INTRINSIC ULTRACONTRACTIVITY OF NON-SYMMETRIC
DIFFUSION SEMIGROUPS IN BOUNDED DOMAINS

PANKI KIM* AND RENMING SONG**

ABSTRACT. We extend the concept of intrinsic ultracontractivity to non-symmetric
semigroups and prove the intrinsic ultracontractivity of the Dirichlet semigroups of non-

symmetric second order elliptic operators in bounded Lipschitz domains.

1. INTRODUCTION

The notion of intrinsic ultracontractivity (IU in abbreviation), introduced in [10] for
symmetric semigroups, is a very important concept and has been studied extensively. Al-
though the concept of ultracontractivity has been extended to non-symmetric semigroups,
(see, for instance, [21]), it seems that, up to now, no one has introduced the concept of in-
trinsic ultracontractivity for non-symmetric semigroups. In this paper, we plan to fill this
gap and introduce the notion of intrinsic ultracontractivity for non-symmetric semigroups.
We show that, under natural conditions, the Dirichlet semigroups of non-symmetric sec-
ond order elliptic operators are intrinsic ultracontractive.

In the symmetric case, ultracontractivity and intrinsic ultracontractivity are connected
to logarithmic Sobolev inequalities. The connection between logarithmic Sobolev inequal-
ities and LP to L? bounds of semigroups was first discovered by Gross [12] in 1975. Davies
and Simons [10] adapted Gross’s approach to allow ¢ = co and therefore established the
connection between logarithmic Sobolev inequalities and ultracontractivity. (For an up-
dated survey on the subject of logarithmic Sobolev inequalities and contractive properties
of semigroups, see [3] and [13].) In [4], Banuelos proved the intrinsic ultracontractivity
of killed Schrodinger semigroups on Holder domains of order zero or uniformly Holder
domains of order o € (0,2), using a logarithmic Sobolev inequality characterization. In
[6] and [7], Chen and Song extended the argument of [4] to prove the intrinsic ultracon-
tractivity of the Schrodinger semigroup of killed symmetric stable processes in certain
types of domains.

2000 Mathematics Subject Classification. Primary 60J25; Secondary 47D07, 60J45.
Key words and phrases. semigroups, diffusions, ultracontractivity, intrinsic ultracontractivity, invari-

ant functions, logaritheoremic Sobolev inequality.
*The research of this author is supported by the Korea Research Foundation Grant funded by the
Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2007-331-C00037).

**The research of this author is supported in part by a joint US-Croatia grant INT 0302167.
1



2 P. KIM AND R. SONG

In this paper, we will also use logarithmic Sobolev inequalities as a tool to establish the
intrinsic ultracontractivity of non-symmetric semigroups. However, in the non-symmetric
case, things are very delicate. One has to use a related symmetric semigroup as a bridge to
make things work out. We show that, under some natural conditions the Dirichlet semi-
group of a non-symmetric second order elliptic operator in a bounded Lipschitz domain
is intrinsic ultracontractive.

To concentrate on the main ideas, we will not try to obtain the most general result
in this paper. For simplicity, we will only deal with second order elliptic operators with
smooth coefficients. The case of second order differential operators with measure-valued
drifts and the case of non-local operators are considered in our papers [15] and [16],
respectively.

This paper is organized as follows. In Section 2, we introduce the concept of ultra-
contractivity and intrinsic ultracontractivity for non-symmetric semigroups. Section 3
contains the proof of the intrinsic ultracontractivity for the Dirichlet semigroups of the
non-symmetric second order elliptic operators in bounded Lipschitz domains. In Appen-
dix, we prove some identities stated in Section 3.

Throughout this paper, we will use the following convention. The values of the constants
c1,Co, ... may change from one appearance to another. In this paper, we use “:=" to
denote a definition, which is read as “is defined to be”.

2. INTRODUCTION TO IU FOR NON-SYMMETRIC SEMIGROUPS

Suppose that F is a locally compact separable metric space and m is a positive finite
measure on F such that Supp[m] = E. Suppose that we are given two semigroups {P,;}
and {P,} on L2(E,m) such that for any ¢ > 0,

/E f(2) Pug()m(dr) = / 9(2)Pof (2)m(dz).

We assume that there exists a family of continuous positive functions {p(t, -, -); ¢ > 0} on
E x E such that for any (¢,z) € (0,00) X E, we have

Pf(z) = / p(t x.9) f()m(dy).  Pf(z) = /E p(t, y, 2) F(y)m(dy).

DEFINITION 2.1. The semigroups {P,} and {P,} are said to be ultracontractive if, for
any t > 0, there exists constant ¢; > 0 such that

p(t,z,y) < ¢ forany (z,y) € Ex E.

For any operator A from LP(E,m) to LY(E,m), we will use ||A| ra(g,m),Lr(z,m) to de-
note the norm of A. When there is no danger of confusion, we will write ||A[|,, for

1Al 2, m) o (m)
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It is well-known that if {P,} and {P,} are sub-Markov semigroups in the sense that
Pl(z) <1, Pl(z)<1
for all t > 0 and x € E, then both of them are contractive semigroups on L*(E,m).

PROPOSITION 2.2. Suppose that {P,} and {P,} are sub-Markov semigroups. Then {P,}
and {P,} are ultracontractive if and only if, for any t > 0, P, and P, are both bounded
from L*(E,m) to L>(E,m).

PROOF. Suppose that { P} and { P,} are sub-Markov semigroups and that P; and P, are
both bounded from L?(E, m) to L(E, m). Then both || P;||se.2 and || P;|se.2 are decreasing
functions of ¢. Put

a; = max{|| Pilloc2, [| Pl 0.2}

By taking adjoint, we know that

1Pz = [ Billocas 1Bz = [ Pelloc.2;

so we have

1Pilse1 < [[Pey2lloc2ll Pryallzn < a7,
1Pillson < 1 Pyalloo 2l Pryzllzn < azsy-

Therefore {P,} and {P,} are ultracontractive.

Now suppose that, for any ¢t > 0, we have
p(t,z,y) < ¢ forany (z,y) € Ex E.

Then we have
1Pilloos < ety [|Pllooys <

Since {P,} and {P,} are sub-Markov semigroups, we also have

1Pilloc.oo < 1, 1B loc00 < 1,

and hence we can use interpolation to arrive at

1Plso2 < &%) 1Pillocs < &

To introduce the concept of intrinsic ultracontractivity, we further assume that

(a) {P,} and {P,} are strongly continuous semigroups on L2(E,m);
(b) for each t > 0, p(t, z,y) is bounded and strictly positive.
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Let L and L be the infinitesimal generators of the semigroups {P;} and {P,} on
L?(E,m), respectively. It follows from Jentzsch’s Theorem (Theorem V.6.6 on page
337 of [22]) and the strong continuity of {P;} and {F;} that the common value A\, :=
sup Re(c(L)) = supRe(o(L)) is an eigenvalue of multiplicity 1 for both L and L, and
that an eigenfunction ¢y of L associated with )y can be chosen to be strictly positive a.e.
with ||@o||r2(g,m)y = 1 and an eigenfunction v, of L associated with Ao can be chosen to
be strictly positive with [[1g||z2(g,m) = 1. Thus for a.e. x € E,

21)  lo(a) = [E p(t, 7, Ndo(2)mldz),  ty(x) = /E p(t, 2 ) (2)m(d2).

PROPOSITION 2.3. ¢g(z) and Yo(z) are strictly positive and continuous in E. Thus
(2.1) is true for every x € E.

PROOF. By (2.1), we have

bolz) = e [E p(1, 2, 2)o(z)m(dz)

almost everywhere on E. Since p(1, z, z) is bounded continuous and m(E) < oo, the right
hand side of the above equation is continuous by using the dominated convergence theorem
and the fact ||¢ol|r2(p,m) = 1. Similarly, e=* [ p(1, z, x)1o(2)m(dz) is continuous. Thus
there exist continuous versions of ¢y and 1y, and (2.1) is true for every x € E. Now the
strict positivity of ¢y and 1y follow from the strict positivity of p(1,-,-) and (2.1). O
Define, for any (¢,z,y) € (0,00) X E X E,
e—)\()t €_>\0t
Q(ta xz, y) = —p(t7 xz, y)¢0(y)a qA(ta z, y) = —p(ta xz, y)wo(ff)

Po() Yo(y)

Then it is easy to check that the operators {Q,;} and {Qt} defined by

Quf(x) = /E otz 9) [(w)m(dy), Of(x) = / i(t,y, ) f (y)m(dy)

form semigroups with Q;1 = Q1 = 1.
Define a function p(zx) by

@Do( )

/¢o J¥o(y )

Then the measure zi(z)m(dz) is a probability measure on E. Put M = [ ¢o(y)tbo(y)m(dy).
It is easy to see that M < 1. For any t > 0 and any positive nonnegative functions f and
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g on E, we have

/E o) (2)Quf (2)m(de)

= [ @ [ st wm(dn) it

:/ g(x )6_ Otwo( )[Ep(tvxvy)%(y)f(y)M(dy)m(dx)

—)\ot
/ bo(y - ol@)p(t, ., y)g(xm(dr)m(dy)

E

1 —Aot T x)m
/ S ) / et (@)p(t, 2, y)g(z)m(de)m(dy)
/ F)uly) Qg (y)m(dy),

Thus {Q;} and {Q,} are dual semigroups on L2(E, u(z)m(dz)).
By taking g = 1 in the display above, we see that p is an invariant function of {Q;}.
Similarly, 4 is also an invariant function of {Q,}.

DEFINITION 2.4. The semigroups {P,} and {P,} are said to be intrinsically ultracon-
tractive if, for any ¢ > 0, there exists a constant ¢; > 0 such that

p(t,x,y) < cipo()ho(y) forall (x,y) € E x E.

In Section 3, we will show that the Dirichlet semigroups of non-symmetric diffusions
with smooth coefficients in bounded Lipschitz domains are intrinsic ultracontractive. One
of the key steps in the argument of Section 3 is Lemma 3.1 which amounts to saying that
¢ and 1)y are comparable. This comparability of the two eigenfunctions ¢q and 1) is not
true in general. For instance, by using the Dirichlet heat kernel estimates in [14], one can
easily see that for the semigroups { PP} and {PP} defined before Lemma 5.5 in [15] with
D being a bounded C*! domain, ¢y is comparable to dp(z) (the distance between x and
0D) while v is comparable with the constant function.

Since the density of @); with respect to u(x)m(dz) is given by

Me'p(t, z,y)
Go(z)vo(y)
it follows from Proposition 2.2 that {P;} and {P,} are intrinsically ultracontractive if and

only if the semigroups {Q,} and {Q,} on L2(E, u(z)m(dz)) are ultracontractive.
For the remainder of this section, we discuss some important consequences of the in-

q(t,z,y) =

trinsic ultracontractivity for non-symmetric semigroups. In particular, these results are
used in our upcoming papers [15] and [16].
Intrinsic ultracontractivity implies the following lower bound on the density p(t, z,y).
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PROPOSITION 2.5. Suppose that {P,} and {P,} are intrinsically ultracontractive, that
18, for any t > 0, there exists a constant ¢, > 0 such that

p(t, z,y) < cido(x)o(y)  for all (z,y) € E X E.

Then, for any t > 0, there exists a constant ¢, > 0 such that

p(tvxvy) = Ci%(x)%(y) f07’ all (Sl?,y) € b xE.

PRrROOF. The idea of the proof comes from the proof of (iv)=-(v) in Theorem 3.2 of [10].
Let K be a compact subset of E such that

e)\()t
> 1 — .
/K plopm(de) = 1~ S

Then by Proposition 2.3, we obtain

RAVYSIY

< % ., ctdo(x)Vo(y)po(y)m(dy) + _/ (t, 2, y)do(y)m(dy)

< gy nta) + 57 [ olt.m )n(um(d),

so that

(2.2) /K p(t, 2, y)boly)m(dy) > %e’\otqbo(a:) for all € B,

Similarly, we also have

(2.3 [ Pt yintamida) = 3 inly) forall y €

Note that by the strict positivity and continuity of p(t, z,y) and Proposition 2.3, we have
(2.4) J = m1n{¢gt(/?;¢xo(y§ x,y € K} > 0.

Thus by the semigroup property and (2.4),

Pt x,y) > /K /K p(t/3,2, 2)p(t/3, 2 w)p(t/3, w, y)m(dz)m(dw)
> /K /K p(t/3, 7, =)o (20 (w)p(t/3, w, y)m(d=)m(duw)

— /K (t/3, 2, 2)do(2)m(dz) /wo p(t/3, w, y)m(dw)

J —)\ot

> 16’3 Po (7)o (y)-

In the last inequality above, we used (2.2) and (2.3). O
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For simplicity, we will write L?(E, u(z)m(dzx)) as L*(E, p) from now on. The following
result implies that, when {P,} and {P,} are strongly continuous on L2(E,m), then {Q;}
and {Q,} are strongly continuous contraction semigroups on L2(E, ;). Note that in the
symmetric case, {Q,;} and {Qt} are automatically strongly continuous on L*(E, u). We
also note that when {P,} and {Pt} are associated with a pair of dual right processes, by
repeating the argument in Section 11.3 of [8], one can show that there are pair of right
processes associated with the transition densities ¢ and ¢. These two right processes are
duals of each other with respect to the measure p(z)m(dz). Thus {Q,} and {Q;} are
strongly continuous on L?(E, u(x)m(dr)); see, for instance, the second paragraph after
Lemma 2.3 in [11]. But in general, the strong continuity of {Q,} and {Q,} is not obvious.
This is only one of the many indications that the non-symmetric case is much delicate to
deal with.

PROPOSITION 2.6. {Q;} and {Q.} are strongly continuous contraction semigroups in
L*(E, ).

PROOF. The contraction property follows immediately from the fact that {Q,} and
{Qt} are Markov semigroups. For f € L*(E, u), let

Tr = flyfi<ey k>1.

Since [|¢ollz2(mm) = [[¥ollr2(em) = 1 and fi is bounded, we have ¢ofi, € L*(E,m),
Yofy € L*(E,m) and f;, € L*(E, ¢¢m) N L*(E,¥2m). Moreover, for any k > 1 and ¢ > 0,

1Qufx = FillZ2 (i g2m)

N / ( o %p“’ 2, y)g0(y) fu(y)m(dy) — fk<x>) e (x)m(dz)

_ ¢t /E ( /E Pt 2,9)60(y) uly)mi(dy) — eA0t¢o<z>fk<z>)2m<dx>

= e 2| Py(¢ofi) — € o fill T2 (m.m)
(2.5) < 2e72 ([P0 fi) = dofilliaqem + (1= €90l Ea(zm ) -
Similarly, for any £ > 1 and ¢ > 0,
||Qtfk - fk”%?(E,qum)

(26) < 220 (I B(Wo i) = YoSulBammy + (1= Pl fil Faqrm ) -

Since {P,} and {P} are strongly continuous semigroups on L?(E,m), from (2.5) and
(2.6) we have

@7 Qs — fillagm g = B 1QSs — el =0, k21
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On the other hand, since [|Q; fslloo < | fslloo < k and [|Q filloo < k, we have

(2.8) /E(Qtfk(x) — fo(2)) Y3 (x)m(dx) < 4k E>1,t>0,
and
(2.9) / (Qufil@) — fu()*GE(@ym(de) < 4k, k>1, >0,

Thus, by the Hélder inequality and (2.7) through (2.9), we obtain that

hr? sup Qe fr — .ka%Q(E,,u)

= % lim sup [E (Qefr(@) — ful2)Po(2)(Qufi(z) — fiu(2))to(z)m(dz)

t—0

1 1/2
< s Qi fllzis g ([ (@ufato) = fuo)uitomias) )

2k .
i lll?jglp 1Qefx — frllLo(e.g2m) = 0, k>1.

and, similarly,
lim sup 1Qufi = fillfomyy = 0, k=1
t—
Now, by the contraction property of {Q,} and {@t}, we see that

1Quf — fllezey < 1Q(f — fi)lleeew + 1Qefr — frlleeew + IIf — frll L2,
< 2f = felleze gy + 11Qcfr — fellzzmp
and

1Quf — Fllree < 20f — fellzzep + 1Qefe — frll n2e -

Therefore, for any € > 0, we have
1Qef — fllz2eyw <
1Q:f — ey <

+ |1Qufr — frllL2(z0);

NI M DN M

+ [|Qefr — fellz2(e,
for large k. Thus Q,f(x) and Q,f(z) converge to f(z) in L*(E, p). O

The following result means that the intrinsic ultracontractivity of { P} and {P;} implies
that the semigroups {Q,} and {Q,} on L2(E, j1) converge to equilibrium exponentially fast.

THEOREM 2.7. Suppose that {P;} and {P,} are intrinsically ultracontractive. Then
there exist positive constants ¢ and v such that

M — Aot
(210> € p(t,x,y) _1 < Ce—ut

Po(z)bo(y) N ’

(t,x,y) € (1,00) x E X E.
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PRrROOF. The argument in this proof is very much similar to that used in the proof of
Theorem 4 in [20]. We can not directly use proof of Theorem 3 in [20] in the present
situation since we have to work with L? spaces instead of the space of bounded contin-
uous functions. Let L and L be the generators of {Q;} and {Q,} in L2(E, ). Then
0 = supRe(o(L)) = sup Re(c(L)) and 1 is a positive eigenfunction of both I and L corre-
sponding to the eigenvalue 0. It follows the intrinsic ultracontractive assumption, Propo-
sition 2.2 and Proposition 2.5 that for any ¢t > 0, (¢, z, y) is bounded and strictly positive.
Applying Jentzsch’s Theorem and the strong continuity of {Q;} and {Q;} (Proposition
2.6), we know that the eigenvalue 0 is of multiplicity 1. By the Riesz-Schauder theory
of compact operators, it follows that L?(E,u) = N ® R, where N = {c;c € R} and
Q; leaves N and R invariant (see Section 6.6 of [5]). Since 1 = sup Re(c(Qy)) and the
nonzero eigenvectors of a compact operator is isolated, it follows that there exist positive
constants ¢; and v such that

vt

1Qi|ll 2y < cre™, >0,

By the above decomposition of L*(E, p), it follows that any f € L*(FE, i) can be written
as f = cy + 1y, where ¥y € R. Thus

(2.11) 1Qef — crllr2e = Q|2 < cre™ [l 2

We now identify c¢y. Since p(z)m(dz) is a probability measure on E, we have

0 = lim [ (Quf(z) = cs(x))ulz)m(d)

t—o0 E

t—o0

~ Jin [ F@QA@w()m(dn) ~ ¢ = [ f@hutam(dn) .
Thus ¢; = [, f(@)u(z)m(dx) and [cf| < || f|lr2e .- Hence

N pllz2 gy < Nz + lerl < 20 fllr2 -

Therefore, it follows from (2.11) that for all ¢ > 0,

(2.12) 1Qef — ctllrze < 2e16™ | fll 2 -

Since for ¢ > 1/2 we have

@13 altny) = [90/20 2000 - 12 5 p)aEns) = Qeyafi(y)
E

with f,(z) =q(1/2,x, 2z), we obtain

(2.14) cy, = /Eq(l/Q,x,z),u(z)m(dz) =1
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Let ¢3 = sup,ep [ 0 (1/2, 2, 2)u(z)m(dz). From (2.12), (2.13) and (2.14) we obtain for
any t > 1/2,

sup/|€.Itxy — 1Pu(y)m(dy) —sup/|Qt_1fx y) — s, [Puly)m(dy)
<02/ |Qt—lf —Cf| w(y)m(dy) < <201026_V(t_%)>2.

”f”LZ(E wy=

Thus for any ¢ > 1/2, there exist ¢3 > 0 such that

sup/ lq(t,x, z) — 1|2,u(2)m(dz) < 036—214’

zeE JE

(2.15) sup/ (t, z,y) — 1)?u(2)m(dz) < cse™".

yeE JE
By the semigroup property of g(t, z,y), we have
qt,z,y) -1 = / q(t/2,2,2)q(t/2, z,y)u(z)m(dz) — 1
E
= / q(t/2,2,2)q(t/2, z,y)u(z)m(dz) — / q(t/2, x, z)u(z)m(dz)
E E

/E (/2. 2, y)u(=)m(dz) + /E u(z)m(dz)
= [ @202 = ) @250 - ) tIm(a2)

Therefore, from (2.15), we obtain for any ¢ > 1,

sup |q<t,l’,y) - 1|2

(z,y)EEXE
s(sup/\qt/zm 1P u(=)m )(sup/\qt/zzy 1P ale)m(d >)
zeE yekr
< C?;, —2I/t

O

In the remainder of this section we assume that the semigroups {P,} and {P} are
associated with two dual Hunt processes X and X, respectively. We are going to use
SH™ to denote the family of nonnegative superharmonic functions of X, or equivalently,
the family of excessive functions of X. For any h € SH™, we use P! to denote the law
of the h-conditioned process X and use E} to denote the expectation with respect to Py.

The following result gives some important consequences of intrinsic ultracontractivity.

THEOREM 2.8. Suppose that {P,} and {P,} are intrinsically ultracontractive and that
)\0 < 0.
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(1) If ¢, stands for the lifetime of the h-conditioned process X, then

sup  Ey(¢n) < oo.
z€EheSHT

(2) For any h € SH*, we have

hme MEPT(( > 1) :2 /¢0 dy).

In particular,

hm logPh(Ch>t) Ao-

PROOF. (1) For any h € SHT, it follows from Proposition 2.5 that there exists a
constant ¢; > 0 such that

hz) > /E p(L, 7, y)h(y)m(dy) > e ol / bo)h(y)m(dy), = € E.

Therefore

m(dy) < ¢t < 0.

€L, heSH+ h
By Theorem 2.7 we know there exists a constant ¢, > 0 such that

sup  Ey(G) = sup / / (t, 2, y)h(y)m(dy)dt

reE heSH+ z€E,he SHT h

< sup ( / / (t,z,y)h(y)m(dy)dt + —/ / (t,z,y)h (dy)dt)
z€Ehe SHt

< 1—|—02/ eMtdt  sup
1

z€E.he SHT h

dy) < 0.

(2) By Theorem 2.7 we have

lime 2'PI((, > t) = lime_’\otﬁ/Ep(t,x,y)h(y)m(dy)

tToo tToo
$o(x)
h d

Mh(e) E¢o(y) (y)m(dy)

O
3. IU FOR NON-SYMMETRIC DIFFUSION SEMIGROUPS

In this section we assume that a;;(x),b;(z),4,7 = 1,...,d, and ¢(x) are bounded C*
functions on R?. We will also assume that the functions db; /0z;,i = 1, ..., d, are bounded

and that the matrix (a;;(x)) is symmetric and uniformly elliptic, that is, there is a positive

number A such that
d

Z 2)&€; > M€? for all € € RY.
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In this section we assume that L is a second order differential operator
d d

0 0 0
=1 1
d

- 0
L:Z’]Z:l&—LL’Z(”&LU) <6_28x2>

In this section, we will always assume that D is a bounded domain in R%. Let p(t, z,y)
be the Dirichlet heat kernel of the operator L in D. For any ¢t > 0, define

Pf(r) = /D Pt e, 9) f(y)dy, Pif(x) = /D plt,y,2) f(4)dy.

The formal adjoint of L is given by

Then {P,} and {P,} are both strongly continuous semigroups in L2(D, dz). The generator
of the semigroup {F;} is L|p with zero Dirichlet boundary condition and the generator
of the semigroup {f’t} is [A/|D with zero Dirichlet boundary condition. By definition, we

| r)pa@ie = [ o@hi@.

The bilinear form associated with {P,} and {P,} is given by (€, H}(D)), where

ou Ov d ou
(u, ) Z/aija—xiﬁ—xjdij;/wa&—xidx—l—/Dcuvdx, u,v € Hy(D).

2,7=1

have

If we assume that c is a nonnegative function, then there is a diffusion process X with
generator L and {P,} is the semigroup of X P, the process obtained by killing the process
X upon exiting D. If we further assume that

Z&x z € RY,

then there is a diffusion process X with generator L and {f’t} is the semigroup of X2,

the process obtained by Kkilling the process X upon exiting D, and the bilinear form
(€, H)(D)) is a Dirichlet form in the sense of [17].

It follows from Jentzsch’s Theorem (Theorem V.6.6 on page 337 of [22]) that the com-
mon value Ag := sup Re(o(L|p)) = sup Re(c(L|p)) is an eigenvalue of multiplicity 1 for
both L|p and L|p, and that an eigenfunction ¢ of L|p associated with Ay can be chosen
to be strictly positive with ||¢o||z2(p .4y = 1 and an eigenfunction ), of f}| p associated
with Ao can be chosen to be strictly positive with ||¢o||r2(p,az) = 1. It is well-known that
¢o and g are C* in D.

Define, for any (¢,z,y) € (0,00) x D x D,

ot —ot

Q(ta Z, y) = mp(ta Z, y)¢0(y)a Cj(ta Z, y) = ¢0—@)p(ta Z, ?/Wo(if)
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Then it is easy to check that the operators {Q,} and {Q,} defined by

Qi) = [ altr Wy, Qi) = [ ity fw)dy
D D
form Markov semigroups on D.
Define a function pu(z) by
__ Po(@)¢o(z)
| entwpintuay

Then the measure pu(z)dz is a probability measure on D. From Section 2 we know that

{Q,} and {Q,} are dual semigroups on L2(D, ;) and that p is an invariant function for

both {Q,} and {Q;}. )
The generators of {Q,} and {Q),} are given respectively by

d d

| A 060 O
S (Lp = 20)(00f) = 37 5 ( i 5 ) Zb Z%ax

3,j=1

d

0 2 Oy Of
Ox; <a” 8:17]) * Z b &EZ ;1 awﬁ—a:j ox;

d
&(ﬁb —Xo)(Wof) = Z

Put
F = {f € L2(D,,u), f¢07 f,lvbO € H(%(D)} ’
and define a bilinear form Q on F by
BY Q)i € i) + o [ p@lf@g(e)de, fg e F

It is obvious that C'2°(D) is contained in F. It can be checked by elementary calculations
(see the appendix for a proof) that for any bounded f € CY(D)NF

32) 0(f.f) = [ ute) - i)

ij=1

We are going to use (£, H} (D)) to denote the symmetric part of (£, H}(D)):

E(u,v) = 1 (E(u,v) + E(v,u)), wu,v € HYD).

2

Then (€, H} (D)) is a symmetric bilinear form on L?(D) and its generator is given by

. Lp+Llp &0
Llp = 2 _i;a_x,. ”a _Zax,

Let (P,) be the semigroup associated with the form (£, H}(D)). Then (P,) has a strictly
positive continuous transition density p(t, z,y) with respect to the Lebesgue measure on
D.
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Let Ao = supo(L|p). Then )\ is an eigenvalue of L|, of multiplicity 1. Let ¢q be the
positive eigenfunction of L|p corresponding to Ao such that [, ¢3(z)dz = 1.
Define, for any (¢, z,y) € (0,00) x D x D,

—Mot
(j(ta Z, y) = QO(]—(SL’)Z;(t’ z, y)(p()(y)

Then the semigroup {Q;} defined by
Quf(e) = [ dlt.n. s )y
D

is a strongly continuous symmetric Markov semigroup on L*(D, p3).
Let (Q, D(Q)) be the Dirichlet form on L?(D, @?) associated with {Q;}. Then it follows
from [4] and [6] that

D(Q) = {f € L*(D,¢}); fo € Hy(D)}

and that
(33 Q1.1) = Elfn. i)+ o [ Gila)Pla)da, 1 € D).
We also know from [3] and [4] that for any f € D(Q),
. L 0f(x) Of(x)
(3.4) Qf. f) = /D w5 () ; oz, aij () o, dr.

In the remainder of this section we will always assume that D is a bounded Lipschitz
domain. Then we have the following

LEMMA 3.1. The functions ¢g, 1y and ¢o are comparable, that is, there exists constants
c1,co > 1 such that for all x € D,

¢ 'do(x) < polx) < crgo(a), 3 ho(x) < po(x) < cato(w).
PRroOOF. Take a positive constant A such that

ob;
oz, (£) >0 for all 2 € R

d
clx)+ A >0, c(:v)%—)\—z

The functions
G, y) = / eNp(t, z,y)dt, Calz,y) = / Nt ) dt
0 0

are finite off the diagonal of D x D. It follows from [2] that both G and G, are comparable
to the Green function of the operator
d

% 2 (o)

ij=1
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with zero Dirichlet boundary condition on dD. Our assertion now follows easily from
Theorem 1.5 in [18]. O

Using this lemma, one can easily check that {Q;} and {Q,} are strongly continuous
semigroups in L*(D, u).

LEMMA 3.2. FNL®(D,pn) =D(Q)N L>®(D, p?).

PROOF. If f € D(Q) N L>(D, p?), then fo, € HL(D) and f is bounded. Since

V(f)) = V(ieo- 2 = D9 (fe0) + foov (L)
®o ®o

%o
= @V(ﬁﬁo) + fVegg— [+ @VSDO,
%o %o

we know by the previous lemma that f¢o € Hy(D). Similarly we also have fi)y € Ha(D).
Therefore we know that f € F N L>®(D, ).
Now suppose that f € F N L>®(D, u). Then foq, fibg € Hi(D). Since

V(feo) = V(féo- 22) = 22U (fe0) + foV(Z2)
®o oo ®o
@

2V (féo) + FVpo— f - G40,
bo Po
we know by the previous lemma that fo, € Hi(D). Therefore f € D(Q)NL>®(D,¢3). O

Now, combining this lemma above with (3.2) and (3.4), we immediately arrive at the
following

LEMMA 3.3. There exists a constant ¢ > 1 such that for any bounded f € C*(D)NF,

(35) SOf. 1) < QS ) < QUL ).

By following the argument in the proofs of Theorem 4.6 and Theorem 5.2 in [6] (see
also the proof of Theorem 1 in [4]), we can get the following result.

LEMMA 3.4. For any € > 0 and bounded f € D(Q), we have

/D 3 log | fldz < €O, 1) + B Iagay + 1 B s 108 1 F 220 )

with

—c11 <1
ﬂ(e):{ crloge +cy, €<
c1 + ¢, e>1

for some constant ¢y, co > 0.
PrOOF. We omit the details. O

Combining the result above with (3.1) and Lemma 3.3, we can easily get the following
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LEMMA 3.5. For any € > 0 and bounded f € C'(D)NF, we have

(3.6) /Duf2 log | fldx < €Q(f, f) + BN N2, + £ 7200 108 11 22(D.0)
with

(37) /6(6) _ { —C1 10g€+02, € S 1

c1 + ¢, e>1

for some constant cq,co > 0.

PROOF. If (3.6) is true for f € C*(D) N F with |f] < 1, then (3.6) is true for every
bounded f € C'(D)NF by applying to f/||f||ec. Thus we will assume that f € C*(D)NF
with |f| < 1.

We know from (3.1), Lemma 3.1 and Lemma 3.3 that there exists a constant L > 1
such that

1 1 ~ ~
(33) cA<u<Ig and SO(.f) < O ) < LO( f).
Since log | f| < 0, from (3.8) we have

1
/quloglf\d:vS Z/ wof*log | f|dx.
D D

Now, applying the previous lemma and (3.8), it follows that the above is bounded by

1
_eQ(f f)+ L BN z20,08) + T L2003 08 1 20,02
< €Q(f, f) + (B(e) +1og L) 1 22p ) + 112210 108 I Il z2,10-
0J

LEMMA 3.6. For any p € (2,00), € > 0 and bounded nonnegative g € C*(D) N F, we
have

/ p(x)g”(z)log g(x)dz < €Q(g, g"") + 20(e)p g op ) + 1191200 0 108 191 LoD
D

/Du(x)gp(fﬂ) log g(z)dz < €Q(g"™", 9) + 28()p™ N 9l70ppy + 1917010 108 91| o010,
where ((€) is the function defined in (3.7).

PROOF. It is well-known that if g is a bounded nonnegative function in D(Q), then
g?/? and gP~! are also in D(Q). Thus it follows from Lemma 3.2 that if f is a bounded
nonnegative function in C*(D)NF, then, for p > 2, 72 and fP~! are also in C'(D)NF. By
using elementary calculations, one can check that for any bounded nonnegative function

feCYD)NF,

(3.9) Q2 17y = L —o(f, ) = ot f) >

_r
4(p—1) 4(p—1)
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(See the appendix for a proof.) Putting f = g?/2 in (3.6) we get

p
3 /Du(x)g”(x) log g(z)dx < €Q(g”?, ¢"*) + B(E) |9l o1, ||9!|Lp (4 108191 Lr (D p)-

Therefore we have by (3.9) that

Ep _ _
/u(x)g”(x) log g(z)dx < g, 9" )+28(E)p gl o p,y T 1910 (0 L8 N9l o010
D

2(p—1)
€p _ N
/Du(x)g”(z) log g(z)dx < -1 Q" 9)+26()p gl ooy 90 0y 108 9] Lo 1)
Now the desired assertions follows immediately from the inequalities above. OJ

It is clear that for the function 3(e) defined in (3.7)

(3.10) M(t) = % /0 B(e)de

is finite for all ¢ > 0. Now we can state the main result of this paper.

THEOREM 3.7. For anyt > 0, we have

max{ | Qll (b2 (D) 1Qell 2oy 22(0y } < €M,

where M(t) is the function defined in (3.10).

PRroOOF. For any t > 0 and p > 2, put

where ((¢) is the function defined in (3.7). Then we have

M(t) = /2 25ew)) —/:Oydp.

p?
It follows from Lemma 3.6 that for all p € (2,00) and all bounded nonnegative functions
f € CY(D)N F we have

| nta) @)z s (w)ie

(3.11) < eI 7)) + LW + 11 108 | Fll 000,
| wta)r(a)ton fa)da

(3.12) < eD)QU™ F) 4 L + 10 108 1 o0

Note that for any bounded function f, we have

¢0 —)\ot wO

V(oQif) = e 'V (= y Py(of)) = 5 V(P dof)) + (Quf) - Voo — (Quf) - %wo,
and

A ot ¢0 —Aot¢0 A (A @
V(go(z)Qrf) = € V(%Pt(%f)) i V(B(bof))+(Quf) Vdo—(Quf)- %Wo-
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Thus one can easily see that for any bounded nonnegative function f, Q.f, Q.f are both
bounded nonnegative functions in F. It is well-known that if ¢ is a bounded nonnegative
function in D(Q), then gP~' is also in D(Q). Now, using Lemma 3.2, we can see that
(Q.f)P~" and (Qqf)P~" are both bounded nonnegative functions in F. From the fact that
a; j(z),bi(z) and ¢(z) are smooth, we have Q,f, Q,f are in C'(D). Moreover, Q,f and
Q. f are in the domains of the generators of {Q.;} and {Qt}, respectively. Thus ¢oQ;f and
1oQ,f are in the domains of the generators of {P;} and {Pt}, respectively. Now we can
repeat the proof of Theorem 2.2.7 of [9] (both for Q,f and Q,f) to arrive at the desired

conclusion. We omit the details. O

REMARK 3.8. The observation that one can easily modify the argument in the symmet-
ric case to get hypercontractivity from the inequalities (3.11) and (3.12) was first pointed
out in [19].

Now we arrive at the main result of this paper.
THEOREM 3.9. The semigroups {P,} and {P,} are intrinsically ultracontractive.

Proor. This follows easily from Theorem 3.7 and the observation made after Definition
2.4. O

4. APPENDIX

In this section, we give the proofs of (3.2) and (3.9). Note that, unlike [19], we use no
integration by parts argument in the proofs of lemmas below.

LEMMA 4.1. For any bounded nonnegative f € CY(D)NF and p > 2,

- o1 (. Of 9t Do OF \ | 4y 0o Dy
3 o [ (i g+ - D) + o

ij=1

d
+ ; /D b; (fp—lwo%g—i + fpiﬁogi?) dx + /Daboqpoff”dx + o /D dobo fPdz = 0.

PRroor. Note that we have

A
Q(1, f*) = %5(%, fPabo) + Ao/Duf”dx = _MO /ngofpwodx + )\O/D,ufpda: =0

and

Q(f?,1) = %g(f%oﬂﬂo) + )\O/D,ufpdx = —% ; JPPotbodx + )\O/D,ufpdx =0.
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Thus

0 = MO(f?.1) + M(p—1)Q(1, )
&[0, o) + (p— 1E (S0, fP0) + Mpho / pfrde

_ Z/ ”a (fP¢0) %d;p—]— —1) Z/amg(% (fP4o) dz

i,j=1

+Z/ bitho 5

+p/ C¢o¢ofde+Mp)\o/ pufPdx

- of % Opo Of 2000 Oty
= Z/au[f 1( v, 0= axj) faxia—xj}df

i,j=1

f Do
+;/Db < x,)dz

+p /D choto fPdz + pAo /D Potbo fPdu.

)dx + (p

LEMMA 4.2. For any bounded nonnegative f € C1(D)NF and p > 2,

d

0.7 = [ ) Y- B asar g (777 ) e

ij=1

(1) = -0 [ a0 Y Lo ag(x) e

Proor. We have

o0 5710 + 0o [ o) (@)

D

=—Z/ iy (F0n) 5 (fplwo dx+—Z/bf

i,j=1

Qf, fr) =

) da

7 /D choto fPdr + Ao /D (ufPde.
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Now, using the product rule, we get

of o
27 Z/ ”aiam(fp ) ulede

i,7=1
o 8f 3% o1, 900 af » 000 0o
szl/ Q5 {‘bOf ! +(p =P oo oz, 8 + f B, 8%} dx
MZ/ (fp lwo% f fp¢08¢0) dx +—/ cpotbo fPdx
+M0/l)¢o¢ofpd93-

Applying Lemma 4.1 to the above equation, we arrive at the conclusion of the lemma. [J

It is easy to see that for p = 2 the proofs of Lemma 4.1 and Lemma 4.2 work for any
bounded f € C'(D)N F and in this way we arrive at (3.2). By taking f = ¢”/2 in (3.2),
we get the first equality in (3.9) from (4.1). The proof of the other equality in (3.9) is

similar.

Acknowledgement: The authors thank the referee for the careful reading of the first
version of this paper and for useful suggestions for improving the quality of this paper.
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