invertible in L_∞. Expanding det G across the last row, represent it as

$$\det G = \sum_{j=1}^{n} f_j g_{n,j},$$

where the cofactors f_j are continuous due to the continuity of Ψ. Let us approximate Ψ by a rational matrix function $\tilde{\Psi}$ so closely that the Toeplitz operator with the modified symbol $G_1 = \begin{bmatrix} \tilde{\Psi} \\ g_n \end{bmatrix}$ remains Fredholm. In particular, det $G_1 = \sum_{j=1}^{n} \tilde{f}_j g_{n,j}$ is still invertible.

Now let

$$\tilde{g}_{n,j} = g_{n,j} \det G / \det G_1, \quad \tilde{g}_n = [\tilde{g}_{n,1} \ldots \tilde{g}_{n,n}]$$

and $\tilde{G} = \begin{bmatrix} \tilde{\Psi} \\ \tilde{g}_n \end{bmatrix}$.

Ilya M. Spitkovsky
One sided invertibility, corona problem, and applications
The matrix function \tilde{G} can be made arbitrarily close to G, so that we may suppose $T_{\tilde{G}}$ to be Fredholm. As shown earlier, the operator $T_{\det \tilde{G}}$ is Fredholm. It remains to observe that

$$\det \tilde{G} = \sum_{j=1}^{n} \tilde{f}_j \tilde{g}_{n,j} = \det G.$$
Sufficiency. Along with T_G, let us consider $T_{\text{adj}G}$, where $\text{adj} G$ stands for the transposed matrix of the cofactors of G. Recall that

$$G \text{adj} G = \text{adj} G G = (\det G)I_n,$$ \hspace{1cm} (49)

and let I_+, I^n_+ denote the identity operators on H^+_p, $(H^+_p)^n$, respectively.
Sufficiency. Along with \(T_G \), let us consider \(T_{\text{adj}} G \), where \(\text{adj} G \) stands for the transposed matrix of the cofactors of \(G \). Recall that

\[
G \text{adj} G = \text{adj} G G = (\det G) I_n, \tag{49}
\]

and let \(I_+ \), \(I_+^n \) denote the identity operators on \(H^+_p \), \((H^+_p)^n \), respectively.

Since the first \(n - 1 \) rows of \(G \) and the last column of \(\text{adj} G \) are continuous on \(\mathbb{R} \cup \{\infty\} \), the operator

\[
k_\ell := T_{\text{adj}} G T_G - T_G \text{adj} G
\]

is compact (Corollary 3.5 in [MikhlinPresdorf'86]). Taking (49) into account, we conclude that

\[
T_{\text{adj}} G T_G = (\det G) I_+^n + k_\ell
\]

is Fredholm and therefore \(T_G \) has a left regularizer (that is, the left inverse modulo the ideal of compact operators).
To show that T_G has also a right regularizer — and therefore T_G is Fredholm — we consider $T_G T_{\text{adj} G}$.
To show that T_G has also a right regularizer — and therefore T_G is Fredholm — we consider $T_G T_{adj} G$. In this case, the difference $T_G T_{adj} G - T_{G \cdot adj} G$ may not be compact, so we have to use different (and somewhat more involved) arguments.
To show that T_G has also a right regularizer — and therefore T_G is Fredholm — we consider $T_G T_{\text{adj} \, G}$. In this case, the difference $T_G T_{\text{adj} \, G} - T_G \cdot \text{adj} \, G$ may not be compact, so we have to use different (and somewhat more involved) arguments. Let $[T_{ij}]$, $(i,j \in \{1,2\})$, be the block representation of the operator

$$T_G T_{\text{adj} \, G} - T_G \cdot \text{adj} \, G = T_G T_{\text{adj} \, G} - (\det G) I^n_+,$$

corresponding to the decomposition $(H^+_p)^n = (H^+_p)^{n-1} \oplus H^+_p$. The operators T_{11}, T_{12}, and T_{22} are compact (by [7, Corollary 7.5]), and we can write

$$T_G T_{\text{adj} \, G} = (\det G) I^n_+ + \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix}$$

$$= \begin{bmatrix} (\det G) I_+ & 0 \\ T_{21} & (\det G) I_+ \end{bmatrix} + \begin{bmatrix} T_{11} & T_{12} \\ 0 & T_{22} \end{bmatrix}.$$
Thus, $T_G T_{\text{adj} G}$ is a compact perturbation of a block triangular operator which is Fredholm since its diagonal elements are Fredholm (see, e.g., Corollary 1.3 in [LitvinchukSpitkovsky]). Consequently, $T_G T_{\text{adj} G}$ is Fredholm which implies that T_G has a right regularizer as well.

Translated from the Russian by B. Luderer, With a foreword by B. Silbermann.
