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Abstract. We consider the mass concentration phenomenon for the L2-critical

nonlinear Schrödinger equations. We show the mass concentration of blow-up

solutions contained in Lq
tL

r
x space near the finite time. The new ingredient in

this paper is a refinement of Strichartz’s estimates with the mixed norm Lq
tL

r
x for

2 < q ≤ r.

1. introduction

We consider the L2-critical Cauchy problem in Rd, d ≥ 2,iut +∆u = ±|u| 4du, (t, x) ∈ R+ × Rd

u(0, x) = u0(x).
(1.1)

It is well known that (1.1) is locally well posed in the critical sense so that the time

T of existence depends not only the size of initial data but also on the profile of the

data. For u0 ∈ L2(Rd), there exists the unique solution u(t, x),

u ∈ C([0, T );L2(Rd)) ∩ L
2(d+2)

d ([0, T );L
2(d+2)

d (Rd))

which conserves the mass;

∥u(t, ·)∥L2
x(Rd) = ∥u(0, ·)∥L2

x(Rd), 0 < t < T.

The existence time interval [0, T ] is extended as long as

∥u∥
L

2(d+2)
d

t,x ([0,T ]×Rd)
< ∞.

In the blow-up direction Bourgain [3] showed that if the L2-well posed solution in

R2 breaks down at some maximal time 0 < T ∗ < ∞ with

(1.2) ∥u∥
L

2(d+2)
d

t,x ([0,T ∗)×Rd)
= ∞,

then the blow-up solution has a mass concentration phenomenon when d = 2:

lim sup
t↗T ∗

sup
x∈Rd

∫
B(x,(T ∗−t)

1
2 )

|u(t, x)|2dx ≥ ϵ(1.3)

where ϵ = ∥u0∥−M
2 for some M > 0. Later, this was extended to higher dimensions

by Bégout and Vargas [1]. Both of the results were obtained by the use of refinement
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Figure 1. We are interested in the case where (1/r, 1/q) is contained

in the line segment (A,B). The mass concentration for other admis-

sible pairs follows from the earlier results (see [1, 3]) dealing with

non-mixed norm blow up.

of Strichartz’s estimates which come from bilinear restriction estimate for the pa-

raboloid [14, 17, 18]. On the other hand, in the focusing case the ground state mass

concentration was studied with initial data in Hs, s > 0. We also refer [6, 9, 13, 19]

to the readers for further results in this direction.

In this paper we are concerned with the mass concentration of solution to the

(1.1) when the initial datum u0 ∈ L2 and its mixed Lq
tL

r
x-norm blows up in finite

time. We basically rely on the argument due to Bourgain [3]. We also consider

L2-critical Hartree equation for which the similar approach works.

For q, r ≥ 2, we say that a pair (q, r) is admissible if

2

q
+

d

r
=

d

2
,

and (q, r) ̸= (2,∞) when d = 2. The following is our first result which is a natural

generalization of results in [1, 3] to mixed norm spaces Lq
tL

r
x with admissible (q, r).

Theorem 1.1. Let (q, r) be an admissible pair with q > 2 when d ≥ 4 and q ≥ (d+

4)/d when d = 2, 3. Suppose that the solution of (1.1) satisfies ∥u∥Lq
tL

r
x([0,t)×Rd) < ∞

for 0 < t < T ∗ < ∞ and

(1.4) ∥u∥Lq
tL

r
x([0,T

∗)×Rd) = ∞.

Then (1.3) holds.

The readers may try to establish the similar result for d = 1 by following the

argument (see also for related results [4, 10]). However, refinements of the usual
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Strichatz’s and restriction estimates (Proposition 2.3, 2.5) do not seem to be avail-

able in this case.

From the previously known results it is enough to consider the case q ≤ r in

which q ≤ 2(d + 2)/d. From interpolation with the conserved mass it is clear that

if ∥u∥Lq0
t L

r0
x ([0,T ∗)) = ∞ for some admissible (q0, r0) then ∥u∥Lq

tL
r
x([0,T

∗)) = ∞ for all

admissible (q, r) satisfying q ≤ q0 (see Figure 1). Hence from the results due to

Bourgain [3], Bégout and Vargas [1] one can see there is a mass concentration if

(1.4) holds and q ≥ 2(d+ 2)/d.

We also remark that from the standard L2-critical theory ([5]) based on contrac-

tion argument the local wellposedness of (1.1) can be established in the mixed norm

space such that

u ∈ C([0, T ];L2(Rd)) ∩ Lq([0, T ];Lr(Rd))

provided (q, r) is admissible and q ≥ max(2, (d+4)/d) and the blow-up criterion (1.2)

is replaced with such admissible pair (q, r). In fact, let us recall the homogeneous

∥eit∆f∥Lq
tL

r
x
≤ C∥f∥L2 and inhomogeneous Strichartz’s estimates

∥∥ ∫ t

0

eit∆(t−s)F (s)ds
∥∥
Lq
tL

r
x
≤ C∥F∥

Lq̃′
t Lr̃′

x
(1.5)

which are valid for admissible (q, r) and (q̃, r̃) (see [7, 11, 16]). Applying the standard

fixed point argument to (1.1) together with Duhamel’s formula (see (3.2)), to make

it sure that the nonlinear map is a contraction1 we need only to check that there

are admissible pairs (q, r), (q̃, r̃) satisfying

(1.6) (
4

d
+ 1)

1

q
=

1

q̃′
, (

4

d
+ 1)

1

r
=

1

r̃′
.

Since 2
q̃′
+ d

r̃′
= 2 + d

2
and the vectors (1

r
, 1
q
) and ( 1

r̃′
, 1
q̃′
) should be parallel, by a

simple geometric consideration (see Figure 2) one can see that there are admissible

pairs (q, r), (q̃, r̃) satisfying (1.6) long as q ≥ max(2, (d+ 4)/d) when q ≤ r .

Secondly, we consider the L2-critical Hartree equation, which is given byiut +∆u = ±(|x|−2 ∗ |u|2)u
u(0, x) = u0(x) ∈ L2(Rd), d ≥ 3.

(1.7)

The Hartree nonlinearity is the form of (|x|−γ ∗ |u|2)u for 0 < γ < d. The case γ = 2

is mass critical and the equation (1.2) is scaling invariant under u → uλ(t, x) =

1This amounts to showing ∥
∫ T

0
eit∆(t−s)[|u(s)| 4du(s) − |v(s)| 4d v(s)]ds|∥Lq

tL
r
x
≤ C(∥u∥

4
d

Lq̃′
t Lr̃′

x

+

∥u∥
4
d

Lq̃′
t Lr̃′

x

)∥u− v∥
Lq̃′

t Lr̃′
x

which follows from the inhomogeneous Strichartz’s estimate and Hölder’s

inequality.
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Figure 2. The line segment [(1
2
, 0), (d−2

2d
, 1
2
)] stands for the reciprocal

pair (1
r
, 1
q
) of admissible pair (q, r), and [(1

2
, 1), (d+2

2d
, 1
2
)] stands for

( 1
r̃′
, 1
q̃′
) of the dual exponents of admissible pairs (q̃, r̃). The points

A = (1/r, 1/q) and B = (1/r̃′, 1/q̃′) satisfy the relation (1.6).

λ− d
2u( t

λ2 ,
x
λ
). Even though the nonlinear term is different from (1.1), the local well-

posedness theory and the blow-up criterion (1.2) for the equation (1.7) are com-

pletely the same as those of (1.1). One may be interested in a mass concentration

for the finite time blow-up solutions for (1.7). It turns out that the mass concen-

tration phenomenon is mostly involved with the homogeneous part of the solution.

The method developed in [1, 3] can be applied to the solution of (1.7) without much

modifications as long as one can control the nonlinear term effectively.

Theorem 1.2. Let d ≥ 3. Let (q, r) be an admissible pair with 2 < q ≤ r. Suppose

that the solution of (1.7) satisfies ∥u∥Lq
tL

r
x([0,t)×Rd) < ∞ for 0 < t < T ∗ < ∞ and

(1.4). Then (1.3) holds.

It is also possible to obtain analogous results in mixed norm space Lq
tL

r
x for the

2-dimensional non-elliptic Schrödinger equation which was considered in [15] as long

as (q, r) is admissible and q ≥ 3.

The paper is organized as follows. In Section 2 we obtain preliminaries estimates

which will be used in the proofs of Theorems. In Section 3 we prove Theorems 1.1

and 1.2.
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2. preliminary

In this section we show several lemmas which will be used later for the proofs of

the theorems. In order to deal with a mass concentration in the mixed norm space

Lq
tL

r
x, we will use the mixed norm bilinear restriction estimates in the following.

2.1. The space Xq,r
p (s). For each j ∈ Z, we decompose Rd into disjoint dyadic

(partly open) cubes of side length 2−j which are given by

Qj
k =

d∏
i=1

[ki2
−j, (ki + 1)2−j)

with k = (k1, . . . , kd) ∈ Zd. Let us set f j
k = fχQj

k
. For 1 ≤ p, r, s ≤ ∞ we define

∥f∥Xq,r
p (s) =

(∑
j

[∑
k

(2j(
d
p
− d

s
)∥f j

k∥Lp)q
] r

q
) 1

r .

The following is a slight generalization of Theorem 1.3 in [1].

Lemma 2.1. For p < s < q ≤ r, there is a θ ∈ (0, 1) such that

∥f∥Xq,r
p (s) ≤ C (sup

j,k
2j(

d
p
− d

s
)∥f j

k∥Lp)θ ∥f∥1−θ
Ls .

To show Lemma 2.1, it suffices to consider the case q = r because ℓq ∩ ℓ∞ ⊃ ℓr.

Note that the Xq,r
p (s)-norm is actually a mixed norm. Hence in view of (complex)

interpolation (see [2]) it is enough to show that

(2.1) ∥f∥X∞,∞
p (s) ≤ sup

j,k
2j(

d
p
− d

s
)∥f j

k∥Lp

and for p < s < q

(2.2) ∥f∥Xq,q
p (s) ≤ C∥f∥Ls .

Since (2.1) is obvious, we need only to show (2.2).

Proof of (2.2). To begin with, we may assume ∥f∥Ls = 1 and it is enough to show

∥f∥Xq,q
p (s) ≤ C. We break into f = f j + fj where f j = χ

{|f |≥2j
d
s }
. Then,

∥f∥q
Xq,q

p (s)
≤ 2q

(∑
j

∑
k

(2j(
d
p
− d

s
)∥f jχQj

k
∥Lp)q +

∑
j

∑
k

(2j(
d
p
− d

s
)∥fjχQj

k
∥Lp)q

)
.

Since p < s < q, we have∑
j

∑
k

(2j(
d
p
− d

s
)∥f jχQj

k
∥Lp)q ≤

(∑
j

∑
k

2jp(
d
p
− d

s
)∥f jχQj

k
∥pLp

) q
p .
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Since Qj
k are disjoint for each fixed j, by taking summation along k we obtain that∑

j

∑
k

(2j(
d
p
− d

s
)∥f jχQj

k
∥Lp)q ≤

( ∫
Rd

∑
j

2jp(
d
p
− d

s
)|f j(x)|pdx

) q
p

=
( ∫

Rd

∑
|f(x)|≥2j

d
s

2jp(
d
p
− d

s
)|f(x)|pdx

) q
p

≤ C∥f∥
q
p
s

Ls ≤ C,

because ∥f∥s = 1. On the other hand, by Hölder’s inequality and the fact that

p < s < q we see that∑
j

∑
k

(2j(
d
p
− d

s
)∥fjχQj

k
∥Lp)q ≤

∑
j

∑
k

2jq(
d
q
− d

s
)∥fjχQj

k
∥qLq .

Again using the disjointness of Qj
k and taking summation along k, we have∑

j

∑
k

(2j(
d
p
− d

s
)∥fjχQj

k
∥Lp)q ≤

∫
Rd

∑
j

2jq(
d
q
− d

s
)|fj(x)|qdx

=

∫
Rd

∑
|f(x)|<2j

d
s

2jq(
d
q
− d

s
)|f(x)|qdx

≤ ∥f∥sLs = 1.

Therefore, we get the desired. □

2.2. Refinement of Strichartz’s estimates. We recall the bilinear restriction

estimates for the paraboloid Theorem 2.3 in [12]. It is a mixed norm generalization

of bilinear restriction estimates due to Tao [17].

Theorem 2.2. Let Q1 and Q2 be cubes of side length 1. Suppose

dist (Q1, Q2) ∼ 1

and f̂ and ĝ are supported in Q1 and Q2, respectively. Then for q, r > 2 satisfying

q > min(2, 8/(d+ 1)), 2/q < (d+ 1)(1
2
− 1

r
), we have

(2.3) ∥eit∆feit∆g∥
L
q/2
t L

r/2
x

≤ C ∥f̂∥L2∥ĝ∥L2

where C is independent of Q1 and Q2.

From the interpolation between (2.3) and trivial L∞-L1 estimates, for any 2 <

q ≤ r and 2/q + d/r = d/2 there is a p < 2 such that

∥eit∆feit∆g∥
L
q/2
t L

r/2
x

≤ C∥f̂∥Lp∥ĝ∥Lp

provided that supp f̂ and supp ĝ are contained inB(0, 1) and dist (supp f̂ , supp ĝ) ∼
1. By the standard parabolic rescaling, there is a constant C independent of j ∈ Z
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such that

(2.4) ∥eit∆feit∆g∥
L
q/2
t L

r/2
x

≤ C22j(
2
q
+d( 1

r
+ 1

p
−1))∥f̂∥Lp∥ĝ∥Lp

provided that supp f̂ and supp ĝ are contained inB(x0, 2
1−j) and dist (supp f̂ , supp ĝ) ∼

2−j.

Proposition 2.3. Let q, r be numbers satisfying 2 < q ≤ r and 2/q + d/r = d/2.

Then there are numbers p∗, q∗ and r∗ such that p∗ < 2 < q∗ ≤ r∗ and

∥eit∆f∥Lq
tL

r
x

≤ C ∥f̂∥Xq∗,r∗
p∗ (2).

This can be shown by interpolating the following two estimates:

∥eit∆f∥Lq
tL

r
x
≤ C∥f̂∥X∞,2

2 (2)

and for some p < 2,

(2.5) ∥eit∆f∥Lq
tL

r
x
≤ C∥f̂∥X2,q

p (2).

In fact, the first estimate is actually the Strichartz’s estimates and for the second

inequality we use Theorem 2.2. We also use the following simple lemma:

Lemma 2.4 ([18], Lemma 6.1). Let {Rk} be a collection of rectangles in frequency

space such that the dilates {2Rk} are boundedly overlapping, and suppose that {Fk}
are a collection of functions whose Fourier supports are contained in {Rk}. Then

for 1 ≤ p ≤ ∞ we have(∑
k

∥∥Fk

∥∥p∗
Lp

)1/p∗ ≲
∥∥∑

kFk

∥∥
Lp ≲

(∑
k

∥∥Fk

∥∥p∗
Lp

)1/p∗
where p∗ = min(p, p′) and p∗ = max(p, p′).

Proof of (2.5). We say Qj
k ∼ Qj

k′ to mean that Qj
k and Qj

k′ are not adjacent but have

adjacent parent cubes of diameter 2−j. So if Qj
k ∼ Qj

k′ , then dist (Qj
k, Q

j
k′) ∼ 2−j.

By a Whitney decomposition of Rd × Rd away from the diagonal D of Rd × Rd,

ignoring some harmless measure zero set, we have

Rd × Rd =
∪
j∈Z

∪
Qj

k∼Qj

k′

Qj
k ×Qj

k′

(see also [18]). Hence
∑

j≥1

∑
Qj

k∼Qj

k′
χQj

k
χQj

k′
= 1 almost everywhere. So we see

that

eit∆feit∆f =
∑
j

∑
k∼k′

eit∆f j
ke

it∆f j
k′ ,

where f j
k = (f̂χQj

k
)∨. Therefore, in order to get linear estimates it is enough to show

that

(2.6)
∑
j

∥
∑
k∼k′

eit∆f j
ke

it∆f j
k′∥Lq/2

t L
r/2
x

≤ C∥f̂∥2
X2,q

p (2)
.
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We observe that for each fixed t the supports of eit∆f j
ke

it∆f j
k′ are contained bound-

edly overlapping cubes when k ∼ k′. We also note that r ≤ 4 when d ≥ 2 because

2 < q ≤ r. So by Lemma 2.4 we see that∥∥∑
k∼k′

eit∆f j
ke

it∆f j
k′

∥∥
L
q/2
t L

r/2
x

≤ C
∥∥(∑

k∼k′

∥∥eit∆f j
ke

it∆f j
k′∥

r/2

L
r/2
x

)2/r∥
L
q/2
t

.

Since q ≤ r, we get∥∥∑
k∼k′

eit∆f j
ke

it∆f j
k′

∥∥
L
q/2
t L

r/2
x

≤ C
(∑
k∼k′

∥∥eit∆f j
ke

it∆f j
k′∥

q/2

L
q/2
t L

r/2
x

) 2
q .

Now using (2.4) and Schwarz’s inequality, it follows that∥∥∑
k∼k′

eit∆f j
ke

it∆f j
k′

∥∥
L
q/2
t L

r/2
x

≤ C 22j(
d
p
− d

2
)
(∑
k∼k′

∥∥f̂ j
k∥

q/2
p ∥f̂ j

k′∥
q/2
p

) 2
q

≤ (
∑
k

2jq(
d
p
− d

2
)∥f̂ j

k∥
q
Lp)

2
q .

Putting the above in the right hand side of (2.6), we get the required (2.5). □

Proposition 2.5. Let 2 < q ≤ r ≤ ∞. Then if f̂ is supported in a ball of radius

one, for 2
q
+ d

r
< d(1− 1

q
) and 2

q
+ d+1

r
< d+1

2
, there is a constant C such that

∥eit∆f∥Lq
tL

r
x
≤ C∥f̂∥L∞ .

Proof. Using the similar decomposition and notation which are used in the above,

we need to show that for some ϵ > 0,

∥
∑
k∼k′

eit∆f j
ke

it∆f j
k′∥Lq/2

t L
r/2
x

≤ C2−ϵj∥f̂∥Lp∥ĝ∥Lp

because f̂ is supported in a ball of radius one.

Since the spatial Fourier supports of eit∆f j
ke

it∆f j
k′ are boundedly overlapping, we

can see that

(2.7) ∥
∑
k∼k′

eit∆f j
ke

it∆f j
k′∥Lq/2

t L
r/2
x

≤ C∥(
∑
k∼k′

∥eit∆f j
ke

it∆f j
k′∥

r∗

L
r/2
x

)1/r
∗∥

L
q/2
t

where r∗ = min((r/2, (r/2)′). Since q ≤ r and (q, r) is admissible, we have r∗ ≥ q/2.

Hence it is easy to see that the left hand side of (2.7) is bounded by

C
(∑
k∼k′

∥eit∆f j
ke

it∆f j
k′∥

q/2

L
q/2
t L

r/2
x

)2/q
.

Using (2.4) with p = ∞, we have∥∥∑
k∼k′

eit∆f j
ke

it∆f j
k′

∥∥
L
q/2
t L

r/2
x

≤ C
(∑
k∼k′

2qj(
2
q
+d( 1

r
−1))
)2/q∥f̂∥L∞∥f̂∥L∞

≤ C 22(j
2
q
+d( 1

r
−1+ 1

q
)) ∥f̂∥L∞∥f̂∥L∞ .

This completes the proof. □
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2.3. Two Lemmas. In this subsection we extend two lemmas in [1, 3] to mixed

norm spaces. They were playing crucial roles in showing a mass concentration. The

first one is concerned with decomposition of the initial datum into functions of which

Fourier transform is spreading rather than concentrating. In view of uncertainty

principle the spreading part of the initial datum will concentrate on some spatial

region. The second one enables us to find regions where the linear Schrödinger wave

concentrates in the mixed norm space Lq
tL

r
x (here (q, r) is admissible) if the Fourier

transform of the initial data does not severely concentrate.

For a given cube τ let us denote the side length of τ by ℓ(τ).

Lemma 2.6. Let q, r be numbers satisfying 2 < q ≤ r and 2/q+d/r = d/2. Suppose

f ∈ L2(Rd) and

(2.8)
∥∥eit△f∥∥

Lq
tL

r
x
≥ ϵ

for some ϵ > 0. Then there exists fk ∈ L2(Rd), cubes τk and Ak ∈ (0,∞) for

k = 1, 2, · · · , N with N = N(∥f∥L2 , d, ϵ) such that

(S1) For all k = 1, · · · , N , supp f̂k ⊂ τk such that

ℓ(τk) ≤ C∥f∥cL2ϵ−νAk and |f̂k| < A
−d/2
k ,

(S2)
∥∥eit△f −

∑N
k=1 e

it△fk
∥∥
Lq
tL

r
x
< ϵ,

(S3) ∥f∥2L2 =
∑N

k=1 ∥fk∥2L2 + ∥f −
∑N

k=1 fk∥2L2 .

Here the constants C, c, ν depend only on d.

The proof of the above lemma is based on the following simpler one.

Lemma 2.7. Under the same assumption as in Lemma 2.6 there exists a function

h ∈ L2(Rd), a cube τ and a number A > 0 satisfying the followings:

(1) supp ĥ ⊂ τ such that

ℓ(τ) ≤ ∥f∥cL2ϵ−νA and |ĥ| < A−d/2,

(2) ∥h∥L2 ≥ C∥f∥−a
L2 ϵ

b for some a, b and C,

(3) ∥f∥2L2 = ∥h∥2L2 + ∥f − h∥L2.

Proof. Using Lemma 2.3 and taking s = 2 in Lemma 2.1, we see that there are

0 < θ < 1 and p < 2 such that

ϵ ≤
∥∥eit△f∥∥

Lq
tL

r
x
≤ ∥f∥1−θ

L2

(
sup
j,k

2dj(
1
p
− 1

2
)∥f̂ χj

k∥Lp

)θ
.

From (2.8) and the above, there exists τ with ℓ(τ)= 2−j such that

∥f̂∥pLp(τ) ≥
(
ϵ
1
θ 2dj(

1
2
− 1

p
) ∥f∥1−1/θ

L2

)p
.(2.9)

Since p < 2, we have∫
τ ∩{f̂ ≥M}

|f̂(ξ)|2 |f̂(ξ)|p−2 dξ ≤ Mp−2

∫
τ ∩{f̂≥M}

|f̂(ξ)|2 dξ.
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Combining this with (2.9)∫
τ ∩{f̂ <M}

|f̂(ξ)|p dξ ≥
(
ϵ
1
θ 2dj(

1
2
− 1

p
)∥f∥1−

1
θ

L2

)p − Mp−2

∫
τ ∩{f̂≥M}

|f̂(ξ)|2dξ.

Now we choose M which satisfies Mp−2 = 1
2
ϵ
p
θ ∥f∥p−

p
θ
−2

L2 2dj(
1
2
− 1

p
)p. Then it follows

that

ℓ(τ) = 2−j = M− 2
d

(
ϵ
p
θ ∥f∥p−

p
θ
−2

L2 /2
) 2

d(p−2)(2.10)

and ∫
{f̂ <M}∩ τ

|f̂(ξ)|p dξ ≥ 1

2

(
ϵ
1
θ 2dj(

1
2
− 1

p
)∥f∥1−

1
θ

L2

)p
.

By Hölder’s inequality the left hand side of the above is bounded by

∥f̂∥p
L2({f̂ <M}∩ τ)

2dj(
p
2
−1).

Hence we see that

1

4
ϵ
2
θ ∥f∥2(1−

1
θ
)

L2 ≤
∫
{f̂ <M}∩ τ

|f̂(ξ)|2 dξ.(2.11)

Now we take ĥ = f̂χ{f̂<M}∩ τ and A = M− 2
d2−

2
d(p−2) . Then the property (1) follows

from (2.10), the choices of h, and A. The inequality in (2) follows from (2.11), (3),

and the choice of h. □

Proof of Lemma 2.6. We apply Lemma 2.7 to f repeatedly. We start with setting

f1 = h, τ1 = τ , and A1 = A. Then by Lemma 2.7 we have

(1)′ supp f̂1 ⊂ τ1 such that

ℓ(τ1) ≤ ∥f∥cL2ϵ−νA1 and |f̂1| < A
−d/2
1 .

(2)′ ∥f1∥L2 ≥ C ∥f∥−a
L2 ϵ

b for some a, b and C.

(3)′ ∥f∥2L2 = ∥f1∥2L2 + ∥f − f1∥L2 .

If we have ∥∥eit△f − eit△f1
∥∥
Lq
tL

r
x
< ϵ,

our proof is finished with N = 1. Otherwise, we apply Lemma 2.7 with f replaced

by f − f1. We set f2 = h, τ2 = τ and A2 = A. We apply Lemma 2.7 and (3)′ to get

the following :

(1)′′ supp f̂2 ⊂ τ2 such that

ℓ(τ2) ≤ ∥f − f1∥cL2ϵ−νA2 ≤ ∥f∥cL2ϵ−νA2 and |f̂2| < A
−d/2
2 .

(2)′′ ∥f2∥L2 ≥ C ∥f − f1∥−a
L2 ϵ

b ≥ C ∥f∥−a
L2 ϵ

b for some a, b, and C.

(3)′′ ∥f − f1∥2L2 = ∥f2∥2L2 + ∥(f − f1)− f2∥2L2 .
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We repeat the above process until we achieve∥∥eit△f −
k∑

j=1

eit△fj
∥∥
Lq
tL

r
x
< ϵ.

From Strichartz’s estimates, we see that∥∥eit△f −
n∑

j=1

eit△fj
∥∥2
Lq
tL

r
x

≤ ∥f −
n∑

j=1

fj∥2L2

= ∥f∥2L2 −
n∑

j=1

∥fj∥2L2

≤ C
(
∥f∥2L2 − Cn∥f∥−a

L2 ϵ
b
)
.

So this implies that our process ends in finite steps and it is also obvious that the

number of steps only depends on ϵ and ∥f∥L2 . □

As before, we can denote by τ(ξ, ρ) the cube centered at ξ ∈ Rd of side length ρ.

Lemma 2.8. Let q, r be numbers satisfying 2 < q ≤ r and 2/q+d/r = d/2. Suppose

g ∈ L2(Rd) and

supp ĝ ⊂ τ(ξ0, C0A) and |ĝ| < A− d
2

for some A > 0 and C0 > 0. Then for any ϵ > 0, there exist N1 ∈ N, N1 ≤
C(d, C0, ϵ), and sets (Qn)1≤n≤N1 ⊂ R× Rd which is given by

Qn = {(t, x) ∈ R× Rd; t ∈ In and (x− 4πtξ0) ∈ Cn},(2.12)

where In ⊂ R is an interval with |In| = A−2 and Cn is a cube with l(Cn) = A−1

such that

∥eit∆g∥
Lq
tL

r
x(Rd+1\

∪N1
n=1 Qn)

< ϵ.

Notation. Let E be a measurable set in Rd+1 and f : Rd+1 → R is a measurable

function. If Et = {x : (t, x) ∈ E} is measurable in Rd for all t ∈ R, we define the

mixed integral as

∥f∥q
Lq
tL

r
x(E)

=

∫
R

( ∫
Et

|f(t, x)|rdx
) q

r dt.

Proof. We follow closely Lemma 3.3 in [1]. Let g′ ∈ L2(Rd) be the normalized

function of g defined by ĝ′(ξ′) = A
d
2 ĝ(ξ0 + Aξ′). Then supp ĝ′ ⊂ [−C0/2, C0/2]

d,

∥g′∥L2 = ∥g∥L2 and |ĝ′| < 1. We have the identity

|eiA2t∆g′(A(x− 4πtξ0))| = A− d
2 |eit∆g(x)|,

where A− d
2 comes from the change of variables ζ = ξ0 + Aξ. By the change of

variables (t, x) → (t′, x′) = (A2t, A(x− 4πtξ0)), we have

|eit∆g(x)| = A
d
2 |eit′∆g′(x′)|.(2.13)
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We now note that the Fourier transform of g′ is supported in a cube of side length

one. Since 2 < q ≤ r and (q, r) is admissible, from Proposition 2.5 we see that there

are numbers q∗ < q, r∗ < r such that r∗/q∗ = r/q and

∥eit′∆g′∥
Lq∗
t′ L

r∗
x′ (R×Rd)

≤ C(d)∥ĝ′∥L∞ .(2.14)

Let E ⊂ R× Rd be the set {(t′, x′) : |eit′∆g′(x′)| < λ} for a given λ. We write

∥eit∆g′∥q
Lq

t′L
r
x′ (E)

=

∫
R

( ∫
{x′:|eit′∆g′(x′)|<λ}

|eit′∆g′(x′)|r∗+r−r∗dx′) q
r dt′.

By using (2.14) and the choice of q∗, r∗ we see that the right hand side of the above

is bounded by

∥eit∆g′∥q
Lq

t′L
r
x′ (E)

≤ C(C0, d)λ
(r−r∗) q

r ∥ĝ′∥L∞ ≤ C(C0, d)λ
(r−r∗) q

r

because ∥g∥L2 = ∥ĝ′∥L2 and ĝ′ is supported in a cube of side length 1. Since r∗ < r,

due to the above estimate there exists a λ0(d, C0, ϵ) ∈ (0, 1) small enough such that

∥eit′∆g′∥q
Lq

t′L
r
x′ (Ẽ)

≤ ϵq

where Ẽ = {(t′, x′) : |eit′∆g′(x′)| < 2λ0}.
Since supp ĝ′ ⊂

[
−C0

2
, C0

2

]d
and ∥ĝ′∥L∞ ≤ 1, the map

eit
′∆g′(x) =

∫
Rd

e2πi(x·ξ−2πt|ξ|2) ĝ′(ξ) dξ

satisfies

|eit′∆g′(x′)− eit
′′∆g(x′′)| ≤ C (|t′ − t′′|+ |x′ − x′′|),

where C = C(C0, d) ≥ 1. So for such a constant, if (t′, x′) ∈ E and if (t′′, x′′) ∈ R×Rd

is such that |t′ − t′′| ≤ λ0

2C
< 1

2
and |x′ − x′′| ≤ λ0

2C
< 1

2
, then (t′′, x′′) ∈ Ẽ. So there

exists a set R and a family (Pr)r∈R = (Jr, Kr)r∈R ⊂ R × Rd, where Jr ⊂ R is a

closed interval of center t′ ∈ R with |Jr| = λ0

C
and Kr ∈ C of center x′ ∈ Rd with

l(Kr) =
λ0

C
and (t′, x′) ∈ {|eit′∆g′(x′)| ≥ 2λ0}. Thus we have that

for all (r, s) ∈ R×R with r ̸= s, Int(Pr) ∩ Int(Ps) = ∅ and

{|eit′∆g′(x′)| ≥ 2λ0} ⊂
∪
r∈R

Pr ⊂ {|eit′∆g′(x′)| ≥ λ0},(2.15)

where Int(Pr) denotes the interior of the set Pr. We set N1 = ♯R. It follows from

(2.15) and the Strichartz’s estimate that

N1

(λ0

C

)d+1
=
∣∣ ∪
r∈R

Pr

∣∣ ≤ |{|eit′∆g′(x′)| ≥ λ0}|

≤ λ−r
0 ∥eit′∆g′(x′)∥q

Lq
tL

r
x(R×Rd)

≤ C λ−r
0 ∥g∥qL2

from which we deduce that N1 < ∞ and N1 ≤ C(∥g∥L2 , d, C0, ϵ). Actually, since

our hypothesis implies that ∥g∥L2 ≤ C
N/2
0 , we can also write N1 ≤ C(d, C0, ϵ). For

any integer 1 ≤ n ≤ N1, let (tn, xn) be the center of Pn, let In ⊂ R be the interval of
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center tn
A2 with |In| = 1

A2 , let I
′
n = A2In, let Cn ∈ C of center 1

A
xn with ℓ(Cn) =

1
A
,

let C ′
n = ACn and let Qn be defined by (2.12). We obtain

∥eit′∆g′∥q
Lq

t′L
r
x′ (R

d+1\
∪N1

n=1 I
′
n×C′

n)
< ϵq.

By (2.13) and reversing the change of variables (t′, x′) → (t, x), we have

∥eit∆g∥q
Lq
tL

r
x(Rd+1\

∪N1
n=1 Qn)

= Ad( q
2
− q

r
)−2∥eit∆g′∥q

Lq

t′L
r
x′ (R

d+1\
∪N1

n=1 I
′
n×C′

n)
< ϵq

since (q, r) is admissible. This concludes the proof of the lemma. □

3. Mass concentration for the Schrödinger operator

3.1. Proof of Theorem 1.1. Let u be the maximal solution to (1.1) over the

maximal forward existence time interval [0, T ∗) so that (1.4) is satisfied for some

Strichartz admissible pairs (q, r), 2 < q ≤ r and ∥u∥Lq
tL

r
x([0,t)×Rd) < ∞ for 0 < t <

T ∗ < ∞.

Let η be a small positive number. Then we can find a strictly increasing sequence

t1 < t2 < · · · < tn < · · · contained in [0, T ∗) such that

lim
n→∞

tn = T ∗

and for every n ∈ N

(3.1) ∥u∥Lq
tL

r
x((tn,tn+1)×Rd) = η.

By Duhamel’s formula we have for t ∈ (0, T ∗)

(3.2) u(t) = ei∆(t−tn)u(tn) + i

∫ t

tn

ei∆(t−s)|u(s)|
4
du(s) ds.

3.1.1. Controlling the inhomogeneous part. Since the power 1 + 4/d is bigger than

one, we can throw away the inhomogeneous part just comparing the size of norm

with the homogeneous part. It can be done by using the Strichatz’s estimates.

For any t ∈ (tn, tn+1) let us set

Fn(u) = i

∫ t

tn

ei∆(t−s)|u|
4
du(s) ds.

Applying Strichartz’s estimate together with (3.1), we see

∥Fn(u)∥Lq
tL

r
x((tn,tn+1)×Rd) ≤ C ∥u(s)∥

4+d
d

Lq
tL

r
x((tn,tn+1)×Rd)

= C η
4+d
d(3.3)

as long as d+4
d

≤ q ≤ 4(d+1)
d

for d = 2, 3 and 2 < q ≤ 4(d+1)
d

for d ≥ 4 in view of (1.6)

and the argument around it. Hence from (3.1), (3.3) and time translation we get

∥ei(t−tn)∆u(tn)∥Lq
tL

r
x((tn,tn+1)×Rd) ≥

η

2
,

for η sufficiently small. Hence it is enough to deal with the linear propagator in the

last of the proof.
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3.1.2. Decomposition to the initial datum with non-concentration Fourier trans-

forms. Now we decompose u(tn) into functions with non-concentration Fourier trans-

forms using Lemma 2.6.

Fix n ∈ N and the time interval (tn, tn+1). We denote f = u(tn). Then by the

mass conservation we have

∥f∥L2(Rd) = ∥u0∥L2(Rd).

Thus, applying Lemma 2.6 to f with ϵ = η
4+d
d , there exists {fσ}1≤σ≤N0 such that f̂σ

is supported in a cube τσ,

(3.4) |f̂σ| ≤ C0A
− d

2
σ

such that

(3.5) ∥eit∆f −
N0∑
σ=1

eit∆fσ∥Lq
tL

r
x(R×Rd) < η

4+d
d ,

where N0 = N0(∥f∥L2 , d, η).

Now we decompose (3.1) into three parts;

ηq =

∫ tn+1

tn

(∫
Rd

|u|rdx
) q

r

dt(3.6)

≤ I + II +

∫ tn+1

tn

(∫
Rd

|u|2|
N0∑
σ=1

ei(t−tn)∆fσ|r−2dx

) q
r

dt,

where

I =

∫ tn+1

tn

(∫
Rd

|u|2|u(t, x)− ei(t−tn)∆u(tn)|r−2dx

) q
r

dt, and

II =

∫ tn+1

tn

(∫
Rd

|u|2|ei(t−tn)∆u(tn)−
N0∑
σ=1

ei(t−tn)∆fσ|r−2dx

) q
r

dt.

Recalling the definition of Fn(u) and using Hölder’s inequality with 2
r
+ r−2

r
= 1

successively,

I =

∫ tn+1

tn

(∫
Rd

|u|2|Fn(u)|r−2dx

) q
r

dt

≤ ∥u∥
2q
r

Lq
tL

r
x((tn,tn+1)×Rd)

∥Fn(u)∥
q(r−2)

r

Lq
tL

r
x((tn,tn+1)×Rd)

.

Hence using (3.1) and (3.3), we see that

I ≤ Cη
2q
r η

(d+4)(r−2)q
dr <

ηq

4
,
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since (d+4)r−8
d

> r for r ≥ q > 2. Similarly, using (3.5) we get

II ≤ ∥u∥
2q
r

Lq
tL

r
x((tn,tn+1)×Rd)

∥ei(t−tn)∆u(tn)−
N0∑
σ=1

ei(t−tn)∆fσ∥
q(r−2)

r

Lq
tL

r
x

<
ηq

4
.

Thus from (3.6), I, and II we find that∫ tn+1

tn

(∫
Rd

|u|2|
N0∑
σ=1

ei(t−tn)∆fσ|r−2dx

) q
r

dt ≥ ηq

2
.

Since N0 = N0(∥u0∥L2(Rd), η), there exists an n0 and an f0 = fn0 supported on a

cube τ0 such that

(3.7)

∫ tn+1

tn

( ∫
Rd

|u(t, x)|2
∣∣ei(t−tn)∆f0(x)

∣∣r−2
dx
) q

r dt ≥ ϵ0,

where we denote by ϵ0 =
1
2

ηq

N
(r−2)q/r
0

and f0 = f0(n). Let us set

ℓ(τ0) = A.

Then from (3.4) it follows that |f̂0| ≤ CA−d/2.

3.1.3. Figuring out the concentrating region. By Lemma 2.8, there isN1 = N1(∥f0∥L2 , η)

and a set of regions {Qn}1≤n≤N1 defined by

Qn = {(t, x) ∈ R× Rd; t ∈ In and (x− 4πtξ0) ∈ Cn},

where Cn is a cube of measure l(Cn) = A−1, and In is an interval of length l(In) =

A−2 such that

∥ei(t−tn)∆f0∥Lq
tL

r
x(R×Rd\∪N1

n=1Qn)
< (

ϵ0
2η2q/r

)r/q(r−2).

Then by Hölder’s inequality with 2
r
+ r−2

r
= 1 twice, we have∥∥|u|2|ei(t−tn)∆f0|r−2

∥∥q
Lq
tL

r
x((tn,tn+1)×Rd/∪N1

n=1Qn)

≤ ∥u∥
2q
r

Lq
tL

r
x((tn,tn+1)×Rd)

∥ei(t−tn)∆f0∥
q(r−2)

r

Lq
tL

r
x(R×Rd)\∪N1

n=1Qn)

< η2q/r
ϵ0

2η2q/r
=

ϵ0
2
.

Thus from (3.7) it follows that∥∥|u|2|ei(t−tn)∆f0|r−2
∥∥q
Lq
tL

r
x((tn,tn+1)×Rd ∩ (∪N1

n=1Qn))
≥ ϵ0

2
.

It implies there is a region Q0 ∈ {Qn}n=N1
n=1 such that

(3.8)

∫
(tn,tn+1)∩ I0

( ∫
Qt

0

|u(t, x)|2 |ei(t−tn)∆f0(x)|r−2 dx
) q

r dt ≥ 1

2N1

ϵ0 := ϵ1

where Qt
0 = {x : (x, t) ∈ Q0}.
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3.1.4. Determining the size of window. Since |f̂0| ≤ CA−d/2 and f̂0 is supported in

a cube of measure Ad, we see that

(3.9) |ei(t−tn)∆f0(x)| ≤
∫
τ

|f̂0(ξ)| dξ ≤ C A
d
2 .

Thus from dq(r − 2)/r = 4, it follows that

ϵ1 ≤
∫
(tn,tn+1)∩ I0

( ∫
Qt

0

|u(t, x)|2 |ei(t−tn)∆f0(x)|r−2 dx
) q

r dt

≤ C A
dq(r−2)

2r

∫
(tn,tn+1)

∩
I0

( ∫
Qt

0

|u(t, x)|2 dx
) q

r dt

≤ C A2 ∥u∥
2q
r

L2
x(Rd)

(tn+1 − tn).

We thus have

tn+1 − tn ≥ CA−2ϵ1.

By (3.9), similarly we can choose κ small enough so that∫ tn+1

tn+1−CκA−2ϵ1

( ∫
Qt

0

|u(t, x)|2 |ei(t−tn)∆f(x)|r−2 dx
) q

r dt

≤ C κ ϵ1 ∥u0∥
2q
r

L2 ≤ ϵ1
2
.

In view of this and (3.8), we obtain that∫
(tn,tn+1−CκA−2ϵ1)∩ I0

( ∫
Qt

0

|u(t, x)|2 |ei(t−tn)∆f(x)|r−2 dx
) q

r dt ≥ ϵ1
2
.

Again by (3.9)

ϵ1
2

≤ C |I0| sup
t∈(tn,tn+1−CκA−2ϵ1)

( ∫
Qt

0

|u|2 |ei(t−tn)∆f |r−2 dx
) q

r

≤ C |I0|A2
(

sup
t∈(tn,tn+1−CκA−2ϵ1)

∫
Qt

0

|u|2 dx
) q

r .

The length |I0| = A−2 implies

sup
t∈(tn,tn+1−CκA−2ϵ1)

∫
Qt

0

|u|2 dx ≥ C
(ϵ1
2

) r
q .

Therefore, for each tn there are t0 ∈ (tn, tn+1 −CκA−2] and a cube Qt0
0 such that∫

Q
t0
0

|u(t0, x)|2 dx ≥ C

4

(ϵ1
2

) r
q .

Since l(Qt0
0 ) = 1/A, then Qt0

0 is contained in a ball of radius Cd/A. Since tn+1− t0 ≥
CκA−2ϵ1,

1

A
≤ C (tn+1 − t0)

1
2 ≤ C (T∗ − t0)

1
2 .



MASS CONCENTRATION FOR NONLINEAR SCHRÖDINGER EQUATIONS 17

Hence Qt0
0 can be covered by a finite number (depending only on η, d and ∥u0∥2) of

balls of radius R = (T ∗ − t0)
1
2 . Therefore, there exists c ∈ Rd such that∫

B(c,R)

|u(t0, x)|2 dx ≥ ϵ(∥u0∥L2(Rd), d, η).

3.2. Hartree type nonlinearity. In this section we prove Theorem 1.2. As it was

seen in the proof of Theorem 1.1, it is enough to deal with homogeneous part of the

solution once the inhomogeneous part is controlled properly.

Indeed, let u be the maximal solution to (1.7) over the maximal forward existence

time interval [0, T ∗) so that (1.4) is satisfied for some Strichartz admissible pairs

(q, r), 2 < q ≤ r and ∥u∥Lq
tL

r
x([0,t)×Rd) < ∞ for 0 < t < T ∗ < ∞. Let η and sequence

t1, . . . , tn, . . . be given as before such that tn ↗ T ∗ and (3.1) is satisfied for every

n ∈ N. By the Duhamel’s formula we may write for t ∈ (0, T ∗)

u(t) = ei∆(t−tn)u(tn)± i

∫ t

tn

ei(t−s)∆[(|x|−2 ∗ |u(s)|2)u(s)] ds.

We need to show the similar estimate as (3.3) for the solution of Hartree equation.

Lemma 3.1. Let (q, r) be an admissible pair, 2 < q ≤ r and let tn, η be the same

as in (3.1). Then for the solution u of (1.7) there is a constant C > 0 such that

(3.10)
∥∥ ∫ t

tn

ei(t−s)∆[(|x|−2 ∗ |u(s)|2)u(s)]ds
∥∥
Lq
tL

r
x([tn,tn+1]×Rd)

≤ C η1+θ

for some 0 < θ < 1.

After achieving this we only need to deal with the homogeneous part of the solu-

tion to show the mass concentration. That is to say, if we have (3.10), the remaining

arguments are the same as those of Sections 3.1.2 through 3.1.4. So we omit the

details.

Proof of Lemma 3.1. By the inhomogeneous Strichartz’s estimate (1.5), the left

hand side of (3.10) is bounded by∥∥(|x|−2 ∗ |u|2)u
∥∥
Lq̃′
t Lr̃′

x ([tn,tn+1]×Rd)

for any q̃ and r̃ satisfying q̃, r̃ ≥ 2 and 2/q̃+d/r̃ = d/2. Here r̃′ denotes the conjugate

exponent of r̃. By Hölder’s inequality, it follows that∥∥∫ t

tn

ei(t−s)∆[(|x|−2 ∗ |u(s)|2)u(s)]ds
∥∥
Lq
tL

r
x([tn,tn+1]×Rd)

≤ C I1 · I2(3.11)

where for all µ, s > 1

I1 =
∥∥|x|−2 ∗ |u|2

∥∥
Lq̃′µ′
t Lr̃′s′

x ([tn,tn+1]×Rd)
, and

I2 =
∥∥u∥∥

Lq̃′µ
t Lr̃′s

x ([tn,tn+1]×Rd)
.
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We make choices of µ and s such that 1/µ = q̃′/q < 1 and 1/s = r̃′/r < 1. It is

possible because 2 < q ≤ r. (We shall determine the exact r̃ and q̃ later.) Then

I2 = ∥u∥Lq
tL

r
x([tn,tn+1]×Rd) = η.

By applying the Hardy-Sobolev inequality on the x-space,

(3.12) I1 ≤ C ∥u∥2
L
q2
t L

r2
x ([tn,tn+1]×Rd)

where (1/q2, 1/r2) is given by

1

q2
=

1

2q̃′µ′ =
1

2

[
1−

(1
q̃
+

1

q

)]
, and

1

r2
=

1

2

[ 1

r̃′s′
+

d− 2

d

]
=

1

2

[
1−

(1
r̃
+

1

r

)
+

d− 2

d

]
.(3.13)

Note that (q2, r2) is an admissible pair, that is, 2/q2 + d/r2 = d/2. We now choose

an admissible (q̃, r̃) such that

(
1

q2
,
1

r2
) ∈

(
(
1

q
,
1

r
), (0,

1

2
)
)
.

Since (q2, r2) is an admissible pair, from (3.13) we obtain that such a choice is always

possible as long as 0 < (1− 1/q̃ − 1/q)/2 < 1/q. This is obviously satisfied because

2 < q ≤ 2(d+2)
d

. Hence (1/q2, 1/r2) = θ(1/q, 1/r) + (1 − θ)(1/∞, 1/2) for some

θ ∈ (0, 1). Therefore, via interpolation between two space L∞
t L2

x and Lq
tL

r
x we get

that

∥u∥Lq2
t L

r2
x

≤ ∥u∥θLq
tL

r
x
∥u0∥1−θ

L2
x
.

Combining this with the conserved mass and (3.12), we obtain I1 ≤ Cηθ. Finally,

from (3.11), (3.12) and the above we get the desired estimate (3.10).

□
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