Note on paranormal operators and operator equations $ABA = A^2$ and $BAB = B^2$

II Ju An* Eungil Ko

PDE and Functional Analysis Research Center (PARC) Seoul National University Seoul, Korea

> ICM Satellite Conference 2014 Cheongpung, Korea August 9 (Saturday), 2014

Fredholm Operators

Definitions

Let $T \in B(\mathcal{H})$.

- T is called upper semi-Fredholm if R(T) is closed and $\alpha(T) < \infty$,
- T is called lower semi-Fredholm if $\beta(T) < \infty$.
- T is called Fredholm if $\alpha(T) < \infty$ and $\beta(T) < \infty$, in this case, the index is defined by

$$i(T) := \alpha(T) - \beta(T).$$

Fredholm Operators

Definitions

Let $T \in B(\mathcal{H})$.

- T is called upper semi-Fredholm if R(T) is closed and $\alpha(T) < \infty$,
- T is called lower semi-Fredholm if $\beta(T) < \infty$.
- T is called Fredholm if $\alpha(T) < \infty$ and $\beta(T) < \infty$, in this case, the index is defined by

$$i(T) := \alpha(T) - \beta(T).$$

- T is called Weyl if it is Fredholm of index zero.
- T is called Browder if it is Fredholm of finite ascent and descent.

Notations

• The smallest nonnegative integer p such that $N(T^p) = N(T^{p+1})$ is called the ascent of T and denoted by p(T).

Notations

• The smallest nonnegative integer p such that $N(T^p) = N(T^{p+1})$ is called the ascent of T and denoted by p(T). If no such integer exists, we set $p(T) = \infty$.

Notations

- The smallest nonnegative integer p such that $N(T^p) = N(T^{p+1})$ is called the ascent of T and denoted by p(T). If no such integer exists, we set $p(T) = \infty$.
- The smallest nonnegative integer q such that $R(T^q) = R(T^{q+1})$ is called the descent of T and denoted by q(T). If no such integer exists, we set $q(T) = \infty$.

Let
$$T \in \mathcal{B}(\mathcal{H})$$

Let
$$T \in B(\mathcal{H})$$

 $\sigma_p(T)$: the point spectrum of T

 $\sigma_a(T)$: the approximate point spectrum of T

Let
$$T \in B(\mathcal{H})$$

$$\sigma_p(T)$$
: the point spectrum of T

$$\sigma_a(T)$$
: the approximate point spectrum of T

$$\sigma_{\mathit{SF}+}(\mathit{T}) := \{\lambda \in \mathbb{C} : \mathit{T} - \lambda \textrm{ is not upper semi-Fredholm}\}$$

$$\sigma_{SF-}(T) := \{\lambda \in \mathbb{C} : T - \lambda \text{ is not lower semi-Fredholm} \}$$

$$\sigma_e(T) := \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not Fredholm} \}$$

Let
$$T \in B(\mathcal{H})$$

$$\sigma_{\mathcal{D}}(T)$$
: the point spectrum of T

$$\sigma_a(T)$$
: the approximate point spectrum of T

$$\sigma_{SF+}(T) := \{\lambda \in \mathbb{C} : T - \lambda \text{ is not upper semi-Fredholm}\}$$

$$\sigma_{SF-}(T) := \{\lambda \in \mathbb{C} : T - \lambda \text{ is not lower semi-Fredholm} \}$$

$$\sigma_{e}(T) := \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Fredholm}\}$$

$$\sigma_{W}(T) := \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not Weyl} \}$$

$$\sigma_b(T) := \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Browder}\}$$

Local Spectrum

Given an arbitrary $T \in B(\mathcal{H})$ on a Hilbert space \mathcal{H} , the local resolvent set $\rho_T(x)$ of T at the point $x \in \mathcal{H}$ is defined as the union of all open subsets U of \mathbb{C} for which there is an analytic function $f: U \to \mathcal{H}$ which satisfies $(T - \lambda)f(\lambda) = x$ for all $\lambda \in U$.

Local Spectrum

Given an arbitrary $T \in B(\mathcal{H})$ on a Hilbert space \mathcal{H} , the local resolvent set $\rho_T(x)$ of T at the point $x \in \mathcal{H}$ is defined as the union of all open subsets U of \mathbb{C} for which there is an analytic function $f: U \to \mathcal{H}$ which satisfies $(T - \lambda)f(\lambda) = x$ for all $\lambda \in U$.

The local spectrum $\sigma_T(x)$ of T at the point $x \in \mathcal{H}$ is defined as

$$\sigma_T(\mathbf{x}) := \mathbb{C} \setminus \rho_T(\mathbf{x}).$$

Local Spectrum

Given an arbitrary $T \in B(\mathcal{H})$ on a Hilbert space \mathcal{H} , the local resolvent set $\rho_T(x)$ of T at the point $x \in \mathcal{H}$ is defined as the union of all open subsets U of $\mathbb C$ for which there is an analytic function $f: U \to \mathcal{H}$ which satisfies $(T - \lambda)f(\lambda) = x$ for all $\lambda \in U$.

The local spectrum $\sigma_T(x)$ of T at the point $x \in \mathcal{H}$ is defined as

$$\sigma_T(x) := \mathbb{C} \setminus \rho_T(x).$$

We define the local spectral subspaces of *T* by

$$H_T(F) := \{x \in \mathcal{H} : \sigma_T(x) \subseteq F\}$$
 for all sets $F \subseteq \mathbb{C}$.

Localized Single Valued Extension Property

Definitions [1952, N. Dunford]

 $T \in B(\mathcal{X})$ has the single valued extension property at $\lambda_0 \in \mathbb{C}$ (abbreviated SVEP at λ_0) if for every open neighborhood U of λ_0 the only analytic function $f: U \longrightarrow \mathcal{X}$ which satisfies the equation

$$(T-\lambda)f(\lambda)=0$$

is the constant function $f \equiv 0$ on U. The operator T is said to have SVEP if T has SVEP at every $\lambda \in \mathbb{C}$.

Well Known Facts

$$p(T - \lambda) < \infty \implies T$$
 has SVEP at λ

$$q(T - \lambda) < \infty \implies T^*$$
 has SVEP at λ

It is well known that if $T-\lambda$ is semi-Fredholm, then these implications are equivalent.

Let (A, B) be a solution of the system of operator equations

$$ABA = A^2$$
 and $BAB = B^2$. (1.1)

Let (A, B) be a solution of the system of operator equations

$$ABA = A^2 \text{ and } BAB = B^2.$$
 (1.1)

[1964, Ivan Vidav]

A and B are self-adjoint operators satisfying the operator equations (1.1) if and only if $A = PP^*$ and $B = P^*P$ for some idempotent operator P.

[2006, C. Schmoeger]

The common spectral properties of the operators *A* and *B* satisfying the operator equations (1.1).

[2006, C. Schmoeger]

The common spectral properties of the operators *A* and *B* satisfying the operator equations (1.1).

[2011, B.P. Duggal]

It is possible to relate the several spectrums, the single-valued extension property and Bishop's property (β) of A and B.

Note.

(1) If
$$\lambda \neq 0$$
, then
$$N(A - \lambda I) = N(AB - \lambda I) = A(N(B - \lambda I)),$$

$$N(B - \lambda I) = N(BA - \lambda I) = B(N(A - \lambda I)),$$

Note.

(1) If
$$\lambda \neq 0$$
, then
$$N(A - \lambda I) = N(AB - \lambda I) = A(N(B - \lambda I)),$$

$$N(B - \lambda I) = N(BA - \lambda I) = B(N(A - \lambda I)), \text{ and}$$

$$\alpha(A - \lambda I) = \alpha(AB - \lambda I) = \alpha(BA - \lambda I) = \alpha(B - \lambda I).$$

Note.

(1) If
$$\lambda \neq 0$$
, then
$$N(A - \lambda I) = N(AB - \lambda I) = A(N(B - \lambda I)),$$

$$N(B - \lambda I) = N(BA - \lambda I) = B(N(A - \lambda I)), \text{ and}$$

$$\alpha(A - \lambda I) = \alpha(AB - \lambda I) = \alpha(BA - \lambda I) = \alpha(B - \lambda I).$$
 Moreover, if $\lambda \neq 0$, then
$$p(A - \lambda I) = p(AB - \lambda I) = p(BA - \lambda I) = p(B - \lambda I) \text{ and}$$

 $g(A - \lambda I) = g(AB - \lambda I) = g(BA - \lambda) = g(B - \lambda I)$

(2)
$$\sigma_X(A) = \sigma_X(AB) = \sigma_X(BA) = \sigma_X(B)$$
,

where
$$\sigma_{x} = \sigma$$
, σ_{p} , σ_{a} , σ_{SF+} , σ_{SF-} , σ_{e} , σ_{w} , or σ_{b} .

(2)
$$\sigma_X(A) = \sigma_X(AB) = \sigma_X(BA) = \sigma_X(B),$$

where $\sigma_X = \sigma$, σ_P , σ_A , σ_{SF+} , σ_{SF-} , σ_e , σ_W , or σ_b .

(3) A has SVEP iff AB has SVEP iff BA has SVEP iff B has SVEP.

Q. When A is paranormal(respectively, normal), is AB, BA, or B also a paranormal(respectively, normal) operator?

Q. When A is paranormal(respectively, normal), is AB, BA, or B also a paranormal(respectively, normal) operator?

Definitions

 $T \in \mathcal{B}(\mathcal{H})$ is normal if $T^*T = TT^*$ and T is paranormal if

$$||Tx||^2 \le ||T^2x|| ||x|| \text{ for all } x \in \mathcal{H}.$$

Q. When A is paranormal(respectively, normal), is AB, BA, or B also a paranormal(respectively, normal) operator?

Definitions

 $T \in \mathcal{B}(\mathcal{H})$ is normal if $T^*T = TT^*$ and T is paranormal if

$$||Tx||^2 \le ||T^2x|| ||x||$$
 for all $x \in \mathcal{H}$.

 ${Normal} \subseteq {Paranormal}$

Q. When A is paranormal(respectively, normal), is AB, BA, or B also a paranormal(respectively, normal) operator?

Definitions

 $T \in B(\mathcal{H})$ is normal if $T^*T = TT^*$ and T is paranormal if

$$||Tx||^2 \le ||T^2x|| ||x|| \text{ for all } x \in \mathcal{H}.$$

 ${Normal } \subseteq {Paranormal } \subseteq {Polynomial roots of paranormal operators }$

A. No, it isn't.

A. No, it isn't.

Example 1

let
$$P = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}$$
 and $Q = \begin{pmatrix} I & 0 \\ I & 0 \end{pmatrix}$ in $B(\mathcal{H} \oplus \mathcal{H})$. Then $P^2 = P$ and $Q^2 = Q$. If $A := PQ$ and $B := QP$, then (A, B) is a solution of the operator equations (1.1). Since $B^* = \begin{pmatrix} I & I \\ 0 & 0 \end{pmatrix}$, a straightforward calculation shows that

A. No, it isn't.

Example 1

let $P = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}$ and $Q = \begin{pmatrix} I & 0 \\ I & 0 \end{pmatrix}$ in $B(\mathcal{H} \oplus \mathcal{H})$. Then $P^2 = P$ and $Q^2 = Q$. If A := PQ and B := QP, then (A, B) is a solution of the operator equations (1.1). Since $B^* = \begin{pmatrix} I & I \\ 0 & 0 \end{pmatrix}$, a straightforward calculation shows that

$$B^{2*}B^2 - 2\lambda B^*B + \lambda^2 I = \begin{pmatrix} (2 - 4\lambda + \lambda^2)I & 0\\ 0 & \lambda^2 I \end{pmatrix},$$

Example 1

But, $(2-4\lambda+\lambda^2)I$ is not a positive operator for $\lambda=1$, hence we obtain that for some $\lambda>0$,

Example 1

But, $(2 - 4\lambda + \lambda^2)I$ is not a positive operator for $\lambda = 1$, hence we obtain that for some $\lambda > 0$,

$$B^{2*}B^2-2\lambda B^*B+\lambda^2\ngeq 0.$$

Example 1

But, $(2-4\lambda+\lambda^2)I$ is not a positive operator for $\lambda=1$, hence we obtain that for some $\lambda>0$,

$$B^{2*}B^2 - 2\lambda B^*B + \lambda^2 \ngeq 0.$$

Therefore *B* is neither paranormal nor normal. On the other hand, *A* is normal, so that it is a paranormal operator.

Example 2

If $P = \begin{pmatrix} I & 2I \\ 0 & 0 \end{pmatrix}$ and $Q = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}$ are in $B(\mathcal{H} \oplus \mathcal{H})$, then both P and Q are idempotent operators. Also, A := PQ and B := QP satisfy the operator equations (1.1). Since $B^*A^* = \begin{pmatrix} I & 0 \\ 2I & 0 \end{pmatrix}$, a straightforward calculation shows that

Example 2

If $P = \begin{pmatrix} I & 2I \\ 0 & 0 \end{pmatrix}$ and $Q = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}$ are in $B(\mathcal{H} \oplus \mathcal{H})$, then both P and Q are idempotent operators. Also, A := PQ and B := QP satisfy the operator equations (1.1). Since $B^*A^* = \begin{pmatrix} I & 0 \\ 2I & 0 \end{pmatrix}$, a straightforward calculation shows that

$$(AB)^{2*}(AB)^{2}-2\lambda(AB)^{*}(AB)+\lambda^{2}I = \begin{pmatrix} (1-2\lambda+\lambda^{2})I & (2-4\lambda)I \\ (2-4\lambda)I & (4-8\lambda+\lambda^{2})I \end{pmatrix}$$

Answer!

Example 2

If $P = \begin{pmatrix} I & 2I \\ 0 & 0 \end{pmatrix}$ and $Q = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}$ are in $B(\mathcal{H} \oplus \mathcal{H})$, then both P and Q are idempotent operators. Also, A := PQ and B := QP satisfy the operator equations (1.1). Since $B^*A^* = \begin{pmatrix} I & 0 \\ 2I & 0 \end{pmatrix}$, a straightforward calculation shows that

$$(AB)^{2*}(AB)^{2}-2\lambda(AB)^{*}(AB)+\lambda^{2}I = \begin{pmatrix} (1-2\lambda+\lambda^{2})I & (2-4\lambda)I \\ (2-4\lambda)I & (4-8\lambda+\lambda^{2})I \end{pmatrix}$$

However, $(4 - 8\lambda + \lambda^2)I$ is not a positive operator for $\lambda = 1$, hence AB is neither paranormal nor normal. On the other hand, A is normal, so that it is a paranormal operator.

Let a pair (A, B) denote the solution of the operator equations (1.1) throughout this talk.

Let a pair (A, B) denote the solution of the operator equations (1.1) throughout this talk.

Q. Suppose *A* is paranormal. How can the operators *AB*, *BA*, or *B* be paranormal or normal?

Theorem

Let A be a paranormal operator on \mathcal{H} and N(A) = N(AB).

Theorem

Let A be a paranormal operator on \mathcal{H} and N(A) = N(AB).

(1) If dim $\mathcal{H}<\infty$, then AB is a normal operator.

Theorem

Let A be a paranormal operator on \mathcal{H} and N(A) = N(AB).

- (1) If dim $\mathcal{H} < \infty$, then AB is a normal operator.
- (2) If dim $\mathcal{H} < \infty$ and $N(A \lambda) = N(B \lambda)$ for each $\lambda \in \mathbb{C}$, then all of A, AB, BA, and B are normal operators.

Given $T \in B(\mathcal{H})$ and $S \in B(\mathcal{K})$ for Hilbert spaces \mathcal{H} and \mathcal{K} , the commutator $C(S,T) \in B(B(\mathcal{H},\mathcal{K}))$ is the mapping defined by

$$C(S, T)(A) := SA - AT$$
 for all $A \in B(\mathcal{H}, \mathcal{K})$.

Given $T \in B(\mathcal{H})$ and $S \in B(\mathcal{K})$ for Hilbert spaces \mathcal{H} and \mathcal{K} , the commutator $C(S,T) \in B(B(\mathcal{H},\mathcal{K}))$ is the mapping defined by

$$C(S, T)(A) := SA - AT$$
 for all $A \in B(\mathcal{H}, \mathcal{K})$.

The iterates $C(S, T)^n$ of the commutator are defined by $C(S, T)^0(A) := A$ and

$$C(S,T)^{n}(A) := C(S,T)(C(S,T)^{n-1}(A))$$

for all $A \in B(\mathcal{H}, \mathcal{K})$ and $n \in \mathbb{N}$; they are often called the higher order commutators.

There is the following binomial identity. It states that

$$C(S,T)^{n}(A) = \sum_{k=0}^{n} {n \choose k} (-1)^{k} S^{n-k} A T^{k},$$

which is valid for all $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ and all $n \in \mathbb{N} \cup \{0\}$.

Corollary

Let *A* be paranormal with N(A) = N(AB). If dim $\mathcal{H} < \infty$ and α is a real number, then the following statements hold :

Corollary

Let *A* be paranormal with N(A) = N(AB). If dim $\mathcal{H} < \infty$ and α is a real number, then the following statements hold :

(1) $\alpha AB + (1 - \alpha)A$ is a solution X of the operator equations $C(A, X)^n(A^*) = 0$ for all $n \in \mathbb{N}$.

Corollary

Let *A* be paranormal with N(A) = N(AB). If dim $\mathcal{H} < \infty$ and α is a real number, then the following statements hold :

- (1) $\alpha AB + (1 \alpha)A$ is a solution X of the operator equations $C(A, X)^n(A^*) = 0$ for all $n \in \mathbb{N}$.
- (2) $\sigma_A(A^*x) \subseteq \sigma_{\alpha AB+(1-\alpha)A}(x)$ for all $x \in \mathcal{H}$.

Corollary

Let *A* be paranormal with N(A) = N(AB). If dim $\mathcal{H} < \infty$ and α is a real number, then the following statements hold :

- (1) $\alpha AB + (1 \alpha)A$ is a solution X of the operator equations $C(A, X)^n(A^*) = 0$ for all $n \in \mathbb{N}$.
- (2) $\sigma_A(A^*x) \subseteq \sigma_{\alpha AB+(1-\alpha)A}(x)$ for all $x \in \mathcal{H}$.
- (3) $A^*\mathcal{H}_{\alpha AB+(1-\alpha)A}(F) \subseteq \mathcal{H}_A(F)$ for every set F in \mathbb{C} .

It is well known that every quasinilpotent paranormal operator is a zero operator.

It is well known that every quasinilpotent paranormal operator is a zero operator.

Theorem

Let A be a paranormal operator and $\sigma(A) = \{\lambda\}$. Then the following statements hold.

It is well known that every quasinilpotent paranormal operator is a zero operator.

Theorem

Let A be a paranormal operator and $\sigma(A) = \{\lambda\}$. Then the following statements hold.

(1) If
$$\lambda = 0$$
, then $B^2 = 0$.

It is well known that every quasinilpotent paranormal operator is a zero operator.

Theorem

Let A be a paranormal operator and $\sigma(A) = \{\lambda\}$. Then the following statements hold.

(1) If
$$\lambda = 0$$
, then $B^2 = 0$.

(2) If
$$\lambda \neq 0$$
, then $\lambda = 1$ and $A = B = I$.

Remark

Let A be a paranormal operator. Then we have the following.

Remark

Let A be a paranormal operator. Then we have the following.

(1) If A is quasinilpotent, then AB, BA, and B are nilpotent.

Remark

Let A be a paranormal operator. Then we have the following.

- (1) If A is quasinilpotent, then AB, BA, and B are nilpotent.
- (2) If A I is quasinilpotent, then B is the identity operator, that is, $AB \lambda$, $BA \lambda$, and $B \lambda$ are invertible for all $\lambda \in \mathbb{C} \setminus \{1\}$.

Remark

Let A be a paranormal operator. Then we have the following.

- (1) If A is quasinilpotent, then AB, BA, and B are nilpotent.
- (2) If A-I is quasinilpotent, then B is the identity operator, that is, $AB-\lambda$, $BA-\lambda$, and $B-\lambda$ are invertible for all $\lambda \in \mathbb{C} \setminus \{1\}$.

Corollary

If *A* is a paranormal operator, then iso $\sigma(T) \subseteq \{0, 1\}$ where $T \in \{A, AB, BA, B\}$.

[2006, Uchiyama]

If T is a paranormal operator and λ_0 is an isolated point of $\sigma(T)$, then the Riesz idempotent $E_{\lambda_0}(T) := \frac{1}{2\pi i} \int_{\partial D} (\lambda - T)^{-1} d\lambda$, where D is the closed disk of center λ_0 which contains no other points of $\sigma(T)$, satisfies

$$R(E_{\lambda_0}(T)) = N(T - \lambda_0).$$

Here, if $\lambda_0 \neq 0$, then $E_{\lambda_0}(T)$ is self-adjoint and $N(T - \lambda_0)$ reduces T.

Lemma 1

If A is paranormal and λ_0 is a nonzero isolated point of $\sigma(AB)$,

Lemma 1

If A is paranormal and λ_0 is a nonzero isolated point of $\sigma(AB)$, then for the Riesz idempotent $E_{\lambda_0}(A)$ with respect to λ_0 , we have that

$$R(E_{\lambda_0}(A)) = N(AB - \lambda_0) = N(A^*B^* - \overline{\lambda_0}).$$

We denote the set $\mathfrak C$ by the collection of every pair (A,B) of operators as the following:

We denote the set $\mathfrak C$ by the collection of every pair (A,B) of operators as the following:

$$\mathfrak{C}:=\{(A,B): A \text{ and } B \text{ are solutions of the operator equations (1.1) with } N(A-\lambda)=N(B-\lambda) \text{ for } \lambda\neq 0\}.$$

We denote the set $\mathfrak C$ by the collection of every pair (A,B) of operators as the following:

 $\mathfrak{C}:=\{(A,B): A \text{ and } B \text{ are solutions of the operator equations (1.1) with } N(A-\lambda)=N(B-\lambda) \text{ for } \lambda\neq 0\}.$

Lemma 2

Suppose that $(A, B) \in \mathfrak{C}$ and A is paranormal. If $\lambda_0 \in \text{iso } \sigma(BA) \setminus \{0\}$, then for the Riesz idempotent $E_{\lambda_0}(A)$ with respect to λ_0 , we have that $R(E_{\lambda_0}(A)) = N(BA - \lambda_0) = N(A^*B^* - \overline{\lambda_0})$.

Theorem

Let $(A, B) \in \mathfrak{C}$ and A be a paranormal operator.

Theorem

Let $(A, B) \in \mathfrak{C}$ and A be a paranormal operator.

(1) If λ_0 is a nonzero isolated point of $\sigma(BA)$, then the range of $BA - \lambda_0$ is closed.

Theorem

Let $(A, B) \in \mathfrak{C}$ and A be a paranormal operator.

- (1) If λ_0 is a nonzero isolated point of $\sigma(BA)$, then the range of $BA \lambda_0$ is closed.
- (2) If B^* is injective and $\lambda_0 \in \text{iso } \sigma(T) \setminus \{0\}$, then $N(T \lambda_0)$ reduces T, where $T \in \{AB, B\}$.

[Djor] S. Djordjević, I.H. Jeon and E. Ko, *Weyl's theoem throughout local spectral theory,* Glasgow Math. J. **44** (2002), 323–327.

It was shown by [Djor, Lemma 1] that for every $\lambda \in \pi_{00}(T)$, $\mathcal{H}_T(\{\lambda\})$ is finite dimensional if and only if $R(T-\lambda)$ is closed. Furthermore we can easily prove that

[Djor] S. Djordjević, I.H. Jeon and E. Ko, *Weyl's theoem throughout local spectral theory,* Glasgow Math. J. **44** (2002), 323–327.

It was shown by [Djor, Lemma 1] that for every $\lambda \in \pi_{00}(T)$, $\mathcal{H}_T(\{\lambda\})$ is finite dimensional if and only if $R(T-\lambda)$ is closed. Furthermore we can easily prove that

$$\pi_{00}(A) \setminus \{0\} = \pi_{00}(AB) \setminus \{0\} = \pi_{00}(BA) \setminus \{0\} = \pi_{00}(B) \setminus \{0\}.$$

[Djor] S. Djordjević, I.H. Jeon and E. Ko, *Weyl's theoem throughout local spectral theory,* Glasgow Math. J. **44** (2002), 323–327.

It was shown by [Djor, Lemma 1] that for every $\lambda \in \pi_{00}(T)$, $\mathcal{H}_T(\{\lambda\})$ is finite dimensional if and only if $R(T-\lambda)$ is closed. Furthermore we can easily prove that

$$\pi_{00}(A) \setminus \{0\} = \pi_{00}(AB) \setminus \{0\} = \pi_{00}(BA) \setminus \{0\} = \pi_{00}(B) \setminus \{0\}.$$

Corollary

Let $(A, B) \in \mathfrak{C}$ and A be a paranormal operator. If $\lambda_0 \in \pi_{00}(BA) \setminus \{0\}$, then $\mathcal{H}_{BA}(\{\lambda_0\})$ is finite dimensional.

Remark

Let $(A,B) \in \mathfrak{C}$ and one of A, BA, AB, or B be paranormal. If λ_0 is a nonzero isolated point in the spectrum of one of them, then all of the ranges of $A-\lambda_0$, $BA-\lambda_0$, $AB-\lambda_0$, and $B-\lambda_0$ are closed. Moreover, if λ_0 is a nonzero isolated eigenvalue of the spectrum of one of them with finite multiplicity, then all of the spectral manifolds $\mathcal{H}_A(\{\lambda_0\})$, $\mathcal{H}_{AB}(\{\lambda_0\})$, $\mathcal{H}_{BA}(\{\lambda_0\})$, and $\mathcal{H}_B(\{\lambda_0\})$ are finite dimensional.

R.E. Curto and Y.M. Han, *Generalized Browder's and Weyl's theorems for Banach space operators*, J. Math. Anal. Appl. **336** (2007), 1424–1442.

It is well known that every polynomial roots of paranormal operators satisfy generalized Weyl's theorem.

R.E. Curto and Y.M. Han, *Generalized Browder's and Weyl's theorems for Banach space operators*, J. Math. Anal. Appl. **336** (2007), 1424–1442.

It is well known that every polynomial roots of paranormal operators satisfy generalized Weyl's theorem.

Now, we would like to show that if A is paranormal, then Weyl's theorem holds for T, where $T \in \{AB, BA, B\}$. More generally, we prove that if A or A^* is a polynomial root of paranormal operators, then generalized Weyl's theorem holds for f(T) for $f \in H(\sigma(T))$, where $T \in \{AB, BA, B\}$.

B-Fredholm Operators

Definitions [2001, M. Berkani]

Let $T \in B(\mathcal{H})$.

• For a nonnegative integer n define T_n to be the restriction of T to $R(T^n)$ viewed as a map from $R(T^n)$ into $R(T^n)$ (in particular $T_0 = T$).

B-Fredholm Operators

Definitions [2001, M. Berkani]

Let $T \in B(\mathcal{H})$.

- For a nonnegative integer n define T_n to be the restriction of T to $R(T^n)$ viewed as a map from $R(T^n)$ into $R(T^n)$ (in particular $T_0 = T$).
- T is called upper (resp., lower) semi-B-Fredholm if for some integer n the range R(Tⁿ) is closed and T_n is upper (resp., lower) semi-Fredholm.
- T is called semi-B-Fredholm if it is upper or lower semi-B-Fredholm.

B-Fredholm Operators

Definitions [2001, M. Berkani]

Let $T \in B(\mathcal{H})$.

- For a nonnegative integer n define T_n to be the restriction of T to $R(T^n)$ viewed as a map from $R(T^n)$ into $R(T^n)$ (in particular $T_0 = T$).
- T is called upper (resp., lower) semi-B-Fredholm if for some integer n the range R(Tⁿ) is closed and T_n is upper (resp., lower) semi-Fredholm.
- T is called semi-B-Fredholm if it is upper or lower semi-B-Fredholm.
- T is called **B**-Fredholm if T_n is Fredholm.
- T is called B-Weyl if it is B-Fredholm with index 0.

Well Known Facts

[Berk, Theorem 2.7] $T \in B(\mathcal{H})$ is *B*-Fredholm if and only if

 $T = T_1 \oplus T_2$, where T_1 is Fredholm and T_2 is nilpotent.

[Berk] M. Berkani and M. Sarih, *On semi B-Fredholm operators*, Glasgow Math. J. **43** (2001), no. 3, 457–465.

Notations

Let
$$T \in B(\mathcal{H})$$
.

$$\sigma_{BF}(T) := \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not } B\text{-Fredholm} \}$$

$$\sigma_{BW}(T) := \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not } B\text{-Weyl} \}$$

$$\pi_0(T) := \{ \lambda \in \mathsf{iso}\sigma(T) : \alpha(T) > 0 \}$$

Concepts of Generalized Weyl type theorems

Definitions [2003, Berkani and Koliha]

Generalized Weyl's theorem holds for T, in symbol (gW), if

$$\sigma(T) \setminus \sigma_{BW}(T) = \pi_0(T).$$

g-Weyl's theorem \implies Weyl's theorem

Lemma

We have the following properties:

Lemma

We have the following properties:

(1)
$$\pi_0(A) = \pi_0(AB) = \pi_0(BA) = \pi_0(B)$$
.

Lemma

We have the following properties:

(1)
$$\pi_0(A) = \pi_0(AB) = \pi_0(BA) = \pi_0(B)$$
.

(2) *A* is isoloid if and only if *AB* is isoloid if and only if *BA* is isoloid if and only if *B* is isoloid.

Lemma

We have the following properties:

- (1) $\pi_0(A) = \pi_0(AB) = \pi_0(BA) = \pi_0(B)$.
- (2) *A* is isoloid if and only if *AB* is isoloid if and only if *BA* is isoloid if and only if *B* is isoloid.

Theorem

Suppose that A or A^* is a polynomial root of paranormal operators. Then $f(T) \in gW$ for each $f \in H(\sigma(T))$, where $T \in \{AB, BA, B\}$.

Corollary

Suppose that $(A, B) \in \mathfrak{C}$ and A is a compact paranormal operator. Then we have that

$$BA = \begin{pmatrix} I & 0 \\ 0 & Q \end{pmatrix}$$
 on $N(BA - I) \oplus N(BA - I)^{\perp}$,

where Q is quasinilpotent.

Thank You!