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Abstract

We study Strichartz estimates in spherical coordinates for disper-

sive equations which are defined by spherically symmetric pseudo-

differential operators. We extend the recent results in [7, 11] to include

more general class of dispersive equations. We use a bootstrapping ar-

gument based on various weighted Strichartz estimates.
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1 Introduction

In this paper we consider the Cauchy problem of linear dispersive equations:

iut − ω(|∇|)u = 0 in R1+n, u(0) = φ in Rn, n ≥ 2 (1.1)

where |∇| =
√
−∆ and the operator ω(|∇|) is the pseudo-differential opera-

tor of which multiplier is ω(|ξ|). We will work with ω ∈ C[0,∞)∩C∞(0,∞)

which satisfies the following properties:

(i) ω′(ρ) > 0, and either ω′′(ρ) > 0 or ω′′(ρ) < 0 for all ρ > 0,

(ii) ω(k)(ρ1) ∼ ω(k)(ρ2), k = 1, 2 for 0 < ρ1 < ρ2 < 2ρ1,

(iii) ρ|ω(k+1)(ρ)| ≲ |ω(k)(ρ)| for all k ≥ 1 and ρ > 0.

Typical examples of ω are ρa(0 < a ̸= 1) ,
√

1 + ρ2, ρ
√

1 + ρ2, and ρ√
1+ρ2

which describe the Schrödinger type equations (see [12] for a < 2), Klein-

Gordon or semirelativistic [8], iBq, and imBq equations. (For the last two

see [3] and references therein.)

The solution can formally be written by

u(t, x) =
1

(2π)n

∫
Rn

ei(x·ξ−tω(|ξ|))φ̂(ξ) dξ.

Here φ̂ is the Fourier transform of φ defined by
∫
Rn e

−ix·ξφ(x) dx. In [6] the

standard Strichartz estimate in Lq
tL

p
x was considered with ω satisfying (i),

(ii), (iii) and the following was shown: if n ≥ 1 and the pair (q, p) satisfies

that 2 ≤ q, p ≤ ∞, 1
q ≤ n

2 (
1
2 − 1

p) and (q, p) ̸= (2,∞), then

∥|∇|sDs1, s2
ω u∥Lq

tL
p
x
≲ ∥φ∥L2

x
(1.2)

for s1 = 1
q − s2, s2 = 1

nq and s = 2
q − n(12 − 1

p), where Ds1,s2
ω is a pseudo-

differential operator whose symbol is(
ω′(|ξ|)
|ξ|

)s1

|ω′′(|ξ|)|s2 .

2



In this paper we study the estimate (1.2) by making use of mixed norm

spaces given in the spherical coordinates. For this purpose we use the time-

space norm given by

∥f∥Lp
rLℓ

σ
=

(∫ ∞

0

(∫
Sn−1

|f(rσ)|ℓ dσ
) p

ℓ
rn−1 dr

) 1
p
, 1 ≤ p, ℓ ≤ ∞.

For simplicity we denoted the spaces Lp(rn−1dr) by Lp
r . Clearly ∥f∥Lp

x
=

∥f∥Lp
rL

p
σ
. Then let us define several function spaces of Sobolev type. Let

∆σ be the Laplace-Beltrami operator defined on the unit sphere and set

Dσ =
√
1−∆σ. For |s| < n/p, γ ∈ R, we denote by Ḣs,p

r Hγ,ℓ
σ the space{

f ∈ S ′ : ∥f∥
Ḣs,p

r Hγ,ℓ
σ

≡ ∥ |∇|sDγ
σf∥Lp

rLℓ
σ
< ∞

}
.

It should be noted that C∞
0 is dense in Ḣs,p

r Hγ,ℓ
σ since |s| < n/p (see [2]).

We also use spaces equipped with the time-space norm

∥v∥
Lq
t Ḣ

s,p
r Hγ,ℓ

σ
=

(∫
R
∥v(·, t)∥q

Ḣs,p
r Hγ,ℓ

σ
dt
) 1

q
, 1 ≤ q ≤ ∞.

If ℓ = 2, we use a simplified notation Ḣs
rH

γ
σ for Ḣs,2

r Hγ,2
σ .

It is well known that the range of p, q for (1.2) can not be extended as it

can be shown by Knapp’s example. There have been results [7, 15, 16] which

extend the range by allowing loss of angular regularity (also see [9, 13, 14]

for related results). Such results have been proven to be useful in the study

of various nonlinear equations [1, 7]. Recently in [11] the authors showed

that if n ≥ 2, 1
q < (n − 1)(12 − 1

p) or (q, p) = (∞, 2) for p, q ≥ 2 and

(q, p) ̸= (∞,∞), (2,∞), then

∥|∇|su∥Lq
tL

p
x
≲ ∥φ∥L2

rH
γ
σ

(1.3)

for ω(ρ) = ρa, a > 0, s = a
q − n(12 − 1

p) and γ ≥ 1/q. They utilized

Rodnianski’s argument in [15] and weighted Strichartz estimates (see [5, 7,

1]).

In this short note we show that the estimate (1.3) can be extended to

include more general ω and the angular regularity can be improved (see
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Proposition 3.1 below). For simplicity we consider only the endpoint case

q = 2 since the full estimate can be obtained by interpolation with the trivial

estimate ∥u∥L∞
t L2

x
≲ ∥φ∥L2

x
or the estimates in Theorem 1.7 of [11]. The

novelty here is the use of bootstrapping to extend the range of (1.4).

The following is our main result.

Theorem 1.1. Suppose that ω satisfies the conditions (i)−(iii). Let n ≥ 3,
2(n−1)
n−2 < p < 2n

n−2 and s0 =
1
2 −

n−1
(n−2)p . Then for sufficiently small ε > 0 we

have

∥|∇|sDs1,s2
ω u∥L2

tL
p
x
≲ ∥φ∥L2

rH
γ
σ

(1.4)

for s = n
p − n−2

2 , s1 =
1
2 − s0 − ε, s2 = s0 + ε and γ > 1

2 − ns0.

If ω(ρ) = ρa, 0 < a ̸= 1, then since ω′(ρ)/ρ ∼ ω′′(ρ) ∼ ρa−2, we get (1.3)

with γ as in Theorem 1.1. We will not pursue the optimality of angular

regularity, which is another interesting issue.

For the proof of the theorem we use bootstrapping argument based on

the Sobolev inequality and weighted Strichartz estimates in spherical coor-

dinates. We will start bootstrapping from the endpoint Strichartz estimate.

Once we have an endpoint estimate (1.4) for p ̸= ∞1, making use of Sobolev

inequalities (2.1), (2.2) and (2.3), we get the estimate (1.4) for p = pk,

k = 1, 2, 3, . . . , successively. The sequence pk decreasingly converges to
2(n−1)
n−2 . Regardless of ω, by this argument we can get estimate (1.4) arbi-

trarily close to p = 2(n−1)
n−2 and thus via interpolation we also get the estimate

∥|∇|sDs1,s2
ω u∥Lq

tL
p
x
≲ ∥φ∥L2

rH
γ
σ
for p, q ≥ 2 satisfying 1

q < (n − 1)(12 − 1
p) .

There is an ε-loss involved in s1, s2 which results from interpolations of the

estimates for p < 2(n−1)
n−2 . But there is no loss if we impose additional condi-

tion that ω′(ρ) ∼ ρ|ω′′(ρ)|. If one can obtain an estimate on the critical line

L = {(1/p, 1/q) : 1
q = (n− 1)(12 − 1

p)}, such loss can be removed.

Finally, we make a remark on the case of the wave equation in which

ω(ρ) = ρ. Using the known endpoint Strichartz estimate for n ≥ 4 ([10])

1This is why we work with n ≥ 3. Actually if n = 2, then Strichartz estimate in

spherical coordinates is worse than the standard one.
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for the wave equation, one may apply the bootstrapping argument of this

note to get the same result as of Sterbenz [15]. However it is not possible to

remove the ε-loss in the angular regularity this way. For this it seems that

one needs to obtain estimates along the critical line L.
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2 Weighted estimates

We first recall Sobolev inequality which was introduced in [4] and extended

in [7]. Let 0 < a < n−1
2 and α ≤ n−1

2 − a. Then

∥|x|a|∇|a−
n
2 Dα

σf∥L∞
r L2

σ
≲ ∥f∥L2

x
, (2.1)

In [2], the cases f ∈ Lp
x, 1 ≤ p < 2 were treated. Using complex inter-

polation between (2.1) and the trivial estimates ∥f∥L∞
r L∞

σ
≲ ∥f∥L∞

r L∞
σ

and

∥f∥L∞
r L2

σ
≲ ∥f∥L∞

r L2
σ
, we get for 2 ≤ ℓ ≤ ∞

∥|x|
2a
ℓ |∇|

2
ℓ
(a−n

2
)D

2α
ℓ

σ f∥L∞
r Lℓ

σ
≤ C0∥f∥Lℓ

x
, (2.2)

∥|x|
2a
ℓ |∇|

2
ℓ
(a−n

2
)D

2α
ℓ

σ f∥L∞
r L2

σ
≤ C0∥f∥Lℓ

rL
2
σ
. (2.3)

Replacing f of (2.2) with u and applying endpoint Strichartz estimate

(1.2), we obtain the following.

Lemma 2.1. Let n ≥ 3, 0 < a < n−1
2 and α ≤ n−1

2 − a. Then

∥|x|a(1−
2
n
)|∇|(a−

n
2
)(1− 2

n
)D

n−1
2n

, 1
2n

ω D
α(1− 2

n
)

σ u∥
L2
tL

∞
r L

2n
n−2
σ

≤ C ′
0∥φ∥L2

x
. (2.4)

Proof. From (2.2) with ℓ = 2n
n−2 and Hölder’s inequality it follows that

∥|x|a(1−
2
n
)|∇|(a−

n
2
)(1− 2

n
)D

n−1
2n

, 1
2n

ω D
α(1− 2

n
)

σ u∥
L2
tL

∞
r L

2n
n−2
σ

≤ C0∥D
n−1
2n

, 1
2n

ω u∥
L2
tL

2n
n−2
r (L2

σ∩L
2n
n−2
σ )

≤ cnC0∥D
n−1
2n

, 1
2n

ω u∥
L2
tL

2n
n−2
x

,
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where cn depends only on n. Then the estimate (1.2) with ℓ = 2n
n−2 gives

(2.4).

We will use the following L2
tL

2
x estimate.

Lemma 2.2. Let −n/2 < b < −1/2 and β ≤ −1
2 − b. Then we have

∥|x|b|∇|b+1D
1
2
,0

ω Dβ
σu∥L2

tL
2
x
≤ C1∥φ∥L2

x
. (2.5)

For (2.5) we refer to [1] and also to [5, 7] for earlier versions.

3 Proof of Theorem 1.1

In this section we prove Theorem 1.1 by showing Proposition 3.1. It will be

shown via bootstrapping argument which makes use of weighted Strichartz

estimates introduced in the previous section.

Proposition 3.1. Let ω satisfy (i) − (iii) and n ≥ 3. Then, for 2(n−1)
n−2 <

p < ∞,

∥|∇|−
n−2
2

+n
pD

1
2
,0

ω D
n−2
2

−n−1
p

σ u∥L2
tL

p
rL2

σ
≲ ∥φ∥L2

x
. (3.1)

Assuming this for the moment, we prove Theorem 1.1. In fact, using

(3.1) and Sobolev embedding (H
ℓ,(n−1)(1/2−1/p)
σ ↪→ Lp

σ) on the unit sphere,

we have for 2(n−1)
n−2 < p < ∞

∥|∇|sD
1
2
,0

ω u∥L2
tL

p
x
≲ ∥φ∥

L2
rH

1
2
σ

,

where s = n
p − n−2

2 . Now, from the endpoint estimate of (1.2) we have

∥|∇|sD
1
2
− 1

2n
, 1
2n

ω u∥
L2
tL

2n
n−2
x

≲ ∥φ∥L2
rH

0
σ
.

Interpolation between these tow estimates gives the desired result.

Now it remains to prove Proposition 3.1 .
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3.1 Bootstrapping

We start with interpolating (2.4) with α = (n − 1)/2 − a and (2.5) with

β = −1/2− b. So, we have for 2 ≤ p1 ≤ ∞

∥|x|c1 |∇|d1D δ1,δ′1
ω Dγ1

σ u∥
L2
tL

p1
r (L2

σ∩L
ℓ1
σ )

≤ C1∥φ∥L2
x
, (3.2)

where C1 = C ′
0
1−θ1C1

θ1 , θ1 = 2/p1, and

c1 = a(1− 2/n)(1− 2/p1) + 2b/p1,

d1 = c1 − (n− 2)/2 + n/p1,

δ1 =
1

n
(
n− 1

2
+

1

p1
), δ′1 =

1

n
(
1

2
− 1

p1
),

γ1 =
n2 − 3n+ 2

2n
− n2 − 2n+ 2

np1
− c1,

1

ℓ1
=

n− 2

2n
+

1

np1
.

We call it the first stage estimate and will proceed similarly by combining the

resulting estimate and (2.5). At every stage we choose the indices ck, k ≥ 1

to be 0. In view of the range of a and b we can take c1 = 0 when p1 satisfies

that 2 + 2n
(n−1)(n−2) = p0 < p1 < ∞. In particular, such p1 gives

∥|∇|d1D δ1,δ′1
ω Dγ1

σ u∥
L2
tL

p1
r (L2

σ∩L
ℓ1
σ )

≤ C1∥φ∥L2
x
. (3.3)

We use it in the place of Strichartz estimate (1.2). Now, from the estimates

(2.3) and (3.3) it follows that

∥|x|
2a
p1 |∇|

2
p1

(a−n
2
)+d1D δ1,δ′1

ω D
2α
p1

+γ1
σ u∥L2

tL
∞
r L2

σ

≤ C0∥|∇|d1D δ1,δ′1
ω Dγ1

σ u∥L2
tL

p1
r L2

σ

≤ C0C1∥φ∥L2
x
,

where a and α are given in Lemma 2.1. Interpolating this with (2.5) for

α = n−1
2 − a and β = −b − 1

2 , we have the second stage estimate: for

2 ≤ p2 ≤ ∞
∥|x|c2 |∇|d2D δ2,δ′2

ω Dγ2
σ u∥L2

tL
p2
r L2

σ
≤ C2∥φ∥L2

x
,
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where C2 = (C0C1)1−θ2Cθ2
1 , θ2 = 2/p2 and

c2 =
2a

p1
(1− 2

p2
) +

2b

p2
<

2a

p0
(1− 2

p2
) +

2b

p2
,

d2 = c2 + (− n

p1
+ d1)(1−

2

p2
) +

2

p2
,

δ2 = δ1(1−
2

p2
) +

1

p2
, δ′2 = δ′1(1−

2

p2
),

γ2 = (γ1 +
n− 1

p1
)(1− 2

p2
)− 1

p2
− c2.

If 2 + p0
n−1 < p2 < ∞, then by suitable choices of a, b, we can make c2 = 0.

Thus d2 = −n−2
2 + n

p2
, γ2 > 0 and we also have

∥|∇|d2D δ2, δ′2
ω Dγ2

σ u∥L2
tL

p2
r L2

σ
≤ C2∥φ∥L2

x
.

Repeating this procedure k times, we obtain

∥|x|ck |∇|dkD δk,δ
′
k

ω Dγk
σ u∥L2

tL
pk
r L2

σ
≤ Ck∥φ∥L2

x
,

where Ck = (C0Ck−1)
1−θkCθk

1 , θk = 2/pk and

ck =
2a

pk−1
(1− 2

pk
) +

2b

pk
,

dk = ck + (− n

pk−1
+ dk−1)(1−

2

pk
) +

2

pk
,

δk = δk−1(1−
2

pk
) +

1

pk
, δ′k = δ′k−1(1−

2

pk
),

γk = (γk−1 +
n− 1

pk−1
)(1− 2

pk
)− 1

pk
− ck.

If pk satisfies that p̃k < pk < ∞, where p̃k = 2 + 2
n−1 + 2

(n−1)2
+ · · · +

2
(n−1)k−2 + p0

(n−1)k−1 , then we can choose a, b, such that ck = 0 and dk =

−n−2
2 + n

pk
, γk > 0. Thus we have

∥|∇|dkD δk,δ
′
k

ω Dγk
σ u∥L2

tL
pk
r L2

σ
≤ Ck∥φ∥L2

x
. (3.4)
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3.2 A limiting argument

We first observe that p̃k is decreasing and p̃k → 2(n−1)
n−2 ≡ p̃ as k → ∞. Now

we fix p with p̃ < p < p0 and let k → ∞ to get the desired estimate (3.1).

Since p̃ < p < p0, 1 − θk is bound away from 0 and 1, there exists

0 < λ < 1 such that

Ck ≤ C
1−θk+(1−θk)(1−θk−1)+···

∏
2≤j≤k(1−θj)

0 C ′
0C1 ≤ C

∑
j≥1 λ

j

0 C ′
0C1 = C

λ
1−λ

0 C ′
0C1.

If p is fixed near 2(n−1)
n−2 , then we can pick pk such that pk = p for all k ≥ k0

for some large k0. Since δk = δk−1(1−2/p)+1/p for k ≥ k0, δk is increasing

and bounded and thus limk→∞ δk = 1
2 . Also δ′k/δ

′
k−1 = (1 − 2/p) implies

δ′k → 0 as k → ∞. On the other hand, γk is decreasing and bounded below

so that γk → n−2
2 − n−1

p . This limit goes to 0 as p → 2(n−1)
n−2 .

By the usual density argument, for the proof of (3.1) we may assume

φ̂ ∈ C∞
0 (Rn \ {0}). Since |∇|dkD δk,δ

′
k

ω Dγk
σ u and |∇|−

n−2
2

+n
pD

1
2
,0

ω D
n−2
2

−n−1
p

σ u

are smooth and have the same compact Fourier support, it is easy to see

that both are O((|x|+1)−M (|t|+1)−M ) for any large M . Then it is obvious

that

lim
k→∞

|∇|dkD δk,δ
′
k

ω Dγk
σ u = |∇|−

n−2
2

+n
pD

1
2
,0

ω D
n−2
2

−n−1
p

σ u.

Hence by taking limit

lim
k→∞

∥|∇|dkD δk,δ
′
k

ω Dγk
σ u∥L2

tL
pk
r L2

σ
= ∥|∇|−

n−2
2

+n
pD

1
2
,0

ω D
n−2
2

−n−1
p

σ u∥L2
tL

p
rL2

σ
.

Since Ck is uniform on k, from (3.4) we get (3.1) provided that p is fixed

near p̃. This completes the proof of Proposition 3.1.
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