Bost-Connes system for local fields of characteristic zero

Takuya Takeishi

Univ. Tokyo

9 August, 2014

K:number field

BC-system for K is a C^* -dynamical system (A_K, σ_t) with an action of $G_K^{\mathrm{ab}} = G(K^{\mathrm{ab}}/K)$.

K:number field

BC-system for K is a C^* -dynamical system (A_K, σ_t) with an action of $G_K^{\mathrm{ab}} = G(K^{\mathrm{ab}}/K)$.

• $A_K = C(Y_K) \rtimes I_K$ $Y_K = \hat{\mathcal{O}}_K \times_{\hat{\mathcal{O}}^*} G_K^{\mathrm{ab}}$ I_K :ideal semigroup of K.

K:number field

BC-system for K is a C^* -dynamical system (A_K, σ_t) with an action of $G_K^{\mathrm{ab}} = G(K^{\mathrm{ab}}/K)$.

- $A_K = C(Y_K) \rtimes I_K$ $Y_K = \hat{\mathcal{O}}_K \times_{\hat{\mathcal{O}}^*} G_K^{\mathrm{ab}}$ I_K :ideal semigroup of K.
- \mathbb{R} acts on A_K as $f \mapsto f$ on $C(Y_K)$, $\mu_{\mathfrak{a}} \mapsto N(\mathfrak{a})^{it}\mu_{\mathfrak{a}}$ for $t \in \mathbb{R}$.

K:number field

BC-system for K is a C^* -dynamical system (A_K, σ_t) with an action of $G_K^{\mathrm{ab}} = G(K^{\mathrm{ab}}/K)$.

- $A_K = C(Y_K) \rtimes I_K$ $Y_K = \hat{\mathcal{O}}_K \times_{\hat{\mathcal{O}}^*} G_K^{\mathrm{ab}}$ I_K :ideal semigroup of K.
- \mathbb{R} acts on A_K as $f\mapsto f$ on $C(Y_K)$, $\mu_{\mathfrak{a}}\mapsto \mathcal{N}(\mathfrak{a})^{it}\mu_{\mathfrak{a}}$ for $t\in\mathbb{R}$.
- G_K acts by right multiplication on Y_K and trivially on I_K .

Analytic Features (Laca-Larsen-Neshveyev '09)

Analytic Features (Laca-Larsen-Neshveyev '09)

• Unique KMS for $\beta \leq 1$.

Analytic Features (Laca-Larsen-Neshveyev '09)

- Unique KMS for $\beta \leq 1$.
- One-to-one correspondence between G_K^{ab} and extremal KMS for $1<\beta\leq\infty.$

Analytic Features (Laca-Larsen-Neshveyev '09)

- Unique KMS for $\beta \leq 1$.
- One-to-one correspondence between G_K^{ab} and extremal KMS for $1<\beta\leq\infty.$
- Partition function = ζ_K .

Arithmetic Features (Yalkinoglu '13)

Arithmetic Features (Yalkinoglu '13)

 A_K has a K-subalgebra A_K^{arith} which satisfies the following:

Arithmetic Features (Yalkinoglu '13)

 A_K has a K-subalgebra A_K^{arith} which satisfies the following:

• $\varphi(A_K^{\mathrm{arith}}) = K^{\mathrm{ab}}$ for any extremal KMS $_{\infty}$ -state φ .

Arithmetic Features (Yalkinoglu '13)

 A_K has a K-subalgebra A_K^{arith} which satisfies the following:

- $\varphi(A_K^{\mathrm{arith}}) = K^{\mathrm{ab}}$ for any extremal KMS $_{\infty}$ -state φ .
- $\varphi(ga) = \varphi(a)^g$ for any extremal KMS $_{\infty}$ -state φ , $a \in A_K^{\mathrm{arith}}$ and $g \in G_K^{\mathrm{ab}}$.

Arithmetic Features (Yalkinoglu '13)

 A_K has a K-subalgebra A_K^{arith} which satisfies the following:

- $\varphi(A_K^{\mathrm{arith}}) = K^{\mathrm{ab}}$ for any extremal KMS $_{\infty}$ -state φ .
- $\varphi(ga) = \varphi(a)^g$ for any extremal KMS $_{\infty}$ -state φ , $a \in A_K^{\rm arith}$ and $g \in G_K^{\rm ab}$.
- $A_K^{\text{arith}} \otimes_K \mathbb{C}$ is dense in A_K .

Arithmetic Features (Yalkinoglu '13)

 A_K has a K-subalgebra A_K^{arith} which satisfies the following:

- $\varphi(A_K^{\mathrm{arith}}) = K^{\mathrm{ab}}$ for any extremal KMS $_{\infty}$ -state φ .
- $\varphi(ga) = \varphi(a)^g$ for any extremal KMS $_{\infty}$ -state φ , $a \in A_K^{\rm arith}$ and $g \in G_K^{\rm ab}$.
- $A_K^{\text{arith}} \otimes_K \mathbb{C}$ is dense in A_K .

 $\mathcal{A}_{\mathcal{K}}^{\mathrm{arith}}$ is called an arithmetic subalgebra.

K:non-Archimedean local field of characteristic zero

K:non-Archimedean local field of characteristic zero Let $Y_K = \mathcal{O}_K \times_{\mathcal{O}_K^*} G_K^{\mathrm{ab}}$.

K:non-Archimedean local field of characteristic zero Let $Y_K = \mathcal{O}_K \times_{\mathcal{O}_K^*} G_K^{\mathrm{ab}}$. The semigroup $\mathbb N$ acts on Y_K by $k \cdot ([\rho, g]) = [\rho \pi_K^k, [\pi_K^k]_K^{-1} g]$ for $[\rho, g] \in Y_K$.

K:non-Archimedean local field of characteristic zero Let $Y_K = \mathcal{O}_K \times_{\mathcal{O}_K^*} G_K^{\mathrm{ab}}$. The semigroup $\mathbb N$ acts on Y_K by $k \cdot ([\rho,g]) = [\rho \pi_K^k, [\pi_K^k]_K^{-1}g]$ for $[\rho,g] \in Y_K$. Let $A_K = C(Y_K) \rtimes \mathbb N$.

K:non-Archimedean local field of characteristic zero Let $Y_K = \mathcal{O}_K \times_{\mathcal{O}_K^*} G_K^{\mathrm{ab}}$. The semigroup $\mathbb N$ acts on Y_K by $k \cdot ([\rho,g]) = [\rho \pi_K^k, [\pi_K^k]_K^{-1}g]$ for $[\rho,g] \in Y_K$. Let $A_K = C(Y_K) \rtimes \mathbb N$. $\mathbb R$ acts on A_K by $f \mapsto f$ on $C(Y_K)$, $\mu_n \mapsto q_K^{it} \mu_n$ for $t \in \mathbb R$. $q_K = p^f$, f:inertia degree of $K/\mathbb Q_p$

K:non-Archimedean local field of characteristic zero

Let
$$Y_K = \mathcal{O}_K \times_{\mathcal{O}_K^*} G_K^{ab}$$
.

The semigroup $\mathbb N$ acts on $Y_{\mathcal K}$ by

$$k \cdot ([\rho, g]) = [\rho \pi_K^k, [\pi_K^k]_K^{-1} g]$$

for $[\rho, g] \in Y_K$.

Let
$$A_K = C(Y_K) \times \mathbb{N}$$
.

 $\mathbb R$ acts on $A_{\mathcal K}$ by

$$f \mapsto f$$
 on $C(Y_K)$,

$$\mu_n \mapsto q_K^{it} \mu_n$$

for $t \in \mathbb{R}$. $q_K = p^f$, f:inertia degree of K/\mathbb{Q}_p .

Definition 1 (T '14)

 (A_K, σ_t) is called the Bost-Connes system for K.

```
Theorem 1 (T '14)
```

Theorem 1 (T '14)

1 For $0 < \beta \leq \infty$, there is one-to-one correspondence between extremal KMS_{β} -states of (A_K, σ_t) and G_K^{ab} .

The partition function is $(1 - q_K^{-\beta})^{-1}$

Theorem 1 (T '14)

- **1** For $0 < \beta \leq \infty$, there is one-to-one correspondence between extremal KMS_{β} -states of (A_K, σ_t) and G_K^{ab} .

 The partition function is $(1 q_K^{-\beta})^{-1}$
- **2** There is an arithmetic subalgebra of (A_K, σ_t) .

Theorem 1 (T '14)

- **9** For $0 < \beta \leq \infty$, there is one-to-one correspondence between extremal KMS_{β} -states of (A_K, σ_t) and G_K^{ab} .

 The partition function is $(1 q_K^{-\beta})^{-1}$
- **2** There is an arithmetic subalgebra of (A_K, σ_t) .

In particular, the phase transition does not occur in the local case.

Theorem 1 (T '14)

- **9** For $0 < \beta \leq \infty$, there is one-to-one correspondence between extremal KMS_{β} -states of (A_K, σ_t) and G_K^{ab} .

 The partition function is $(1 q_K^{-\beta})^{-1}$
- **2** There is an arithmetic subalgebra of (A_K, σ_t) .

In particular, the phase transition does not occur in the local case.

K: number field, \mathfrak{p} :finite prime of K

 $K_{\mathfrak{p}}$: localization of K at \mathfrak{p}

K: number field, p:finite prime of K

 $K_{\mathfrak{p}}$: localization of K at \mathfrak{p}

We have " \mathbb{R} -equivariant" $(A_K, A_{K_{\mathfrak{p}}})$ -correspondence $E_{\mathfrak{p}}$

K: number field, \mathfrak{p} :finite prime of K

 $K_{\mathfrak{p}}$: localization of K at \mathfrak{p}

We have " \mathbb{R} -equivariant" $(A_K, A_{K_{\mathfrak{p}}})$ -correspondence $E_{\mathfrak{p}}$

 \mathbb{R} -equivariance means that there is one-parameter group of isometries U_t on $\mathcal{E}_\mathfrak{p}$ such that

- $U_t a \xi = \sigma_t(a) U_t \xi$
- $\langle U_t \xi, U_t \eta \rangle = \sigma_t(\langle \xi, \eta \rangle)$

for any $a \in A_K$, $\xi, \eta \in E_{\mathfrak{p}}$ and $t \in \mathbb{R}$.

$$Y_{\mathcal{K}} = \hat{\mathcal{O}}_{\mathcal{K}} \times_{\hat{\mathcal{O}}_{\mathcal{K}}^*} G_{\mathcal{K}}^{\mathrm{ab}} \subset X_{\mathcal{K}} = \mathbb{A}_{\mathcal{K},f} \times_{\hat{\mathcal{O}}_{\mathcal{K}}^*} G_{\mathcal{K}}^{\mathrm{ab}}$$

$$\begin{split} Y_{\mathcal{K}} &= \hat{\mathcal{O}}_{\mathcal{K}} \times_{\hat{\mathcal{O}}_{\mathcal{K}}^*} G_{\mathcal{K}}^{\mathrm{ab}} \subset X_{\mathcal{K}} = \mathbb{A}_{\mathcal{K},f} \times_{\hat{\mathcal{O}}_{\mathcal{K}}^*} G_{\mathcal{K}}^{\mathrm{ab}} \\ Y_{\mathfrak{p}} &= \mathcal{O}_{\mathfrak{p}} \times_{\mathcal{O}_{\mathfrak{p}}^*} G_{\mathcal{K}}^{\mathrm{ab}} \subset X_{\mathfrak{p}} = \mathcal{K}_{\mathfrak{p}} \times_{\mathcal{O}_{\mathfrak{p}}^*} G_{\mathcal{K}}^{\mathrm{ab}} \end{split}$$

$$\begin{array}{l} Y_{\mathcal{K}} = \hat{\mathcal{O}}_{\mathcal{K}} \times_{\hat{\mathcal{O}}_{\mathcal{K}}^*} G_{\mathcal{K}}^{\mathrm{ab}} \subset X_{\mathcal{K}} = \mathbb{A}_{\mathcal{K},f} \times_{\hat{\mathcal{O}}_{\mathcal{K}}^*} G_{\mathcal{K}}^{\mathrm{ab}} \\ Y_{\mathfrak{p}} = \mathcal{O}_{\mathfrak{p}} \times_{\mathcal{O}_{\mathfrak{p}}^*} G_{\mathcal{K}}^{\mathrm{ab}} \subset X_{\mathfrak{p}} = \mathcal{K}_{\mathfrak{p}} \times_{\mathcal{O}_{\mathfrak{p}}^*} G_{\mathcal{K}}^{\mathrm{ab}} \\ A_{\mathcal{K}} = C(Y_{\mathcal{K}}) \rtimes I_{\mathcal{K}}, \ A_{\mathfrak{p}} = C(Y_{\mathfrak{p}}) \rtimes \mathbb{N} \end{array}$$

$$\begin{split} Y_{\mathcal{K}} &= \hat{\mathcal{O}}_{\mathcal{K}} \times_{\hat{\mathcal{O}}_{\mathcal{K}}^*} G_{\mathcal{K}}^{\mathrm{ab}} \subset X_{\mathcal{K}} = \mathbb{A}_{\mathcal{K},f} \times_{\hat{\mathcal{O}}_{\mathcal{K}}^*} G_{\mathcal{K}}^{\mathrm{ab}} \\ Y_{\mathfrak{p}} &= \mathcal{O}_{\mathfrak{p}} \times_{\mathcal{O}_{\mathfrak{p}}^*} G_{\mathcal{K}}^{\mathrm{ab}} \subset X_{\mathfrak{p}} = K_{\mathfrak{p}} \times_{\mathcal{O}_{\mathfrak{p}}^*} G_{\mathcal{K}}^{\mathrm{ab}} \\ A_{\mathcal{K}} &= C(Y_{\mathcal{K}}) \rtimes I_{\mathcal{K}}, \ A_{\mathfrak{p}} = C(Y_{\mathfrak{p}}) \rtimes \mathbb{N} \\ \tilde{A}_{\mathcal{K}} &= C_{0}(X_{\mathcal{K}}) \rtimes J_{\mathcal{K}}, \ \tilde{A}_{\mathfrak{p}} = C_{0}(X_{\mathfrak{p}}) \rtimes \mathbb{Z} \end{split}$$

$$\begin{split} Y_{K} &= \hat{\mathcal{O}}_{K} \times_{\hat{\mathcal{O}}_{K}^{*}} G_{K}^{\mathrm{ab}} \subset X_{K} = \mathbb{A}_{K,f} \times_{\hat{\mathcal{O}}_{K}^{*}} G_{K}^{\mathrm{ab}} \\ Y_{\mathfrak{p}} &= \mathcal{O}_{\mathfrak{p}} \times_{\mathcal{O}_{\mathfrak{p}}^{*}} G_{K}^{\mathrm{ab}} \subset X_{\mathfrak{p}} = K_{\mathfrak{p}} \times_{\mathcal{O}_{\mathfrak{p}}^{*}} G_{K}^{\mathrm{ab}} \\ A_{K} &= C(Y_{K}) \rtimes I_{K}, \ A_{\mathfrak{p}} = C(Y_{\mathfrak{p}}) \rtimes \mathbb{N} \\ \tilde{A}_{K} &= C_{0}(X_{K}) \rtimes J_{K}, \ \tilde{A}_{\mathfrak{p}} = C_{0}(X_{\mathfrak{p}}) \rtimes \mathbb{Z} \\ 1_{Y_{K}} \tilde{A}_{K} 1_{Y_{K}} = A_{K}, \ 1_{Y_{\mathfrak{p}}} \tilde{A}_{\mathfrak{p}} 1_{Y_{\mathfrak{p}}} = A_{\mathfrak{p}} \end{split}$$

$$\begin{array}{l} Y_{K} = \hat{\mathcal{O}}_{K} \times_{\hat{\mathcal{O}}_{K}^{*}} G_{K}^{\mathrm{ab}} \subset X_{K} = \mathbb{A}_{K,f} \times_{\hat{\mathcal{O}}_{K}^{*}} G_{K}^{\mathrm{ab}} \\ Y_{\mathfrak{p}} = \mathcal{O}_{\mathfrak{p}} \times_{\mathcal{O}_{\mathfrak{p}}^{*}} G_{K}^{\mathrm{ab}} \subset X_{\mathfrak{p}} = K_{\mathfrak{p}} \times_{\mathcal{O}_{\mathfrak{p}}^{*}} G_{K}^{\mathrm{ab}} \\ A_{K} = C(Y_{K}) \rtimes I_{K}, \ A_{\mathfrak{p}} = C(Y_{\mathfrak{p}}) \rtimes \mathbb{N} \\ \tilde{A}_{K} = C_{0}(X_{K}) \rtimes J_{K}, \ \tilde{A}_{\mathfrak{p}} = C_{0}(X_{\mathfrak{p}}) \rtimes \mathbb{Z} \\ 1_{Y_{K}} \tilde{A}_{K} 1_{Y_{K}} = A_{K}, \ 1_{Y_{\mathfrak{p}}} \tilde{A}_{\mathfrak{p}} 1_{Y_{\mathfrak{p}}} = A_{\mathfrak{p}} \\ \text{We have } X_{\mathfrak{p}} \hookrightarrow X_{K} \text{ by } \qquad [\rho, g] \mapsto [(\rho, 1), g|_{K}] \end{array}$$

Let $\tilde{E}_{\mathfrak{p}} = C^*(J_K) \otimes_{C^*(\mathbb{Z})} \tilde{A}_{\mathfrak{p}}$ (right Hilbert $\tilde{A}_{\mathfrak{p}}$ -module), where \mathbb{Z} is identified with the subgroup of J_K generated by \mathfrak{p} .

```
Let \tilde{E}_{\mathfrak{p}} = C^*(J_K) \otimes_{C^*(\mathbb{Z})} \tilde{A}_{\mathfrak{p}} (right Hilbert \tilde{A}_{\mathfrak{p}}-module), where \mathbb{Z} is identified with the subgroup of J_K generated by \mathfrak{p}. \tilde{A}_K acts on E_{\mathfrak{p}} by  (fu_{\mathfrak{q}})(u_{\mathfrak{b}} \otimes g) = u_{\mathfrak{a}\mathfrak{b}} \otimes ((\mathfrak{a}\mathfrak{b})^{-1}.f)|_{X_{\mathfrak{p}}}g  for f \in C(X_K), g \in C_0(X_{\mathfrak{p}}) and \mathfrak{a}, \mathfrak{b} \in J_K.
```

```
Let \tilde{E}_{\mathfrak{p}} = C^*(J_K) \otimes_{C^*(\mathbb{Z})} \tilde{A}_{\mathfrak{p}} (right Hilbert \tilde{A}_{\mathfrak{p}}-module), where \mathbb{Z} is identified with the subgroup of J_K generated by \mathfrak{p}. \tilde{A}_K acts on E_{\mathfrak{p}} by  (fu_{\mathfrak{a}})(u_{\mathfrak{b}} \otimes g) = u_{\mathfrak{a}\mathfrak{b}} \otimes ((\mathfrak{a}\mathfrak{b})^{-1}.f)|_{X_{\mathfrak{p}}}g  for f \in C(X_K), g \in C_0(X_{\mathfrak{p}}) and \mathfrak{a}, \mathfrak{b} \in J_K. Define E_{\mathfrak{p}} = 1_{Y_K} \tilde{E}_{\mathfrak{p}} 1_{Y_{\mathfrak{p}}}
```

```
Let \widetilde{E}_{\mathfrak{p}} = C^*(J_K) \otimes_{C^*(\mathbb{Z})} \widetilde{A}_{\mathfrak{p}} (right Hilbert \widetilde{A}_{\mathfrak{p}}-module), where \mathbb{Z} is identified with the subgroup of J_K generated by \mathfrak{p}. \widetilde{A}_K acts on E_{\mathfrak{p}} by (fu_{\mathfrak{a}})(u_{\mathfrak{b}} \otimes g) = u_{\mathfrak{a}\mathfrak{b}} \otimes ((\mathfrak{a}\mathfrak{b})^{-1}.f)|_{X_{\mathfrak{p}}}g for f \in C(X_K), g \in C_0(X_{\mathfrak{p}}) and \mathfrak{a}, \mathfrak{b} \in J_K. Define E_{\mathfrak{p}} = 1_{Y_K}\widetilde{E}_{\mathfrak{p}}1_{Y_{\mathfrak{p}}} One-parameter group of isometries on E_{\mathfrak{p}} is defined by U_t(u_{\mathfrak{q}} \otimes f) = N(\mathfrak{a})^{it}u_{\mathfrak{q}} \otimes f.
```

Thank you for the attention !