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There is a long tradition of enlarging the framework of Classical Differential
Geometry (for sort, CDG), so that singularities and different nonsmooth entities
not to be a trouble, but to be faced in the same way as the smooth stuff. In other
words, it is unfortunate not to be able to use the powerful tools of CDG to face
the preceding phenomena, something that happens also in physics, where many
geometrical models of physical phenomena are not smooth.

Around 1990, A. Maliios, using sheaf–theoretic methods, extended the mech-
anism of the CDG of smooth manifolds to spaces that do not admit the usual
smooth structure. In this new setting called Abstract Differential Geometry (for
sort, ADG) a large number of notions and results of the CDG have already been
extended. What Mallios noticed in his theory of ADG is that calculus, hence
smooth functions, are, in fact, not necessary in developing differential geometry.
Instead, suitable sheaves of algebras of functions on arbitrary topological spaces
can be used. What is essential, in this aspect, is that this theory is applicable to
spaces with singularities, as well as to quantum physics. For instance, “particles”
can be treated as “geometrical objects” without reference to any space in the
usual sense, by just applying the methods of ADG.

In the same spirit, there are also other publications (e.g., the book of J.
Nestruev, Smooth manifolds and observables, Springer 2002), though in a differ-
ent setting, that support the algebraic formalism motivated by physical consid-
erations.

What we shall discuss: We consider differentiability in the setting of
ADG and investigate conditions of uniqueness of differentials. In partic-
ular, we prove that a continuous map between smooth manifolds, which is differ-
entiable in the ADG sense, is also smooth in the usual sense and its differential
coincides to the ordinary one. This makes differentials of maps between mani-
folds unique in both, abstract and classical context. Moreover, the category of
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manifolds becomes a full subcategory of the category of differential triads, where
the latter objects are the key tools of ADG.

We proceed now to some definitions and notation needed in what follows.

The smooth manifolds we deal with are always finite dimensional and 2nd
countable. All algebras are commutative, over the field C of complexes (except if
otherwise is indicated) and have an identity element. The topological spaces are
supposed to be Hausdorff.

Definition 1. Let X be an arbitrary topological space. A differential triad
over X is a triplet δ = (A, ∂,Ω), where A is a sheaf of algebras over X, Ω is
an A−module and ∂ : A → Ω is a Leibniz morphism, i.e., a C−linear sheaf
morphism with the property

∂(αβ) = α∂(β) + β∂(α), ∀ (α, β) ∈ A×X A,

where “×X” means fiber product over X.

There are many examples of differential triads, we refer to the simplest one
corresponding to a smooth manifold.

Example 1. Let X be a smooth manifold. Let C∞
X be the structure sheaf

of germs of smooth C–valued functions on X and Ω1
X be the sheaf of germs of

smooth C–valued 1–forms on X; namely, Ω1
X consists of the smooth sections

of the complexification of the cotangent bundle of X. Furthermore, let dX be
the standard differential from C∞

X to Ω1
X , such that with each C−valued (local)

smooth function f of X one associates its differential, being by definition, a (local
smooth) 1–form of X. Then, the triplet (C∞

X , dX ,Ω
1
X) is a differential triad, which

we shall call smooth differential triad of X.

What are morphisms of differential triads

If δX = (AX , ∂X ,ΩX) is a differential triad over X and f : X → Y is a
continuous map, then the push-out of δX by f , given by

f∗(δX) ≡ (f∗(AX), f∗(∂X), f∗(ΩX))

is a differential triad over Y .

Definition 2. Let δX , δY be differential triads over the topological spaces X
and Y , respectively. A morphism of differential triads f̂ : δX → δY is a triplet
f̂ = (f, fA, fΩ), where

(i) f : X → Y is continuous;
(ii) fA : AY → f∗(AX) is an identity preserving morphism of sheaves of

algebras;
(iii) fΩ : ΩY → f∗(ΩX) is an fA−morphism, i.e., a morphism of sheaves of

additive groups, with the property

fΩ(aw) = fA(a)fΩ(w), ∀ (a, w) ∈ AY ×Y ΩY ;
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(iv) The diagram

AY

fA- f∗(AX)

ΩY

∂Y

?

fΩ
- f∗(ΩX)

f∗(∂X)

?

is commutative.
In the above context, we shall say that a continuous map f : X → Y is

differentiable, if it is completed into a morphism f̂ = (f, fA, fΩ) of differential
triads. Besides, we shall say that fΩ is a differential of f .

If δX , δY , δZ are differential triads over the topological spaces X,Y, Z, respec-
tively, and f̂ = (f, fA, fΩ) : δX → δY , ĝ = (g, gA, gΩ) : δY → δZ are morphisms,
setting

(g ◦ f)A := g∗(fA) ◦ gA and (g ◦ f)Ω := g∗(fΩ) ◦ gΩ
we obtain a morphism

ĝ ◦ f = (g ◦ f, (g ◦ f)A, (g ◦ f)Ω) : δX → δZ .

The differential triads, their morphisms and the composition law defined as before,
form a category, denoted by DT . Note that the identity idδ of a differential triad
δ = (A, ∂,Ω) over X is the triplet (idX , idA, idΩ).

The next example gives the construction of a morphism between differential
triads.

Example 2. Consider the smooth manifolds X and Y and their correspond-
ing smooth differential triads δ∞X = (C∞

X , dX ,Ω
1
X) and δ∞Y = (C∞

Y , dY ,Ω
1
Y ). Let

f : X → Y be a smooth map. Then, for every V ⊆ Y open, set

C∞
Y (V ) ≡ C∞(V,C) and

f∗(C∞
X (V )) := C∞

X (f−1(V )) ≡ C∞(f−1(V ),C).

The map

(1) fAV : C∞
Y (V ) −→ C∞

X (f−1(V )) : α 7−→ α ◦ f

is an identity preserving algebra morphism, while the family (fAV )V is a presheaf
morphism giving rise to an identity preserving algebra sheaf morphism fA : C∞

Y →
C∞
X . On the other hand, the respective tangent map Tf : TX → TY defines the

so–called pull–back of the smooth 1–forms by f

fΩV : Ω1
Y (V ) −→ Ω1

X(f
−1(V )) : ω 7−→ ω ◦ Tf,
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where
(ω ◦ Tf)x(u) = ωf(x)(Txf(u)), x ∈ X, u ∈ TC

x X.

Note that TC
x X is the complexification of the tangent space of X at x and Txf

stands also for the extension of the tangent map Txf on TC
x X. Then fΩV is

an fAV−morphism and the family (fΩV )V is a presheaf morphism yielding an
fA−morphism fΩ : Ω1

Y → f∗(Ω
1
X). If (V, ψ) is a chart of Y with coordinates

(y1, . . . , yn), and ω ∈ Ω1
Y (V ), then there are αi ∈ C∞(V,C), i = 1, . . . , n, with

ω =
∑n

i=1 αi · dY yi. In this case the pull–back of ω by f is given by

(2) fΩV (ω) =
n∑

i=1

(αi ◦ f) · (dY yi ◦ Tf).

The commutativity of the diagram, in Definition 2, is equivalent to the chain rule,
therefore

(f, fA, fΩ) : δ
∞
X → δ∞Y

is a morphism in DT .

Thus, if Man denotes the category of smooth manifolds, the following functor
is defined

F : Man→ DT ,

where F (X), X ∈ Man, is the smooth differential triad δ∞X and F (f), f : X → Y
a smooth map, is the triplet (f, fA, fΩ), as before. It is clear that the functor F
is “faithful”, so that the category Man is embedded in the category DT .

In the abstract setting of differentiability, the following problems arise:
(1) For arbitrary algebra sheaves, the existence of a morphism extending a

map is not assured, even for very simple maps, like e.g., the constant map, and
(2) the uniqueness of a morphism over a fixed map f (the analogue of the

uniqueness of differentials in the classical case) is not assured either.

However, we can prove the following:

Proposition 1. If δI = (AI , ∂I ,ΩI) are differential triads over the spaces
I = X,Y and AY is functional (in the sense that AY is a subsheaf of the sheaf
CY of germs of all continuous C−valued functions on Y ), then every constant map
c : X → Y is differentiable.

Proposition 2. If (f, fA, fΩ) is a morphism in DT , then fΩ (the differential
of f) is uniquely determined by fA on the image Im ∂Y of ∂Y .

Conversely, if ∂X vanishes only on the constant subsheaf X × C ⊆ AX , then
fA is uniquely determined by fΩ.

We have seen that every smooth manifold X gives rise to a differential triad
δ∞X and according to Example 2, every smooth map f : X → Y is completed into
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a morphism f̂ = F (f) = (f, fA, fΩ) of differential triads, i.e., f is differentiable in
the setting of the ADG. So, a natural question now is: Whether a continuous
map f : X → Y (between smooth manifolds) can be differentiable in the abstract
setting, without being smooth in the classical sense. The answer is No!

We prove that differentiability in the abstract setting yields smoothness in
the classical environment and that the abstract differential coincides with the
classical one.

How we achieve this result: We reach to the latter conclusion by applying
“Gelfand theory on commutative non–normed topological algebras”. In fact, a
key tool to the whole process is that every character of a topological Q−algebra
is continuous and that the continuous characters of the algebras of smooth func-
tions are uniquely determined by the point evaluations of the elements of their
domain. We note that a topological Q−algebra is a topological algebra (with
identity) whose the group of invertible elements is open. Take for instance, the
algebra C∞[0, 1] of all (C−valued) smooth functions on the unit interval [0, 1].
We remind that every Banach algebra is a Q−algebra, but C∞[0, 1] is an example
of a Q−algebra, which under its usual topology cannot be Banach.

If Y is a compact manifold, then the algebra of (C−valued) smooth functions
C∞(Y ) is a Q−algebra and every algebra morphism h : C∞(Y ) → C∞(X), X a
smooth manifold, takes the form (1) (as in Example (2)), for a suitable f : X → Y
(between the algebra spectra of C∞(X) and C∞(Y ), respectively). In the case that
the smooth manifold Y is not compact, the nice way that sheaf morphisms localize
does the trick!

More precisely, if X is a smooth manifold and K a compact subset of X,
consider the inductive system {C∞

X (V )}V , V ⊆ X open, with K ⊆ V (where the
connecting maps are the obvious ones) and put

C∞
X (K) := lim−→

K⊆V

C∞
X (V ).

Then, we can prove that:

(i) C∞
X (K) is a Q−algebra, whose spectrum coincides with K.

(ii) For every x ∈ X, the stalk C∞
X,x (of the structure sheaf C∞

X ), under the
inductive limit topology, is a Q−algebra whose the only character is the evaluation
map evx, at x, i.e.,

evx := lim−→
x∈V

evVx : C∞
X,x −→ C, with evVx : C∞

X (V ) −→ C : α 7−→ α(x).

The proof of (i), as well as the proofs of the results that follow are not at all
immediate.
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Theorem 1. Let X, Y be smooth manifolds and let f : X → Y be a
continuous map. If there is an identity preserving morphism of algebra sheaves
fA : C∞

Y → f∗(C∞
X ), then f is smooth and

fAV (α) = α ◦ f, ∀ V ⊆ Y open and ∀ α ∈ C∞
Y (V ).

Using repeatedly (ii) for the stalks C∞
Y,f(x), x ∈ X, we conclude the preced-

ing equality, which, in fact, shows smoothness of f , since α ◦ f = fAV (α) ∈
C∞
X (f−1(V )), for every V ⊆ Y open and every α ∈ C∞

Y (V ).

Theorem 2. Let X, Y be smooth manifolds and δ∞X , δ∞Y their corresponding

smooth differential triads. Let f̂ = (f, fA, fΩ) : δ
∞
X → δ∞Y be a morphism in DT .

Then, f is smooth in the ordinary sense and f̂ = F (f), where F is the faithful
functor between the categories Man and DT .

From Theorem 1 we obtain smoothness of f and that the presheaf morphisms
(fAV )V , V ⊆ Y open, are exactly those of Example 2. So, it remains to show
that for every chart (V, ψ) from the maximal atlas defining the structure of Y ,
each map fΩV , at every element ω ∈ Ω1

Y (V ), has the representation given by the
relation (2) of Example 2. This follows from the commutativity of the diagram:

C∞(V,C)
fAV- C∞(f−1(V ),C)

Ω1
Y (V )

dY V

?

fΩV

- Ω1
X(f

−1(V ))

dXf−1(V )

?

and so the proof is completed.

Now an application of Theorems 1 and 2 gives

Theorem 3. Man is a full subcategory of DT . In other words, when smooth
manifolds X and Y are considered, the sets of morphisms between them in the
categories Man and DT coincide; that is,

HomMan(X,Y ) ∼= HomDT (X,Y ).
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