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Abstract. We extend the concept of intrinsic ultracontractivity to non-symmetric

semigroups and prove the intrinsic ultracontractivity of the Dirichlet semigroups of non-

symmetric second order elliptic operators in bounded Lipschitz domains.

1. Introduction

The notion of intrinsic ultracontractivity (IU in abbreviation), introduced in [10] for

symmetric semigroups, is a very important concept and has been studied extensively. Al-

though the concept of ultracontractivity has been extended to non-symmetric semigroups,

(see, for instance, [21]), it seems that, up to now, no one has introduced the concept of in-

trinsic ultracontractivity for non-symmetric semigroups. In this paper, we plan to fill this

gap and introduce the notion of intrinsic ultracontractivity for non-symmetric semigroups.

We show that, under natural conditions, the Dirichlet semigroups of non-symmetric sec-

ond order elliptic operators are intrinsic ultracontractive.

In the symmetric case, ultracontractivity and intrinsic ultracontractivity are connected

to logarithmic Sobolev inequalities. The connection between logarithmic Sobolev inequal-

ities and Lp to Lq bounds of semigroups was first discovered by Gross [12] in 1975. Davies

and Simons [10] adapted Gross’s approach to allow q = ∞ and therefore established the

connection between logarithmic Sobolev inequalities and ultracontractivity. (For an up-

dated survey on the subject of logarithmic Sobolev inequalities and contractive properties

of semigroups, see [3] and [13].) In [4], Bañuelos proved the intrinsic ultracontractivity

of killed Schrödinger semigroups on Hölder domains of order zero or uniformly Hölder

domains of order α ∈ (0, 2), using a logarithmic Sobolev inequality characterization. In

[6] and [7], Chen and Song extended the argument of [4] to prove the intrinsic ultracon-

tractivity of the Schrödinger semigroup of killed symmetric stable processes in certain

types of domains.
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In this paper, we will also use logarithmic Sobolev inequalities as a tool to establish the

intrinsic ultracontractivity of non-symmetric semigroups. However, in the non-symmetric

case, things are very delicate. One has to use a related symmetric semigroup as a bridge to

make things work out. We show that, under some natural conditions the Dirichlet semi-

group of a non-symmetric second order elliptic operator in a bounded Lipschitz domain

is intrinsic ultracontractive.

To concentrate on the main ideas, we will not try to obtain the most general result

in this paper. For simplicity, we will only deal with second order elliptic operators with

smooth coefficients. The case of second order differential operators with measure-valued

drifts and the case of non-local operators are considered in our papers [15] and [16],

respectively.

This paper is organized as follows. In Section 2, we introduce the concept of ultra-

contractivity and intrinsic ultracontractivity for non-symmetric semigroups. Section 3

contains the proof of the intrinsic ultracontractivity for the Dirichlet semigroups of the

non-symmetric second order elliptic operators in bounded Lipschitz domains. In Appen-

dix, we prove some identities stated in Section 3.

Throughout this paper, we will use the following convention. The values of the constants

c1, c2, . . . may change from one appearance to another. In this paper, we use “:=” to

denote a definition, which is read as “is defined to be”.

2. Introduction to IU for Non-symmetric Semigroups

Suppose that E is a locally compact separable metric space and m is a positive finite

measure on E such that Supp[m] = E. Suppose that we are given two semigroups {Pt}

and {P̂t} on L2(E,m) such that for any t > 0,
∫

E

f(x)Ptg(x)m(dx) =

∫

E

g(x)P̂tf(x)m(dx).

We assume that there exists a family of continuous positive functions {p(t, ·, ·); t > 0} on

E × E such that for any (t, x) ∈ (0,∞) × E, we have

Ptf(x) =

∫

E

p(t, x, y)f(y)m(dy), P̂tf(x) =

∫

E

p(t, y, x)f(y)m(dy).

Definition 2.1. The semigroups {Pt} and {P̂t} are said to be ultracontractive if, for

any t > 0, there exists constant ct > 0 such that

p(t, x, y) ≤ ct for any (x, y) ∈ E × E.

For any operator A from Lp(E,m) to Lq(E,m), we will use ‖A‖Lq(E,m),Lp(E,m) to de-

note the norm of A. When there is no danger of confusion, we will write ‖A‖q,p for

‖A‖Lq(E,m),Lp(E,m).
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It is well-known that if {Pt} and {P̂t} are sub-Markov semigroups in the sense that

Pt1(x) ≤ 1, P̂t1(x) ≤ 1

for all t ≥ 0 and x ∈ E, then both of them are contractive semigroups on L2(E,m).

Proposition 2.2. Suppose that {Pt} and {P̂t} are sub-Markov semigroups. Then {Pt}

and {P̂t} are ultracontractive if and only if, for any t > 0, Pt and P̂t are both bounded

from L2(E,m) to L∞(E,m).

Proof. Suppose that {Pt} and {P̂t} are sub-Markov semigroups and that Pt and P̂t are

both bounded from L2(E,m) to L∞(E,m). Then both ‖Pt‖∞,2 and ‖P̂t‖∞,2 are decreasing

functions of t. Put

at = max{‖Pt‖∞,2, ‖P̂t‖∞,2}.

By taking adjoint, we know that

‖Pt‖2,1 = ‖P̂t‖∞,2, ‖P̂t‖2,1 = ‖Pt‖∞,2,

so we have

‖Pt‖∞,1 ≤ ‖Pt/2‖∞,2‖Pt/2‖2,1 ≤ a2
t/2,

‖P̂t‖∞,1 ≤ ‖P̂t/2‖∞,2‖P̂t/2‖2,1 ≤ a2
t/2.

Therefore {Pt} and {P̂t} are ultracontractive.

Now suppose that, for any t > 0, we have

p(t, x, y) ≤ ct for any (x, y) ∈ E × E.

Then we have

‖Pt‖∞,1 ≤ ct, ‖P̂t‖∞,1 ≤ ct.

Since {Pt} and {P̂t} are sub-Markov semigroups, we also have

‖Pt‖∞,∞ ≤ 1, ‖P̂t‖∞,∞ ≤ 1,

and hence we can use interpolation to arrive at

‖Pt‖∞,2 ≤ c
1/2
t , ‖P̂t‖∞,2 ≤ c

1/2
t .

�

To introduce the concept of intrinsic ultracontractivity, we further assume that

(a) {Pt} and {P̂t} are strongly continuous semigroups on L2(E,m);

(b) for each t > 0, p(t, x, y) is bounded and strictly positive.
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Let L and L̂ be the infinitesimal generators of the semigroups {Pt} and {P̂t} on

L2(E,m), respectively. It follows from Jentzsch’s Theorem (Theorem V.6.6 on page

337 of [22]) and the strong continuity of {Pt} and {P̂t} that the common value λ0 :=

sup Re(σ(L)) = sup Re(σ(L̂)) is an eigenvalue of multiplicity 1 for both L and L̂, and

that an eigenfunction φ0 of L associated with λ0 can be chosen to be strictly positive a.e.

with ‖φ0‖L2(E,m) = 1 and an eigenfunction ψ0 of L̂ associated with λ0 can be chosen to

be strictly positive with ‖ψ0‖L2(E,m) = 1. Thus for a.e. x ∈ E,

(2.1) eλ0tφ0(x) =

∫

E

p(t, x, z)φ0(z)m(dz), eλ0tψ0(x) =

∫

E

p(t, z, x)ψ0(z)m(dz).

Proposition 2.3. φ0(x) and ψ0(x) are strictly positive and continuous in E. Thus

(2.1) is true for every x ∈ E.

Proof. By (2.1), we have

φ0(x) = e−λ0

∫

E

p(1, x, z)φ0(z)m(dz)

almost everywhere on E. Since p(1, x, z) is bounded continuous and m(E) <∞, the right

hand side of the above equation is continuous by using the dominated convergence theorem

and the fact ‖φ0‖L2(E,m) = 1. Similarly, e−λ0
∫

E
p(1, z, x)ψ0(z)m(dz) is continuous. Thus

there exist continuous versions of φ0 and ψ0, and (2.1) is true for every x ∈ E. Now the

strict positivity of φ0 and ψ0 follow from the strict positivity of p(1, ·, ·) and (2.1). �

Define, for any (t, x, y) ∈ (0,∞) × E × E,

q(t, x, y) :=
e−λ0t

φ0(x)
p(t, x, y)φ0(y), q̂(t, x, y) :=

e−λ0t

ψ0(y)
p(t, x, y)ψ0(x).

Then it is easy to check that the operators {Qt} and {Q̂t} defined by

Qtf(x) :=

∫

E

q(t, x, y)f(y)m(dy), Q̂tf(x) :=

∫

E

q̂(t, y, x)f(y)m(dy)

form semigroups with Qt1 = Q̂t1 = 1.

Define a function µ(x) by

µ(x) :=
φ0(x)ψ0(x)

∫

E

φ0(y)ψ0(y)m(dy)

.

Then the measure µ(x)m(dx) is a probability measure onE. PutM =
∫

E
φ0(y)ψ0(y)m(dy).

It is easy to see that M ≤ 1. For any t > 0 and any positive nonnegative functions f and
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g on E, we have
∫

E

g(x)µ(x)Qtf(x)m(dx)

=

∫

E

g(x)
e−λ0t

φ0(x)

∫

E

p(t, x, y)φ0(y)f(y)m(dy)
1

M
φ0(x)ψ0(x)m(dx)

=

∫

E

g(x)
e−λ0t

M
ψ0(x)

∫

E

p(t, x, y)φ0(y)f(y)m(dy)m(dx)

=

∫

E

φ0(y)f(y)

∫

E

e−λ0t

M
ψ0(x)p(t, x, y)g(x)m(dx)m(dy)

=

∫

E

1

M
φ0(y)ψ0(y)f(y)

1

ψ0(y)

∫

E

e−λ0tψ0(x)p(t, x, y)g(x)m(dx)m(dy)

=

∫

E

f(y)µ(y)Q̂tg(y)m(dy),

Thus {Qt} and {Q̂t} are dual semigroups on L2(E, µ(x)m(dx)).

By taking g = 1 in the display above, we see that µ is an invariant function of {Qt}.

Similarly, µ is also an invariant function of {Q̂t}.

Definition 2.4. The semigroups {Pt} and {P̂t} are said to be intrinsically ultracon-

tractive if, for any t > 0, there exists a constant ct > 0 such that

p(t, x, y) ≤ ctφ0(x)ψ0(y) for all (x, y) ∈ E × E.

In Section 3, we will show that the Dirichlet semigroups of non-symmetric diffusions

with smooth coefficients in bounded Lipschitz domains are intrinsic ultracontractive. One

of the key steps in the argument of Section 3 is Lemma 3.1 which amounts to saying that

φ0 and ψ0 are comparable. This comparability of the two eigenfunctions φ0 and ψ0 is not

true in general. For instance, by using the Dirichlet heat kernel estimates in [14], one can

easily see that for the semigroups {PD
t } and {P̂D

t } defined before Lemma 5.5 in [15] with

D being a bounded C1,1 domain, φ0 is comparable to δD(x) (the distance between x and

∂D) while ψ0 is comparable with the constant function.

Since the density of Qt with respect to µ(x)m(dx) is given by

q(t, x, y) :=
Me−λ0tp(t, x, y)

φ0(x)ψ0(y)
,

it follows from Proposition 2.2 that {Pt} and {P̂t} are intrinsically ultracontractive if and

only if the semigroups {Qt} and {Q̂t} on L2(E, µ(x)m(dx)) are ultracontractive.

For the remainder of this section, we discuss some important consequences of the in-

trinsic ultracontractivity for non-symmetric semigroups. In particular, these results are

used in our upcoming papers [15] and [16].

Intrinsic ultracontractivity implies the following lower bound on the density p(t, x, y).
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Proposition 2.5. Suppose that {Pt} and {P̂t} are intrinsically ultracontractive, that

is, for any t > 0, there exists a constant ct > 0 such that

p(t, x, y) ≤ ctφ0(x)ψ0(y) for all (x, y) ∈ E ×E.

Then, for any t > 0, there exists a constant c′t > 0 such that

p(t, x, y) ≥ c′tφ0(x)ψ0(y) for all (x, y) ∈ E ×E.

Proof. The idea of the proof comes from the proof of (iv)⇒(v) in Theorem 3.2 of [10].

Let K be a compact subset of E such that
∫

K

µ(x)m(dx) ≥ 1 −
eλ0t

2Mct
.

Then by Proposition 2.3, we obtain

eλ0t
1

M
φ0(x) =

1

M

∫

E

p(t, x, y)φ0(y)m(dy)

≤
1

M

∫

E\K

ctφ0(x)ψ0(y)φ0(y)m(dy) +
1

M

∫

K

p(t, x, y)φ0(y)m(dy)

≤
1

2M
eλ0tφ0(x) +

1

M

∫

K

p(t, x, y)φ0(y)m(dy),

so that

(2.2)

∫

K

p(t, x, y)φ0(y)m(dy) ≥
1

2
eλ0tφ0(x) for all x ∈ E.

Similarly, we also have

(2.3)

∫

K

p(t, x, y)ψ0(x)m(dx) ≥
1

2
eλ0tψ0(y) for all y ∈ E.

Note that by the strict positivity and continuity of p(t, x, y) and Proposition 2.3, we have

(2.4) J := min

{

p(t/3, x, y)

φ0(x)ψ0(y)
; x, y ∈ K

}

> 0.

Thus by the semigroup property and (2.4),

p(t, x, y) ≥

∫

K

∫

K

p(t/3, x, z)p(t/3, z, w)p(t/3, w, y)m(dz)m(dw)

≥ J

∫

K

∫

K

p(t/3, x, z)φ0(z)ψ0(w)p(t/3, w, y)m(dz)m(dw)

= J

∫

K

p(t/3, x, z)φ0(z)m(dz)

∫

K

ψ0(w)p(t/3, w, y)m(dw)

≥
J

4
e

2
3
λ0tφ0(x)ψ0(y).

In the last inequality above, we used (2.2) and (2.3). �
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For simplicity, we will write L2(E, µ(x)m(dx)) as L2(E, µ) from now on. The following

result implies that, when {Pt} and {P̂t} are strongly continuous on L2(E,m), then {Qt}

and {Q̂t} are strongly continuous contraction semigroups on L2(E, µ). Note that in the

symmetric case, {Qt} and {Q̂t} are automatically strongly continuous on L2(E, µ). We

also note that when {Pt} and {P̂t} are associated with a pair of dual right processes, by

repeating the argument in Section 11.3 of [8], one can show that there are pair of right

processes associated with the transition densities q and q̂. These two right processes are

duals of each other with respect to the measure µ(x)m(dx). Thus {Qt} and {Q̂t} are

strongly continuous on L2(E, µ(x)m(dx)); see, for instance, the second paragraph after

Lemma 2.3 in [11]. But in general, the strong continuity of {Qt} and {Q̂t} is not obvious.

This is only one of the many indications that the non-symmetric case is much delicate to

deal with.

Proposition 2.6. {Qt} and {Q̂t} are strongly continuous contraction semigroups in

L2(E, µ).

Proof. The contraction property follows immediately from the fact that {Qt} and

{Q̂t} are Markov semigroups. For f ∈ L2(E, µ), let

fk := f1{|f |≤k}, k ≥ 1.

Since ‖φ0‖L2(E,m) = ‖ψ0‖L2(E,m) = 1 and fk is bounded, we have φ0fk ∈ L2(E,m),

ψ0fk ∈ L2(E,m) and fk ∈ L2(E, φ2
0m) ∩ L2(E,ψ2

0m). Moreover, for any k ≥ 1 and t > 0,

‖Qtfk − fk‖
2
L2(E,φ2

0m)

=

∫

E

(
∫

E

e−λ0t

φ0(x)
p(t, x, y)φ0(y)fk(y)m(dy)− fk(x)

)2

φ2
0(x)m(dx)

= e−2λ0t

∫

E

(
∫

E

p(t, x, y)φ0(y)fk(y)m(dy)− eλ0tφ0(x)fk(x)

)2

m(dx)

= e−2λ0t‖Pt(φ0fk) − eλ0tφ0fk‖
2
L2(E,m)

≤ 2e−2λ0t
(

‖Pt(φ0fk) − φ0fk‖
2
L2(E,m) + (1 − eλ0t)2‖φ0fk‖

2
L2(E,m)

)

.(2.5)

Similarly, for any k ≥ 1 and t > 0,

‖Q̂tfk − fk‖
2
L2(E,ψ2

0m)

≤ 2e−2λ0t
(

‖P̂t(ψ0fk) − ψ0fk‖
2
L2(E,m) + (1 − eλ0t)2‖ψ0fk‖

2
L2(E,m)

)

.(2.6)

Since {Pt} and {P̂t} are strongly continuous semigroups on L2(E,m), from (2.5) and

(2.6) we have

(2.7) lim
t→0

‖Qtfk − fk‖
2
L2(E,φ2

0m) = lim
t→0

‖Q̂tfk − fk‖
2
L2(E,ψ2

0m) = 0, k ≥ 1.
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On the other hand, since ‖Qtfk‖∞ ≤ ‖fk‖∞ ≤ k and ‖Q̂tfk‖∞ ≤ k, we have

(2.8)

∫

E

(Qtfk(x) − fk(x))
2ψ2

0(x)m(dx) ≤ 4k2, k ≥ 1, t > 0,

and

(2.9)

∫

E

(Q̂tfk(x) − fk(x))
2φ2

0(x)m(dx) ≤ 4k2, k ≥ 1, t > 0.

Thus, by the Hölder inequality and (2.7) through (2.9), we obtain that

lim sup
t→0

‖Qtfk − fk‖
2
L2(E,µ)

=
1

M
lim sup
t→0

∫

E

(Qtfk(x) − fk(x))φ0(x)(Qtfk(x) − fk(x))ψ0(x)m(dx)

≤
1

M
lim sup
t→0

‖Qtfk − fk‖L2(E,φ2
0m)

(
∫

E

(Qtfk(x) − fk(x))
2ψ2

0(x)m(dx)

)1/2

≤
2k

M
lim sup
t→0

‖Qtfk − fk‖L2(E,φ2
0m) = 0, k ≥ 1.

and, similarly,

lim sup
t→0

‖Q̂tfk − fk‖
2
L2(E,µ) = 0, k ≥ 1.

Now, by the contraction property of {Qt} and {Q̂t}, we see that

‖Qtf − f‖L2(E,µ) ≤ ‖Qt(f − fk)‖L2(E,µ) + ‖Qtfk − fk‖L2(E,µ) + ‖f − fk‖L2(E,µ)

≤ 2‖f − fk‖L2(E,µ) + ‖Qtfk − fk‖L2(E,µ)

and

‖Q̂tf − f‖L2(E,µ) ≤ 2‖f − fk‖L2(E,µ) + ‖Q̂tfk − fk‖L2(E,µ).

Therefore, for any ε > 0, we have

‖Qtf − f‖L2(E,µ) ≤
ε

2
+ ‖Qtfk − fk‖L2(E,µ),

‖Q̂tf − f‖L2(E,µ) ≤
ε

2
+ ‖Q̂tfk − fk‖L2(E,µ)

for large k. Thus Qtf(x) and Q̂tf(x) converge to f(x) in L2(E, µ). �

The following result means that the intrinsic ultracontractivity of {Pt} and {P̂t} implies

that the semigroups {Qt} and {Q̂t} on L2(E, µ) converge to equilibrium exponentially fast.

Theorem 2.7. Suppose that {Pt} and {P̂t} are intrinsically ultracontractive. Then

there exist positive constants c and ν such that

(2.10)

∣

∣

∣

∣

Me−λ0tp(t, x, y)

φ0(x)ψ0(y)
− 1

∣

∣

∣

∣

≤ ce−νt, (t, x, y) ∈ (1,∞) ×E ×E.
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Proof. The argument in this proof is very much similar to that used in the proof of

Theorem 4 in [20]. We can not directly use proof of Theorem 3 in [20] in the present

situation since we have to work with L2 spaces instead of the space of bounded contin-

uous functions. Let L and L̂ be the generators of {Qt} and {Q̂t} in L2(E, µ). Then

0 = sup Re(σ(L)) = sup Re(σ(L̂)) and 1 is a positive eigenfunction of both L and L̂ corre-

sponding to the eigenvalue 0. It follows the intrinsic ultracontractive assumption, Propo-

sition 2.2 and Proposition 2.5 that for any t > 0, q(t, x, y) is bounded and strictly positive.

Applying Jentzsch’s Theorem and the strong continuity of {Qt} and {Q̂t} (Proposition

2.6), we know that the eigenvalue 0 is of multiplicity 1. By the Riesz-Schauder theory

of compact operators, it follows that L2(E, µ) = N ⊗ R, where N = {c; c ∈ R} and

Q̂t leaves N and R invariant (see Section 6.6 of [5]). Since 1 = sup Re(σ(Q̂t)) and the

nonzero eigenvectors of a compact operator is isolated, it follows that there exist positive

constants c1 and ν such that

‖Q̂t|R‖L2(E,µ) ≤ c1e
−νt, t > 0.

By the above decomposition of L2(E, µ), it follows that any f ∈ L2(E, µ) can be written

as f = cf + ψf , where ψf ∈ R. Thus

(2.11) ‖Q̂tf − cf‖L2(E,µ) = ‖Q̂tψf‖L2(E,µ) ≤ c1e
−νt‖ψf‖L2(E,µ).

We now identify cf . Since µ(x)m(dx) is a probability measure on E, we have

0 = lim
t→∞

∫

E

(Q̂tf(x) − cf(x))µ(x)m(dx)

= lim
t→∞

∫

E

f(x)Qt1(x)µ(x)m(dx) − cf =

∫

E

f(x)µ(x)m(dx) − cf .

Thus cf =
∫

E
f(x)µ(x)m(dx) and |cf | ≤ ‖f‖L2(E,µ). Hence

‖ψf‖L2(E,µ) ≤ ‖f‖L2(E,µ) + |cf | ≤ 2‖f‖L2(E,µ).

Therefore, it follows from (2.11) that for all t > 0,

(2.12) ‖Q̂tf − cf‖L2(E,µ) ≤ 2c1e
−νt‖f‖L2(E,µ).

Since for t > 1/2 we have

(2.13) q(t, x, y) =

∫

E

q(1/2, x, z)q(t− 1/2, z, y)µ(z)m(dz) = Q̂t−1/2fx(y),

with fx(z) = q(1/2, x, z), we obtain

(2.14) cfx
=

∫

E

q(1/2, x, z)µ(z)m(dz) = 1.
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Let c22 = supx∈E
∫

E
q2(1/2, x, z)µ(z)m(dz). From (2.12), (2.13) and (2.14) we obtain for

any t > 1/2,

sup
x∈E

∫

E

|q(t, x, y) − 1|2µ(y)m(dy) = sup
x∈E

∫

E

|Q̂t− 1
2
fx(y) − cfx

|2µ(y)m(dy)

≤ sup
‖f‖

L2(E,µ)≤c2

∫

E

|Q̂t− 1
2
f(y) − cf |

2µ(y)m(dy) ≤
(

2c1c2e
−ν(t− 1

2
)
)2

.

Thus for any t > 1/2, there exist c3 > 0 such that

sup
x∈E

∫

E

|q(t, x, z) − 1|2µ(z)m(dz) ≤ c3e
−2νt,

sup
y∈E

∫

E

|q(t, z, y) − 1|2µ(z)m(dz) ≤ c3e
−2νt.(2.15)

By the semigroup property of q(t, x, y), we have

q(t, x, y) − 1 =

∫

E

q(t/2, x, z)q(t/2, z, y)µ(z)m(dz) − 1

=

∫

E

q(t/2, x, z)q(t/2, z, y)µ(z)m(dz) −

∫

E

q(t/2, x, z)µ(z)m(dz)

−

∫

E

q(t/2, z, y)µ(z)m(dz) +

∫

E

µ(z)m(dz)

=

∫

E

(q(t/2, x, z) − 1) (q(t/2, z, y) − 1)µ(z)m(dz).

Therefore, from (2.15), we obtain for any t > 1,

sup
(x,y)∈E×E

|q(t, x, y) − 1|2

≤

(

sup
x∈E

∫

E

|q(t/2, x, z) − 1|2 µ(z)m(dz)

)(

sup
y∈E

∫

E

|q(t/2, z, y) − 1|2 µ(z)m(dz)

)

≤ c23e
−2νt.

�

In the remainder of this section we assume that the semigroups {Pt} and {P̂t} are

associated with two dual Hunt processes X and X̂, respectively. We are going to use

SH+ to denote the family of nonnegative superharmonic functions of X, or equivalently,

the family of excessive functions of X. For any h ∈ SH+, we use P x
h to denote the law

of the h-conditioned process X and use Ex
h to denote the expectation with respect to P x

h .

The following result gives some important consequences of intrinsic ultracontractivity.

Theorem 2.8. Suppose that {Pt} and {P̂t} are intrinsically ultracontractive and that

λ0 < 0.
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(1) If ζh stands for the lifetime of the h-conditioned process X, then

sup
x∈E,h∈SH+

Ex
h(ζh) <∞.

(2) For any h ∈ SH+, we have

lim
t↑∞

e−λ0tP x
h (ζh > t) =

φ0(x)

Mh(x)

∫

E

ψ0(y)h(y)m(dy).

In particular,

lim
t↑∞

1

t
logP x

h (ζh > t) = λ0.

Proof. (1) For any h ∈ SH+, it follows from Proposition 2.5 that there exists a

constant c1 > 0 such that

h(x) ≥

∫

E

p(1, x, y)h(y)m(dy) ≥ c1φ0(x)

∫

E

ψ0(y)h(y)m(dy), x ∈ E.

Therefore

sup
x∈E,h∈SH+

φ0(x)

h(x)

∫

E

ψ0(y)h(y)m(dy) ≤ c−1
1 <∞.

By Theorem 2.7 we know there exists a constant c2 > 0 such that

sup
x∈E,h∈SH+

Ex
h(ζh) = sup

x∈E,h∈SH+

1

h(x)

∫ ∞

0

∫

E

p(t, x, y)h(y)m(dy)dt

≤ sup
x∈E,h∈SH+

(

1

h(x)

∫ 1

0

∫

E

p(t, x, y)h(y)m(dy)dt+
1

h(x)

∫ ∞

1

∫

E

p(t, x, y)h(y)m(dy)dt

)

≤ 1 + c2

∫ ∞

1

eλ0tdt sup
x∈E,h∈SH+

φ0(x)

h(x)

∫

E

ψ0(y)h(y)m(dy) <∞.

(2) By Theorem 2.7 we have

lim
t↑∞

e−λ0tP x
h (ζh > t) = lim

t↑∞
e−λ0t

1

h(x)

∫

E

p(t, x, y)h(y)m(dy)

=
φ0(x)

Mh(x)

∫

E

ψ0(y)h(y)m(dy).

�

3. IU for Non-symmetric Diffusion Semigroups

In this section we assume that aij(x), bi(x), i, j = 1, . . . , d, and c(x) are bounded C∞

functions on Rd. We will also assume that the functions ∂bi/∂xi, i = 1, . . . , d, are bounded

and that the matrix (aij(x)) is symmetric and uniformly elliptic, that is, there is a positive

number λ such that
d
∑

i,j=1

aij(x)ξiξj ≥ λ‖ξ‖2 for all ξ ∈ Rd.
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In this section we assume that L is a second order differential operator

L =
d
∑

i,j=1

∂

∂xi

(

aij
∂

∂xj

)

−
d
∑

i=1

bi
∂

∂xi
− c.

The formal adjoint of L is given by

L̂ =:
d
∑

i,j=1

∂

∂xi

(

aij
∂

∂xj

)

+
d
∑

i=1

bi
∂

∂xi
−

(

c−
d
∑

i=1

∂bi
∂xi

)

.

In this section, we will always assume that D is a bounded domain in Rd. Let p(t, x, y)

be the Dirichlet heat kernel of the operator L in D. For any t > 0, define

Ptf(x) :=

∫

D

p(t, x, y)f(y)dy, P̂tf(x) :=

∫

D

p(t, y, x)f(y)dy.

Then {Pt} and {P̂t} are both strongly continuous semigroups in L2(D, dx). The generator

of the semigroup {Pt} is L|D with zero Dirichlet boundary condition and the generator

of the semigroup {P̂t} is L̂|D with zero Dirichlet boundary condition. By definition, we

have
∫

D

f(x)Ptg(x)dx =

∫

D

g(x)P̂tf(x)dx.

The bilinear form associated with {Pt} and {P̂t} is given by (E , H1
0(D)), where

E(u, v) :=

d
∑

i,j=1

∫

D

aij
∂u

∂xi

∂v

∂xj
dx+

d
∑

i=1

∫

D

biv
∂u

∂xi
dx+

∫

D

cuvdx, u, v ∈ H1
0 (D).

If we assume that c is a nonnegative function, then there is a diffusion process X with

generator L and {Pt} is the semigroup of XD, the process obtained by killing the process

X upon exiting D. If we further assume that

c(x) −

d
∑

i=1

∂bi
∂xi

(x) ≥ 0, x ∈ Rd,

then there is a diffusion process X̂ with generator L̂ and {P̂t} is the semigroup of X̂D,

the process obtained by killing the process X̂ upon exiting D, and the bilinear form

(E , H1
0(D)) is a Dirichlet form in the sense of [17].

It follows from Jentzsch’s Theorem (Theorem V.6.6 on page 337 of [22]) that the com-

mon value λ0 := sup Re(σ(L|D)) = sup Re(σ(L̂|D)) is an eigenvalue of multiplicity 1 for

both L|D and L̂|D, and that an eigenfunction φ0 of L|D associated with λ0 can be chosen

to be strictly positive with ‖φ0‖L2(D,dx) = 1 and an eigenfunction ψ0 of L̂|D associated

with λ0 can be chosen to be strictly positive with ‖ψ0‖L2(D,dx) = 1. It is well-known that

φ0 and ψ0 are C∞ in D.

Define, for any (t, x, y) ∈ (0,∞) ×D ×D,

q(t, x, y) :=
e−λ0t

φ0(x)
p(t, x, y)φ0(y), q̂(t, x, y) :=

e−λ0t

ψ0(y)
p(t, x, y)ψ0(x).
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Then it is easy to check that the operators {Qt} and {Q̂t} defined by

Qtf(x) :=

∫

D

q(t, x, y)f(y)dy, Q̂tf(x) :=

∫

D

q̂(t, y, x)f(y)dy

form Markov semigroups on D.

Define a function µ(x) by

µ(x) :=
φ0(x)ψ0(x)

∫

D

φ0(y)ψ0(y)dy
.

Then the measure µ(x)dx is a probability measure on D. From Section 2 we know that

{Qt} and {Q̂t} are dual semigroups on L2(D,µ) and that µ is an invariant function for

both {Qt} and {Q̂t}.

The generators of {Qt} and {Q̂t} are given respectively by

1

φ0
(L|D − λ0)(φ0f) =

d
∑

i,j=1

∂

∂xi

(

aij
∂f

∂xj

)

−

d
∑

i=1

bi
∂f

∂xi
+

2

φ0

d
∑

i,j=1

aij
∂φ0

∂xj

∂f

∂xi

1

ψ0
(L̂|D − λ0)(ψ0f) =

d
∑

i,j=1

∂

∂xi

(

aij
∂f

∂xj

)

+

d
∑

i=1

bi
∂f

∂xi
+

2

ψ0

d
∑

i,j=1

aij
∂ψ0

∂xj

∂f

∂xi
.

Put

F :=
{

f ∈ L2(D,µ); fφ0, fψ0 ∈ H1
0(D)

}

,

and define a bilinear form Q on F by

(3.1) Q(f, g) :=
1

M
E(fφ0, gψ0) + λ0

∫

D

µ(x)f(x)g(x)dx, f, g ∈ F .

It is obvious that C∞
c (D) is contained in F . It can be checked by elementary calculations

(see the appendix for a proof) that for any bounded f ∈ C1(D) ∩ F

(3.2) Q(f, f) =

∫

D

µ(x)

d
∑

i,j=1

∂f(x)

∂xi
aij(x)

∂f(x)

∂xj
dx.

We are going to use (Ẽ , H1
0(D)) to denote the symmetric part of (E , H1

0(D)):

Ẽ(u, v) :=
1

2
(E(u, v) + E(v, u)) , u, v ∈ H1

0 (D).

Then (Ẽ , H1
0 (D)) is a symmetric bilinear form on L2(D) and its generator is given by

L̃|D =
L|D + L̂|D

2
=

d
∑

i,j=1

∂

∂xi

(

aij
∂

∂xj

)

− c+
1

2

d
∑

i=1

∂bi
∂xi

.

Let (P̃t) be the semigroup associated with the form (Ẽ , H1
0(D)). Then (P̃t) has a strictly

positive continuous transition density p̃(t, x, y) with respect to the Lebesgue measure on

D.
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Let λ̃0 = sup σ(L̃|D). Then λ̃0 is an eigenvalue of L̃|D of multiplicity 1. Let ϕ0 be the

positive eigenfunction of L̃|D corresponding to λ̃0 such that
∫

D
ϕ2

0(x)dx = 1.

Define, for any (t, x, y) ∈ (0,∞) ×D ×D,

q̃(t, x, y) :=
e−λ̃0t

ϕ0(x)
p̃(t, x, y)ϕ0(y).

Then the semigroup {Q̃t} defined by

Q̃tf(x) :=

∫

D

q̃(t, x, y)f(y)dy

is a strongly continuous symmetric Markov semigroup on L2(D,ϕ2
0).

Let (Q̃, D(Q̃)) be the Dirichlet form on L2(D,ϕ2
0) associated with {Q̃t}. Then it follows

from [4] and [6] that

D(Q̃) =
{

f ∈ L2(D,ϕ2
0); fϕ0 ∈ H1

0 (D)
}

and that

(3.3) Q̃(f, f) = Ẽ(fϕ0, fϕ0) + λ̃0

∫

D

ϕ2
0(x)f

2(x)dx, f ∈ D(Q̃).

We also know from [3] and [4] that for any f ∈ D(Q̃),

(3.4) Q̃(f, f) =

∫

D

ϕ2
0(x)

d
∑

i,j=1

∂f(x)

∂xi
aij(x)

∂f(x)

∂xj
dx.

In the remainder of this section we will always assume that D is a bounded Lipschitz

domain. Then we have the following

Lemma 3.1. The functions φ0, ψ0 and ϕ0 are comparable, that is, there exists constants

c1, c2 ≥ 1 such that for all x ∈ D,

c−1
1 φ0(x) ≤ ϕ0(x) ≤ c1φ0(x), c−1

2 ψ0(x) ≤ ϕ0(x) ≤ c2ψ0(x).

Proof. Take a positive constant λ such that

c(x) + λ ≥ 0, c(x) + λ−

d
∑

i=1

∂bi
∂xi

(x) ≥ 0 for all x ∈ Rd.

The functions

Gλ(x, y) =

∫ ∞

0

e−λtp(t, x, y)dt, G̃λ(x, y) =

∫ ∞

0

e−λtp̃(t, x, y)dt

are finite off the diagonal ofD×D. It follows from [2] that both Gλ and G̃λ are comparable

to the Green function of the operator

d
∑

i,j=1

∂

∂xi

(

aij(x)
∂

∂xj

)
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with zero Dirichlet boundary condition on ∂D. Our assertion now follows easily from

Theorem 1.5 in [18]. �

Using this lemma, one can easily check that {Qt} and {Q̂t} are strongly continuous

semigroups in L2(D,µ).

Lemma 3.2. F ∩ L∞(D,µ) = D(Q̃) ∩ L∞(D,ϕ2
0).

Proof. If f ∈ D(Q̃) ∩ L∞(D,ϕ2
0), then fϕ0 ∈ H1

0(D) and f is bounded. Since

∇(fφ0) = ∇(fϕ0 ·
φ0

ϕ0

) =
φ0

ϕ0

∇(fϕ0) + fϕ0∇(
φ0

ϕ0

)

=
φ0

ϕ0
∇(fϕ0) + f∇φ0 − f ·

φ0

ϕ0
∇ϕ0,

we know by the previous lemma that fφ0 ∈ H1
0 (D). Similarly we also have fψ0 ∈ H1

0 (D).

Therefore we know that f ∈ F ∩ L∞(D,µ).

Now suppose that f ∈ F ∩ L∞(D,µ). Then fφ0, fψ0 ∈ H1
0 (D). Since

∇(fϕ0) = ∇(fφ0 ·
ϕ0

φ0

) =
ϕ0

φ0

∇(fφ0) + fφ0∇(
ϕ0

φ0

)

=
ϕ0

φ0

∇(fφ0) + f∇ϕ0 − f ·
ϕ0

φ0

∇φ0,

we know by the previous lemma that fϕ0 ∈ H1
0 (D). Therefore f ∈ D(Q̃)∩L∞(D,ϕ2

0). �

Now, combining this lemma above with (3.2) and (3.4), we immediately arrive at the

following

Lemma 3.3. There exists a constant c > 1 such that for any bounded f ∈ C1(D) ∩ F ,

(3.5)
1

c
Q̃(f, f) ≤ Q(f, f) ≤ cQ̃(f, f).

By following the argument in the proofs of Theorem 4.6 and Theorem 5.2 in [6] (see

also the proof of Theorem 1 in [4]), we can get the following result.

Lemma 3.4. For any ǫ > 0 and bounded f ∈ D(Q̃), we have
∫

D

ϕ2
0f

2 log |f |dx ≤ ǫQ̃(f, f) + β(ǫ)‖f‖2
L2(D,ϕ2

0) + ‖f‖2
L2(D,ϕ2

0) log ‖f‖L2(D,ϕ2
0)

with

β(ǫ) =

{

−c1 log ǫ+ c2, ǫ ≤ 1

c1 + c2, ǫ > 1

for some constant c1, c2 > 0.

Proof. We omit the details. �

Combining the result above with (3.1) and Lemma 3.3, we can easily get the following
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Lemma 3.5. For any ǫ > 0 and bounded f ∈ C1(D) ∩ F , we have

(3.6)

∫

D

µf 2 log |f |dx ≤ ǫQ(f, f) + β(ǫ)‖f‖2
L2(D,µ) + ‖f‖2

L2(D,µ) log ‖f‖L2(D,µ)

with

(3.7) β(ǫ) =

{

−c1 log ǫ+ c2, ǫ ≤ 1

c1 + c2, ǫ > 1

for some constant c1, c2 > 0.

Proof. If (3.6) is true for f ∈ C1(D) ∩ F with |f | ≤ 1, then (3.6) is true for every

bounded f ∈ C1(D)∩F by applying to f/‖f‖∞. Thus we will assume that f ∈ C1(D)∩F

with |f | ≤ 1.

We know from (3.1), Lemma 3.1 and Lemma 3.3 that there exists a constant L > 1

such that

(3.8)
1

L
ϕ2

0 ≤ µ ≤ Lϕ2
0 and

1

L
Q̃(f, f) ≤ Q(f, f) ≤ LQ̃(f, f).

Since log |f | ≤ 0, from (3.8) we have
∫

D

µf 2 log |f |dx ≤
1

L

∫

D

ϕ2
0f

2 log |f |dx.

Now, applying the previous lemma and (3.8), it follows that the above is bounded by

1

L
ǫQ̃(f, f) +

1

L
β(ǫ)‖f‖2

L2(D,ϕ2
0) +

1

L
‖f‖2

L2(D,ϕ2
0)

log ‖f‖L2(D,ϕ2
0)

≤ ǫQ(f, f) + (β(ǫ) + logL)‖f‖2
L2(D,µ) + ‖f‖2

L2(D,µ) log ‖f‖L2(D,µ).

�

Lemma 3.6. For any p ∈ (2,∞), ǫ > 0 and bounded nonnegative g ∈ C1(D) ∩ F , we

have
∫

D

µ(x)gp(x) log g(x)dx ≤ ǫQ(g, gp−1) + 2β(ǫ)p−1‖g‖pLp(D,µ) + ‖g‖pLp(D,µ) log ‖g‖Lp(D,µ),

∫

D

µ(x)gp(x) log g(x)dx ≤ ǫQ(gp−1, g) + 2β(ǫ)p−1‖g‖pLp(D,µ) + ‖g‖pLp(D,µ) log ‖g‖Lp(D,µ),

where β(ǫ) is the function defined in (3.7).

Proof. It is well-known that if g is a bounded nonnegative function in D(Q̃), then

gp/2 and gp−1 are also in D(Q̃). Thus it follows from Lemma 3.2 that if f is a bounded

nonnegative function in C1(D)∩F , then, for p > 2, f p/2 and f p−1 are also in C1(D)∩F . By

using elementary calculations, one can check that for any bounded nonnegative function

f ∈ C1(D) ∩ F ,

(3.9) Q(f p/2, f p/2) =
p2

4(p− 1)
Q(f, f p−1) =

p2

4(p− 1)
Q(f p−1, f) ≥ 0.
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(See the appendix for a proof.) Putting f = gp/2 in (3.6) we get

p

2

∫

D

µ(x)gp(x) log g(x)dx ≤ ǫQ(gp/2, gp/2) + β(ǫ)‖g‖pLp(D,µ) +
p

2
‖g‖pLp(D,µ) log ‖g‖Lp(D,µ).

Therefore we have by (3.9) that
∫

D

µ(x)gp(x) log g(x)dx ≤
ǫp

2(p− 1)
Q(g, gp−1)+2β(ǫ)p−1‖g‖pLp(D,µ)+‖g‖pLp(D,µ) log ‖g‖Lp(D,µ),

∫

D

µ(x)gp(x) log g(x)dx ≤
ǫp

2(p− 1)
Q(gp−1, g)+2β(ǫ)p−1‖g‖pLp(D,µ)+‖g‖pLp(D,µ) log ‖g‖Lp(D,µ).

Now the desired assertions follows immediately from the inequalities above. �

It is clear that for the function β(ǫ) defined in (3.7)

(3.10) M(t) =
1

t

∫ t

0

β(ǫ)dǫ

is finite for all t > 0. Now we can state the main result of this paper.

Theorem 3.7. For any t > 0, we have

max{‖Qt‖L∞(D,µ),L2(D,µ), ‖Q̂t‖L∞(D,µ),L2(D,µ)} ≤ eM(t),

where M(t) is the function defined in (3.10).

Proof. For any t > 0 and p > 2, put

ǫ(p) =
2t

p
, Γ(p) =

2β(ǫ(p))

p
,

where β(ǫ) is the function defined in (3.7). Then we have

M(t) =

∫ ∞

2

2β(ǫ(p))

p2
dp =

∫ ∞

2

Γ(p)

p
dp.

It follows from Lemma 3.6 that for all p ∈ (2,∞) and all bounded nonnegative functions

f ∈ C1(D) ∩ F we have
∫

D

µ(x)f p(x) log f(x)dx

≤ ǫ(p)Q(f, f p−1) + Γ(p)‖f‖pLp(D,µ) + ‖f‖pLp(D,µ) log ‖f‖Lp(D,µ),(3.11)
∫

D

µ(x)f p(x) log f(x)dx

≤ ǫ(p)Q(f p−1, f) + Γ(p)‖f‖pLp(D,µ) + ‖f |pLp(D,µ) log ‖f‖Lp(D,µ).(3.12)

Note that for any bounded function f , we have

∇(ψ0Qtf) = e−λ0t∇(
ψ0

φ0
Pt(φ0f)) = e−λ0t

ψ0

φ0
∇(Pt(φ0f)) + (Qtf) · ∇ψ0 − (Qtf) ·

ψ0

φ0
∇φ0,

and

∇(φ0(x)Q̂tf) = e−λ0t∇(
φ0

ψ0

P̂t(ψ0f)) = e−λ0t
φ0

ψ0

∇(P̂t(ψ0f))+(Q̂tf)·∇φ0−(Q̂tf)·
φ0

ψ0

∇ψ0.
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Thus one can easily see that for any bounded nonnegative function f , Qtf , Q̂tf are both

bounded nonnegative functions in F . It is well-known that if g is a bounded nonnegative

function in D(Q̃), then gp−1 is also in D(Q̃). Now, using Lemma 3.2, we can see that

(Qtf)p−1 and (Q̂tf)p−1 are both bounded nonnegative functions in F . From the fact that

ai,j(x), bi(x) and c(x) are smooth, we have Qtf , Q̂tf are in C1(D). Moreover, Qtf and

Q̂tf are in the domains of the generators of {Qt} and {Q̂t}, respectively. Thus φ0Qtf and

ψ0Q̂tf are in the domains of the generators of {Pt} and {P̂t}, respectively. Now we can

repeat the proof of Theorem 2.2.7 of [9] (both for Qtf and Q̂tf) to arrive at the desired

conclusion. We omit the details. �

Remark 3.8. The observation that one can easily modify the argument in the symmet-

ric case to get hypercontractivity from the inequalities (3.11) and (3.12) was first pointed

out in [19].

Now we arrive at the main result of this paper.

Theorem 3.9. The semigroups {Pt} and {P̂t} are intrinsically ultracontractive.

Proof. This follows easily from Theorem 3.7 and the observation made after Definition

2.4. �

4. Appendix

In this section, we give the proofs of (3.2) and (3.9). Note that, unlike [19], we use no

integration by parts argument in the proofs of lemmas below.

Lemma 4.1. For any bounded nonnegative f ∈ C1(D) ∩ F and p ≥ 2,

d
∑

i,j=1

∫

D

aij

[

f p−1

(

φ0
∂f

∂xi

∂ψ0

∂xj
+ (p− 1)ψ0

∂φ0

∂xi

∂f

∂xj

)

+ f p
∂φ0

∂xi

∂ψ0

∂xj

]

dx

+

d
∑

i=1

∫

D

bi

(

f p−1ψ0φ0
∂f

∂xi
+ f pψ0

∂φ0

∂xi

)

dx+

∫

D

cφ0ψ0f
pdx+ λ0

∫

D

φ0ψ0f
pdx = 0.

Proof. Note that we have

Q(1, f p) =
1

M
E(φ0, f

pψ0) + λ0

∫

D

µf pdx = −
λ0

M

∫

D

φ0f
pψ0dx+ λ0

∫

D

µf pdx = 0

and

Q(f p, 1) =
1

M
E(f pφ0, ψ0) + λ0

∫

D

µf pdx = −
λ0

M

∫

D

f pφ0ψ0dx+ λ0

∫

D

µf pdx = 0.
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Thus

0 = MQ(f p, 1) +M(p− 1)Q(1, f p)

= E(f pφ0, ψ0) + (p− 1)E(φ0, f
pψ0) +Mpλ0

∫

D

µf pdx

=

d
∑

i,j=1

∫

D

aij
∂

∂xi
(f pφ0)

∂ψ0

∂xj
dx+ (p− 1)

d
∑

i,j=1

∫

D

aij
∂φ0

∂xi

∂

∂xj
(f pψ0) dx

+

d
∑

i=1

∫

D

biψ0
∂

∂xi
(f pφ0) dx+ (p− 1)

d
∑

i=1

∫

D

bif
pψ0

∂φ0

∂xi
dx

+p

∫

D

cφ0ψ0f
pdx+Mpλ0

∫

D

µf pdx

=

d
∑

i,j=1

∫

D

aij

[

f p−1

(

pφ0
∂f

∂xi

∂ψ0

∂xj
+ (p− 1)pψ0

∂φ0

∂xi

∂f

∂xj

)

+ pf p
∂φ0

∂xi

∂ψ0

∂xj

]

dx

+

d
∑

i=1

∫

D

bi

(

pf p−1ψ0φ0
∂f

∂xi
+ pf pψ0

∂φ0

∂xi

)

dx

+p

∫

D

cφ0ψ0f
pdx+ pλ0

∫

D

φ0ψ0f
pdx.

�

Lemma 4.2. For any bounded nonnegative f ∈ C1(D) ∩ F and p ≥ 2,

Q(f, f p−1) =

∫

D

µ(x)
d
∑

i,j=1

∂f(x)

∂xi
aij(x)

∂

∂xj

(

f p−1(x)
)

dx

= (p− 1)

∫

D

µ(x)f p−2(x)
d
∑

i,j=1

∂f(x)

∂xi
aij(x)

∂f(x)

∂xj
dx.(4.1)

Proof. We have

Q(f, f p−1) =
1

M
E(fφ0, f

p−1ψ0) + λ0

∫

D

µ(x)f p(x)dx

=
1

M

d
∑

i,j=1

∫

D

aij
∂

∂xi
(fφ0)

∂

∂xj

(

f p−1ψ0

)

dx+
1

M

d
∑

i=1

∫

D

bif
p−1ψ0

∂

∂xi
(fφ0) dx

+
1

M

∫

D

cφ0ψ0f
pdx+ λ0

∫

D

µf pdx.
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Now, using the product rule, we get

Q(f, f p−1) =

d
∑

i,j=1

∫

D

aij
∂f

∂xi

∂

∂xj

(

f p−1
)

µ(x)dx

+
1

M

d
∑

i,j=1

∫

D

aij

[

φ0f
p−1 ∂f

∂xi

∂ψ0

∂xj
+ (p− 1)f p−1ψ0

∂φ0

∂xi

∂f

∂xj
+ f p

∂φ0

∂xi

∂ψ0

∂xj

]

dx

+
1

M

d
∑

i=1

∫

D

bi

(

f p−1ψ0φ0
∂f

∂xi
+ f pψ0

∂φ0

∂xi

)

dx+
1

M

∫

D

cφ0ψ0f
pdx

+
λ0

M

∫

D

φ0ψ0f
pdx.

Applying Lemma 4.1 to the above equation, we arrive at the conclusion of the lemma. �

It is easy to see that for p = 2 the proofs of Lemma 4.1 and Lemma 4.2 work for any

bounded f ∈ C1(D) ∩ F and in this way we arrive at (3.2). By taking f = gp/2 in (3.2),

we get the first equality in (3.9) from (4.1). The proof of the other equality in (3.9) is

similar.

Acknowledgement: The authors thank the referee for the careful reading of the first

version of this paper and for useful suggestions for improving the quality of this paper.

References

[1] M. Aizenman and B. Simon, Brownian motion and Harnack inequality for Schrödinger operators,

Commun. Pure Appl. Math. 35 (1982), 209–273.

[2] A. Ancona, First eigenvalues and comparison of Green’s functions for elliptic operators on manifolds

or domains, J. Anal. Math. 72 (1997), 45–92.
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87–99.
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