
ON THE CONE MULTIPLIER IN R3

SANGHYUK LEE AND ANA VARGAS

Abstract. We prove the sharp L3 bounds for the cone multiplier in R3 and the associated
square function, which is known as Mockenhaupt’s square function.

1. Introduction

We consider the cone multiplier operator of order α which is defined by

Ĉαf(ξ, τ) = (τ2 − |ξ|2)α+ϕ(τ)f̂(ξ, τ), (ξ, τ) ∈ R2 × R,

where ϕ is a smooth function supported in [1/2, 2]. It has been conjectured (see [23]) that
for 1 ⩽ p ⩽ ∞

∥Cαf∥Lp ⩽ C∥f∥p, if and only if α > α(p) = max(
∣∣∣1− 2

p

∣∣∣− 1

2
, 0).

There has been a lot of work devoted to this problem [2, 5, 13, 18, 19, 21] (also see [9, 12, 11]
for results in higher dimensions). The sharp bounds for p > 74 were first obtained by Wolff
[21], and by a refinement of his argument the range was further extended by Garrigós and
Seeger [6] and Garrigós, Schlag and Seeger [5]. The conjecture is now known to be true for
p > 20 and at the critical space, L4, the inequality is true for α > 1/9 ([5]).

Recently, Bourgain and Guth [3] made new progress on (spherical) restriction and Bochner-
Riesz problems by an approach based on the multilinear restriction estimate due to Bennett,
Carbery and Tao [1]. By adapting the argument in [3], we prove

Theorem 1.1. If α > 0, ∥Cαf∥3 ⩽ C∥f∥3.

As it was shown by Fefferman [7], the estimate is sharp in that the condition α > 0 cannot
be removed. Hence by interpolation with the obvious L2 estimate and duality the conjecture
is verified for 3 ⩽ p ⩽ 3

2 .
By scaling and rotation, for Lp bounds of Cα we may assume that f̂ is supported in a

small neighborhood of (1, 0, 1). By a linear change of variables (ξ2, ξ1− τ, ξ1+ τ) → (η, τ, ρ)
we modify the operator Cα so that

Ĉαf(η, τ, ρ) = (τ − η2/ρ)α+ϕ(η, τ, ρ)f̂(η, τ, ρ), (η, τ, ρ) ∈ R2 × R.

Here ϕ is a smooth function supported in a small neighborhood of 2e3 = (0, 0, 2). Obviously
the Lp boundedness properties of the two operators Cα and Cα are equivalent. The second
form is especially convenient to perform nonisotropic rescalings adapted to the cone.

Now we take ψ ∈ C∞
c [1/2, 4] and define an operator Cδ by

Ĉδf(η, τ, ρ) = ψ
(τ − η2/ρ

δ

)
f̂(η, τ, ρ)
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for f of which the Fourier transform is supported in the set {(η, τ, ρ) : ρ ∈ [2−2, 22], |η/ρ| ⩽
22}. Let ϕ ∈ C∞

c [−1, 1] and 0 < δ ⩽ 1. For ν ∈
√
δZ ∩ [−1, 1], define a projection operator

by

(1) Ŝνf = ϕ
(ν − η/ρ√

δ

)
f̂ .

In what follows we obtain a sharp square function estimate.

Theorem 1.2. Suppose that f̂ is supported in B(2e3, 1). For ϵ > 0,

(2) ∥
∑
ν

CδS
νf∥3 ⩽ Cϵδ

−ϵ∥(
∑
ν

|CδS
νf |2)

1
2 ∥3.

The critical L4 estimate

(3) ∥
∑
ν

CδS
νf∥4 ⩽ Cγδ

−γ∥(
∑
ν

|CδS
νf |2)

1
2 ∥4

has been of interest (see [2, 6, 13, 19, 22]) and it is conjectured that (3) holds for γ > 0. In
[5] (3) was shown for γ > 1/9. This may be improved further by making use of (2) and the
argument in [5, 6] but we do not pursue it here.

As it was shown in [14] (also see [19]), the square function estimates (2) and (3) can be
used to show the local smoothing estimate for the wave equation:

(4) ∥eit
√
−∆f∥Lp

x,t(I×R2) ⩽ C∥f∥Lp
β

where I is a compact interval and Lp
β is the Lp-Sobolev space of order β. It was conjectured

by Sogge [16] that (4) holds for p ⩾ 2 if β > α(p). By the works [5, 6, 21], this is now
verified for p > 20. Also see [10, 15, 17] for related results and recent development in higher
dimensions. Combining (2) with the Nikodym type maximal estimate in [14, Lemma 1.4]1)

we obtain

Corollary 1.3. Let p = 3. Then (4) holds for all β > 0.

This can be interpolated with known results to extend the range for (4).

Finally we make a few remarks on the paper and the notation. In section 2 we obtain
estimates based on the multilinear restriction estimate and in section 3 we prove the theo-
rems. The constant C may vary line to line and in addition to ̂ we also use F to denote
the Fourier transform.

2. Trilinear estimates

In this section we state various trilinear estimates which are deduced from the multilinear
restriction estimate in [1].

Transversality of conic sectors. Let us consider a subset Γ of the cone, which is given
by

Γ = {(η, τ, ρ) : τ = η2/ρ, ρ ∈ [3/2, 5/2], |η/ρ| ⩽ 3}.
Let us define a map θ : R× R× R+ → R by

θ(η, τ, ρ) = η/ρ.

1)In fact, we need an L3 estimate for the maximal function, but it follows from interpolation between L2

and the trivial L∞ estimate.
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One may identify θ = η/ρ as an angular variable of (η, τ, ρ). Then we may write

Γ = {ρ(θ, θ2, 1) : ρ ∈ [3/2, 5/2], |θ| ⩽ 3}.
The normal vector to Γ at (η, τ, ρ) is parallel to

(2η/ρ,−1,−η2/ρ2) = (2θ,−1,−θ2).
Consider three points (η1, τ1, ρ1), (η2, τ2, ρ2), and (η3, τ3, ρ3) ∈ Γ with angular positions
θ1, θ2, θ3, (θi = ηi/ρi), respectively. Since

det

2θ1 −1 −θ21
2θ2 −1 −θ22
2θ3 −1 −θ23

 = 2(θ1 − θ3)(θ1 − θ2)(θ2 − θ3),

we see that three conical sectors are transversal as long as their angular variables are sepa-
rated. Hence it is possible to make use of the multilinear (trilinear) restriction estimate [1,
Theorem 1.16] provided that the supports of the three functions are angularly separated.

Let us denote by dσ the induced Lebesgue measure in Γ.

Theorem 2.1. Let Γ1, Γ2, and Γ3 be subsets of Γ and ϵ◦ > 0. Suppose that θ(Γ1), θ(Γ2)
and θ(Γ3) are mutually separated by a distance ≳ ϵ◦ > 0. Let R ≫ ϵ−1

◦ . Then, for ϵ > 0,
there is a constant Cϵ = Cϵ(ϵ◦) such that

∥
3∏

i=1

ĝidσ∥L1(BR) ⩽ CϵR
ϵ

3∏
i=1

∥gi∥2

whenever gi is supported in Γi, i = 1, 2, 3.

An equivalent statement can be given as follows (see Lemma 2.2 in [1]. The implication
from Theorem 2.1 to (5) is a trilinear version of Stein’s argument in [8].):

Suppose that F̂i is supported in Γi + O(R−1), i = 1, 2, 3. Then, for ϵ > 0 there is a
constant Cϵ = Cϵ(ϵ◦) such that

(5) ∥
3∏

i=1

Fi∥L1(BR) ⩽ CϵR
− 3

2Rϵ
3∏

i=1

∥Fi∥2.

Equivalence can be shown without difficulty by Plancherel’s theorem together with a slicing
argument (see [20] for the details).

For 0 < λ, let us set

A(λ) =
{
(η, τ, ρ) : ρ ∈

[1
2
,
7

2

]
, |η/ρ| ⩽ λ

}
.

If f̂ is supported in A(3), we may assume that the convolution kernel of Cδ is rapidly
decaying outside of a ball radius ≫ δ−1 because F(Cδf) is supported in Γ + O(δ). By the
standard localization argument it is sufficient to consider the Lp norm over a ball of radius
δ−1 provided that f̂ is supported in A(3). By making use of (5) with R = δ−1 it is easy to
see

Lemma 2.2. Let 1 ≫ ϵ◦ ≫ δ > 0. Suppose that f̂1, f̂2, and f̂3 are supported in A(3). If
θ(supp f̂1), θ(supp f̂2), and θ(supp f̂3) are mutually separated by a distance ≳ ϵ◦, then for
ϵ > 0 there is a constant Cϵ = Cϵ(ϵ◦) such that

∥
3∏

i=1

Cδfi∥L1 ⩽ Cϵδ
3
2
−ϵ

3∏
i=1

∥fi∥2.
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Square function. In this subsection we assume that f1, f2, and f3 satisfy the assumption
in Lemma 2.2. Let us set R = δ−1. Let ψ be a Schwartz function such that ψ ⩾ 1 on B(0, 1)
with its Fourier transform supported in B(0, 1). Set

ψz = ψ
( · − z√

R

)
.

Let z0 ∈ R3. Making use of Lemma 2.2 (or (5)) and orthogonality,

(6)
∥∥∥ 3∏

i=1

(
∑
ν

CδS
νfi)

∥∥∥
L1(B(z0,R

1
2 ))

⩽ CϵR
− 3

4
+ϵR

9
2
( 1
2
− 1

3
)

3∏
i=1

∥∥∥|ψz0 |(
∑
ν

|CδS
νfi|2)

1
2

∥∥∥
L3
.

In fact, the left hand side is bounded by
∥∥∥∏3

i=1 ψ
2
z0(

∑
ν CδS

νfi)
∥∥∥
L1

. Since F(ψ2
z0(

∑
ν CδS

νfi))

is supported in Γ +O(R−1/2), by Lemma 2.2 or by (5), it follows that∥∥∥ 3∏
i=1

ψ2
z0(

∑
ν

CδS
νfi)

∥∥∥
L1

⩽ CϵR
− 3

4
+ϵ

3∏
i=1

∥∥∥ψ2
z0(

∑
ν

CδS
νfi)

∥∥∥
2
.

Note that the supports of F(ψ2
z0CδS

νfi) are essentially disjoint. Hence we see that the right
hand side is bounded by

CR− 3
4
+ϵ

3∏
i=1

∥∥∥|ψz0 |2(
∑
ν

|CδS
νfi|2)

1
2

∥∥∥
L2

⩽ CϵR
− 3

4
+ϵR

9
2
( 1
2
− 1

3
)

3∏
i=1

∥∥∥|ψz0 |(
∑
ν

|CδS
νfi|2)

1
2

∥∥∥
L3
.

The last inequality follows from Hölder’s inequality. Thus we get the desired bound (6).

Let {z0} ⊂ R3 be a collection of points separated by ∼ R
1
2 such that

∪
z0
B(z0, R

1
2 ) = R3.

By taking summation along the balls {B(z0, R
1
2 )} which are boundedly overlapping (of

which centers z0 are separated by R
1
2 ) and by using (6), we see∥∥∥ 3∏

i=1

(
∑
ν

CδS
νfi)

∥∥∥
L1

⩽
∑
z0

∥∥∥ 3∏
i=1

(
∑
ν

CδS
νfi)

∥∥∥
L1(B(z0,R

1
2 ))

⩽ CϵR
− 3

4
+ϵR

9
2
( 1
2
− 1

3
)
∑
z0

3∏
i=1

∥∥∥|ψz0 |(
∑
ν

|CδS
νfi|2)

1
2

∥∥∥
L3

⩽ CϵR
ϵ

3∏
i=1

(∑
z0

∥∥∥|ψz0 |(
∑
ν

|CδS
νfi|2)

1
2

∥∥∥3
L3

) 1
3
.

By the rapid decay of ψz0 outside of B(z0, CR
1
2 ) it follows that

3∏
i=1

∥∥∥|ψz0 |(
∑
ν

|CδS
νfi|2)

1
2

∥∥∥
L3

⩽ C

3∏
i=1

∥∥∥(∑
ν

|CδS
νfi|2)

1
2

∥∥∥3
L3
.

Therefore we obtain the following.

Proposition 2.3. Under the same assumption as in Lemma 2.2, for ϵ > 0 there is a constant
Cϵ = Cϵ(ϵ◦) such that∥∥∥ 3∏

i=1

(
∑
ν

CδS
νfi)

∥∥∥
L1

⩽ Cϵδ
−ϵ

3∏
i=1

∥∥∥(∑
ν

|CδS
νfi|2)

1
2

∥∥∥
L3
.

Before closing this section we recall the following estimate for the square function.
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Lemma 2.4. Let 2 ⩽ p ⩽ 4. Then for ϵ > 0,
∥∥∥(∑ν |CδS

νf |2)
1
2

∥∥∥
Lp

⩽ Cδ−ϵ∥f∥p.

When p = 2 the above is clear from Plancherel’s theorem. Then by interpolation it
is sufficient to consider p = 4. The estimate

∥∥∥(∑ν |CδS
νf |2)

1
2

∥∥∥
L4

⩽ Cδ−ϵ∥f∥4 can be
obtained by making use of the maximal estimate due to Córdoba [4] and a duality argument
(for example see [13]).

3. Proofs of Theorem 1.1 and 1.2: Proof of (2)

In order to prove Theorem 1.1, it is sufficient to show the estimate

∥Cδf∥3 ⩽ Cδ−ϵ∥f∥3.
This follows from the estimate (2) and Lemma 2.4. So for the proof of the theorems we only
need to show (2).

We now prove (2) by using trilinear estimate in Proposition 2.3. To do this, we need to
decompose the function f in such a way that the trilinear estimate can be effectively used.
It is important to decompose the operator Cδ into two parts so that the one is bounded by
a sum of trilinear operators with transversality meanwhile the other part is controlled by
sum of operators which have relatively small supports at the Fourier transform side. Unlike
the argument in [3] we don’t need to use the lower dimensional restriction estimates. So the
decomposition here is simpler than the one in [3].

The rest of the paper is devoted to the proof of (2).

Decomposition. We assume that f̂ is supported in A(2). Let 0 < δ ≪ 1 and Sνf be given
by (1) so that

∑
ν∈

√
δZ S

νf = f . Let K1,K2 be large fixed numbers such that 1 ≪ K1 ≪
K2 ≪ δ−ϵ.

Let us set

{J1} =
{ k

K1
∈ [−1, 1] : k ∈ Z

}
, {J2} =

{ k

K2
∈ [−1, 1] : k ∈ Z

}
.

First we group Sνf into functions fJ2 by setting

(7) fJ2 =
∑

ν∈(J2−(2K2)−1,J2+(2K2)−1]

Sνf.

So, it follows that

(8)
supp f̂J2 ⊂ (J2 − 51

100K2
, J2 +

51

100K2
),∑

J2

fJ2 =
∑
ν

Sνf = f.

Similarly we also group fJ2 into functions fJ1 by setting

(9) fJ1 =
∑

J2∈(J1−(2K1)−1,J1+(2K1)−1]

fJ2 .

Hence we have

(10)
supp f̂J1 ⊂ (J1 − 51

100K1
, J1 +

51

100K1
),∑

J1

fJ1 =
∑
J2

fJ2 = f.
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We now fix x ∈ R3. Then, there are two possibilities;

|Cδf(x)| ⩽ 16max
J1

|CδfJ1(x)|,(11)

|Cδf(x)| ⩾ 16max
J1

|CδfJ1(x)|.(12)

For the second case (12) we claim that there are J11, J
1
2, such that

|Cδf(x)| ⩽ CK1|CδfJ11(x)CδfJ12(x)|
1
2

and |J11 − J12| ⩾ 4
K1

. In fact, let us denote by J1∗ the cube J1 such that |CδfJ1∗(x)| =

maxJ1 |CδfJ1(x)|. Since |Cδf(x)| ⩽
∑

J1 |CδfJ1(x)|,

|Cδf(x)| ⩽
∑

|J1∗−J1|⩾ 4
K1

|CδfJ1(x)|+ 8|CδfJ1∗(x)|

⩽
∑

|J1∗−J1|⩾ 4
K1

|CδfJ1(x)|+
1

2
|Cδf(x)|.

So, there is a J1 such that |J1∗−J1| ⩾ 4
K1

and |Cδf(x)| ⩽ 2K1|CδfJ1(x)|. By taking J11 = J1∗
and J12 = J1, the claim follows. Hence, combining this with the case (12) we see that

(13) |Cδf(x)| ⩽ Cmax
J1

|CδfJ1(x)|+ CK1 max
J11,J

1
2: |J11−J12|⩾ 4

K1

|CδfJ11(x)CδfJ12(x)|
1
2 .

We intend to decompose the second term in the right hand side. Let J11 and J12 be
separated by distance ⩾ 4

K1
. Using (10) we write

(14) fJ11 =
∑
J21

fJ21 , fJ12 =
∑
J22

fJ22 .

Here J21, J
2
2 ∈ {J2} and J2i ∈ (J1i − (2K1)

−1, J1i +(2K1)
−1] for i = 1, 2. Note that |J21−J22| ⩾

2
K1

by the second condition of (10) since |J11−J12| ⩾ 4
K1

. Let us denote by J21∗ and J22∗ those
indices such that

|CδfJ21∗(x)| = max
J21

|CδfJ21(x)|, |CδfJ21∗(x)| = max
J22

|CδfJ22(x)|,

where max are respectively taken over the indices J21, J22 which are appearing the first and
the second summations in (14). We consider the cases

|CδfJ11(x)CδfJ12(x)| ⩽ 25max
J21,J

2
2

|CδfJ21(x)CδfJ22(x)|,(15)

|CδfJ11(x)CδfJ12(x)| ⩾ 25max
J21,J

2
2

|CδfJ21(x)CδfJ22(x)|,(16)

separately. For the second case (16) we claim that if |J11 − J12| ⩾ 4
K1

,

|CδfJ11(x)CδfJ12(x)| ⩽ CK−50
2 max

J2∈{J21}∪{J22}
|CδfJ2(x)|2(17)

+ CK45
2 max

J21,J
2
2,J

2
3∈{J21}∪{J22}

mini̸=j |J2i−J2j |⩾ 2
K2

|CδfJ21(x)CδfJ22(x)CδfJ23(x)|
2
3 .
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Proof of (17). To begin with, from (14) we write

|CδfJ11(x)CδfJ12(x)| ⩽
∑
J21,J

2
2

|CδfJ21(x)CδfJ22(x)|.

In the summation those terms such that |CδfJ21(x)| ⩽ K−100
2 |CδfJ22∗(x)|, or |CδfJ22(x)| ⩽

K−100
2 |CδfJ21∗(x)| are bounded by K−50

2 CmaxJ2∈{J21}∪{J22} |CδfJ2(x)|2. Hence

|CδfJ11(x)CδfJ12(x)| ⩽ K−50
2 max

J2∈{J21}∪{J22}
|CδfJ2(x)|2 +

◦∑
J21,J

2
2

|CδfJ21(x)CδfJ22(x)|.(18)

Here, in the summation
◦∑
J21,J

2
2

we are assuming

(19) |CδfJ21(x)| > K−100
2 |CδfJ22∗(x)|, and |CδfJ22(x)| > K−100

2 |CδfJ21∗(x)|.

We break
◦∑
J21,J

2
2

so that
◦∑

J21,J
2
2

|CδfJ21(x)CδfJ22(x)| ⩽
◦∑

|J21−J21∗|⩾ 4
K2

,J22

|CδfJ21(x)CδfJ22(x)|(20)

+

◦∑
J21,|J22−J22∗|⩾ 4

K2

|CδfJ21(x)CδfJ22(x)|+
◦∑

|J21−J21∗|⩽ 4
K2

,|J22−J22∗|⩽ 4
K2

|CδfJ21(x)CδfJ22(x)|.

Now let us consider the first and the second summations in the right hand side. Using (19),
for J21 and J22 appearing in the first sum (in the right hand side of (20)) we have

|CδfJ21(x)CδfJ22(x)| ⩽ |CδfJ21(x)|
2
3 |CδfJ21(x)|

1
3 |CδfJ22∗(x)|

2
3 |CδfJ22∗(x)|

1
3

⩽ K40
2 |CδfJ21(x)|

2
3 |CδfJ22∗(x)|

2
3 |CδfJ21∗(x)|

2
3 .

Now note that |J21∗ − J22∗| ⩾ 4
K1

, |J21 − J22∗| ⩾ 4
K1

and |J21 − J21∗| ⩾ 4
K2

. So, it follows that
◦∑

|J21−J21∗|⩾ 4
K2

,J22

|CδfJ21(x)CδfJ22(x)|(21)

⩽ K45
2 max

J21,J
2
2,J

2
3∈{J21}∪{J22}

mini̸=j |J2i−J2j |⩾ 4
K2

|CδfJ21(x)CδfJ22(x)CδfJ23(x)|
2
3 .

And similarly for J21 and J22 appearing the second sum (in the right hand side of (20)) we
have

|CδfJ21(x)CδfJ22(x)| ⩽ K40
2 |CδfJ21∗(x)|

2
3 |CδfJ22∗(x)|

2
3 |CδfJ22(x)|

2
3 .

Since |J21∗ − J22∗| ⩾ 4
K1

, |J21∗ − J22| ⩾ 4
K1

and |J22 − J22∗| ⩾ 4
K2

, we also have
◦∑

J21,|J22−J22∗|⩾ 4
K2

|CδfJ21(x)CδfJ22(x)|(22)

⩽ K45
2 max

J21,J
2
2,J

2
3∈{J21}∪{J22}

mini̸=j |J2i−J2j |⩾ 4
K2

|CδfJ21(x)CδfJ22(x)CδfJ23(x)|
2
3 .
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Also, since we we are assuming (16),
◦∑

|J21−J21∗|⩽ 4
K2

,|J22−J22∗|⩽ 4
K2

|CδfJ21(x)CδfJ22(x)| ⩽
1

2
|CδfJ11(x)CδfJ12(x)| .

By combining this with (21), (22), and using (20), it follows that
◦∑

J21,J
2
2

|CδfJ21(x)CδfJ22(x)| ⩽ 2K45
2 max

J21,J
2
2,J

2
3∈{J21}∪{J22}

mini̸=j |J2i−J2j |⩾ 4
K2

|CδfJ21(x)CδfJ22(x)CδfJ23(x)|
2
3

+
1

2
|CδfJ11(x)CδfJ12(x)|.

Therefore, by this and (18) and we get (17). □

Also considering the case (15) together with (17), we have

|CδfJ11(x)CδfJ12(x)| ⩽ 2K−50
2 max

J2∈{J21}∪{J22}
|CδfJ2(x)|2 + 25max

J21,J
2
2

|CδfJ21(x)CδfJ22(x)|

+K50
2 max

J21,J
2
2,J

2
3∈{J21}∪{J22}

mini̸=j |J2i−J2j |⩾ 2
K2

|CδfJ21(x)CδfJ22(x)CδfJ23(x)|
2
3 .

Combining this with (13), for any x ∈ R3 we get

|Cδf(x)| ⩽ Cmax
J1

|CδfJ1(x)|+ CK1max
J2

|CδfJ2(x)|(23)

+K50
2 max

J21,J
2
2,J

2
3

mini̸=j |J2i−J2j |⩾
2

K2

|CδfJ21(x)CδfJ22(x)CδfJ23(x)|
1
3 .

Bounds for the square function. For 0 < δ ⩽ 1, we define S(δ) to be the best constant
for which

∥
∑
ν

CδS
νf∥3 ⩽ S(δ)∥(

∑
ν

|CδS
νf |2)

1
2 ∥3(24)

holds whenever f̂ is supported in A(2). For the proof of Theorem 1.2, it is sufficient to show
that S(δ) ⩽ Cδ−ϵ for any ϵ > 0.

As it was observed in [3], smallness of support at Fourier side can be cooperated with
rescaling to give better bounds. It is also true for the square function. More precisely we
have the following lemma.

Lemma 3.1. Let 0 < δ ⩽ γ2 ⩽ 1. Suppose that f̂ is supported in A(2) and the diameter of
θ(supp f̂ ) ⩽ γ, then

∥
∑
ν

CδS
νf∥3 ⩽ S(δ/γ2)∥(

∑
ν

|CδS
νf |2)

1
2 ∥3.

This can be shown by rescaling and making use of Lemma 3.2 below. Let 0 < γ ⩽ 1 and
θ◦ ∈ [−3, 3] and set

Tθ◦,γ =

 γ 0 θ◦
2γθ◦ γ2 θ2◦
0 0 1

 .

We also denote by T ∗
θ◦,γ

the adjoint of Tθ◦,γ .



MULTILINEAR RESTRICTION, MULTIPLIERS AND WAVES 9

Lemma 3.2. Let 0 < δ ⩽ γ2 ⩽ 1 and θ◦ ∈ [−2, 2]. Suppose that f̂ is supported in A(2) and
θ(supp f̂ ) ⊂ [θ◦ − γ/2, θ◦ + γ/2]. Then

(25) Cδf(x) = Cδ/γ2(f ◦ T ∗ −1
θ◦,γ

)(T ∗
θ◦,γx)

and F(f ◦ T ∗ −1
θ◦,γ

) is supported in A(1).

Proof. To begin with we carry out the changes of variables at Fourier side, η → η + θ◦ρ,
τ → τ + θ2◦ρ+ 2θ◦η, η → γη, τ → γ2τ which change successively τ − η2/ρ to

τ − θ2◦ρ− 2θ◦η − η2/ρ⇒ τ − η2/ρ⇒ γ2(τ − η2/ρ).

Composing all the linear changes of variables in order, we see

(η, τ, ρ) → Tθ◦,γ(η, τ, ρ) = (γη + θ◦ρ, 2γθ◦η + γ2τ + θ2◦ρ, ρ)

and also it follows that

(26) Ĉδf(Tθ◦,γ(η, τ, ρ)) = ψ
(
γ2

(τ − η2)/ρ

δ

)
f̂ (Tθ◦,γ(η, τ, ρ)).

By inversion we have Cδf(T
∗ −1
θ◦,γ

x) = Cδ/γ2(f ◦ T ∗ −1
θ◦,γ

)(x). Hence we get the desired (25).
The last statement is obvious from the change of variables because F(f ◦T ∗ −1

θ◦,γ
) = | detTθ◦,γ |

f̂ (Tθ◦,γ(η, τ, ρ)). □

For θ ∈ R and ν ∈
√
δZ, let us set

F(Sν,θf) = ϕ
(ν + θ − η/ρ√

δ

)
f̂(η, τ, ρ).

For the proof of Lemma 3.1 we make the observation that (24) implies

(27)
∥∥∑

ν

CδS
ν,θf

∥∥
3
⩽ S(δ)

∥∥(∑
ν

|CδS
ν,θf |2

) 1
2
∥∥
3

for any θ ∈ R whenever f̂ is supported in A(1). It can be shown by making use of (25)
(in fact with Tθ,1). Indeed, by shifting the indices ν, we may assume that |θ| <

√
δ. Since

F(Sν,θf)(Tθ,1(η, τ, ρ)) = ϕ
(
ν−η/ρ√

δ

)
f̂ (Tθ,1(η, τ, ρ)), by 25 (or (26) equivalently) CδS

ν,θf(x) =

CδS
ν(f ◦ T ∗ −1

θ,1 )(T ∗
θ,1x). So, it follows that

∥
∑
ν

CδS
ν,θf

∥∥
3
= | detT ∗

θ,1|−
1
3

∥∥∑
ν

CδS
ν(f ◦ T ∗ −1

θ,1 )
∥∥
3
.

Note that F(f ◦ T ∗ −1
θ,1 ) is supported in A(2) because f̂ is supported in A(1) and |θ| <

√
δ.

By the definition of S we have

∥
∑
ν

CδS
ν,θf

∥∥
3
⩽ S(δ)|detT ∗

θ,1|−
1
3

∥∥(∑
ν

|CδS
ν(f ◦ T ∗ −1

θ,1 )|2 )
1
2

∥∥
3
.

Now, by (25) and reversing the change variables we get (27).

Proof of Lemma 3.1. We may assume that θ(supp f̂ ) ⊂ [θ◦ − γ/2, θ◦ + γ/2] for some θ◦ ∈
[−3, 3]. Now note that

F(Sνf)(Tθ◦,γ(η, τ, ρ)) = ϕ
(γ−1ν − γ−1θ◦ − η/ρ√

δ/γ2

)
f̂ (Tθ◦,γ(η, τ, ρ)).

As before, by 25 (or (26) equivalently) we see

CδS
νf(x) = Cδ/γ2 [S γ−1ν,−γ−1θ](f ◦ T ∗

θ◦,γ)(T
∗ −1
θ◦,γ

x).
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So it follows that

∥
∑
ν

CδS
νf∥3 = |detTθ◦,γ |

1
3 ∥

∑
ν∈

√
δ Z

Cδ/γ2 [S γ−1ν,−γ−1θ](f ◦ T ∗
θ◦,γ)∥3

= |detTθ◦,γ |
1
3 ∥

∑
k∈
√

δ/γ2 Z

Cδ/γ2 [Sk,−γ−1θ](f ◦ T ∗
θ◦,γ)∥3.

Note that F(f ◦T ∗
θ◦,γ

) is supported in A(1). Hence, by (24), (27), and replacing δ with δ/γ2

we see that

∥
∑
ν

CδS
νf∥3 ⩽ S(δ/γ2)| detTθ◦,γ |

1
3 ∥(

∑
k∈
√

δ/γ2Z

|Cδ/γ2 [Sk,−γ−1θ](f ◦ T ∗
θ◦,γ)|

2)
1
2 ∥3

= S(δ/γ2)∥(
∑
ν

|Cδ/γ2 [S γ−1ν,−γ−1θ](f ◦ T ∗
θ◦,γ)(T

∗ −1
θ◦,γ

· )|2)
1
2 ∥3

= S(δ/γ2)∥(
∑
ν

|CδS
νf |2)

1
2 ∥3.

So this proves Lemma 3.1. □

Proof of Theorem 1.2. Let 0 < δ ⩽ 1. For the proof we need to show S(δ) ⩽ Cδ−ϵ for
ϵ > 0. Clearly, S(δ) ⩽ Cδ−1/4. By interpolation between known results the exponent can
be replaced by a smaller one but it is not relevant here. Hence, we may assume 1 ≪ δ−1

because the bound is trivial otherwise.

Let 1 ≪ K1 ≪ K2 ≪ δ−ϵ. Then, using (23) and the embedding ℓ3 ⊂ ℓ∞, and raising 3rd
power we have for x ∈ R3

|
∑
k

CδS
νf(x)|3 ⩽ C

∑
J1

|CδfJ1(x)|3 + CK3
1

∑
J2

|CδfJ2(x)|3

+ CK150
2

∑
J21,J

2
2,J

2
3

mini̸=j |J2i−J2j |⩾ 2
K2

|CδfJ21(x)CδfJ22(x)CδfJ23(x)|.

By integrating both sides, it follows that

∥Cδf∥33 ⩽ C
∑
J1

∥CδfJ1∥33 + CK3
1

∑
J2

∥CδfJ2∥33(28)

+ CK150
2

∑
J21,J

2
2,J

2
3

mini̸=j |J2i−J2j |⩾ 2
K2

∥CδfJ21CδfJ22CδfJ23∥1.

Now we use Proposition 2.3 to handle the last term in the right hand side. Since there
are at most CK3

2 triples (J21, J
2
2, J

2
3), by Proposition 2.3, with ϵo =

1
K2

, we see

∑
J21,J

2
2,J

2
3

mini ̸=j |J2i−J2j |⩾ 2
K2

∫
|CδfJ21(x)CδfJ22(x)CδfJ23(x)|dx ⩽ Cϵ

(
1

K2

)
δ−ϵ

3∏
i=1

∥∥∥(∑
ν

|Cδf
ν |2)

1
2

∥∥∥
3
.

Now, recalling (7) – (10), for simplicity we write

fJ1 =
∑
ν∼J1

Sνf, fJ2 =
∑
ν∼J2

Sνf
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so that f =
∑

J1
∑

ν∼J1 S
νf and f =

∑
J2
∑

ν∼J2 S
νf . Note that the diameter of θ(fJ2) ⩽

51
50K2

and set c = 502/512. By Lemma 3.1∑
J2

∥CδfJ2∥33 =
∑
J2

∥
∑
ν∼J2

CδS
νf∥33 ⩽ [S(cδK2

2 )]
3
∑
J2

∥(
∑
ν∼J2

|CδS
νf |2)

1
2 ∥33

⩽ [S(cδK2
2 )]

3∥(
∑
J2

∑
ν∼J2

|CδS
νf |2)

1
2 ∥33

⩽ [S(cδK2
2 )]

3∥(
∑
ν

|CδS
νf |2)

1
2 ∥33.

Similarly, for the first term in the right hand side of (28) we have∑
J1

∥CδfJ1∥33 ⩽ [S(cδK2
1 )]

3∥(
∑
ν

|CδS
νf |2)

1
2 ∥33.

Now combining all these estimates, we get

∥
∑
ν

CδS
νf∥3 ⩽ C

(
S(cδK2

1 ) +K1S(cδK2
2 ) +K50

2 Cϵ

(
1

K2

)
δ−ϵ

)
∥(
∑
ν

|CδS
νf |2)

1
2 ∥3.

Taking sup along f of which the Fourier transform is supported in A(2), we see for 0 < δ ⩽ 1

(29) S(δ) ⩽ C
(
S(cδK2

1 ) +K1S(cδK2
2 ) +K50

2 Cϵ

(
1

K2

)
δ−ϵ

)
.

Now let us define
Sβ(δ) = sup

δ⩽δ′⩽1
(δ′)βS(δ′).

And let δ ⩽ δ◦ ⩽ 1. Then by (29) it follows that

δβ◦S(δ◦) ⩽ C
(
δβ◦S(cδ◦K

2
1 ) +K1δ

β
◦S(cδ◦K

2
2 ) +K50

2 Cϵ

(
1

K2

)
δβ◦ δ

−ϵ
◦

)
⩽ C

(
K−2β

1 (cδ◦K
2
1 )

βS(cδ◦K
2
1 ) +K1K

−2β
2 (cδ◦K

2
2 )

βS(cδ◦K
2
2 ) +K50

2 Cϵ

(
1

K2

)
δβ−ϵ
◦

)
Since 1 ⩽ cK2

2 , cK
2
1 and δ ⩽ δ◦, for β < ϵ,

δβ◦S(δ◦) ⩽ C
(
K−2β

1 Sβ(δ) +K1K
−2β
2 Sβ(δ) +K50

2 Cϵ

(
1

K2

)
δβ−ϵ

)
.

Taking sup along δ◦ ⩾ δ, we have

Sβ(δ) ⩽ C
(
K−2β

1 Sβ(δ) +K1K
−2β
2 Sβ(δ) +K50

2 Cϵ

(
1

K2

)
δβ−ϵ

)
.

Finally, we choose CK−2β
1 < 1

4 and CK1K
−2β
2 < 1

4 , to get Sβ(δ) ⩽ CK50
2 Cϵ

(
1
K2

)
δβ−ϵ

provided that ϵ > β > 0. Hence

S(δ) ⩽ CK50
2 Cϵ

(
1

K2

)
δ−ϵ.

Therefore we get (2) for ϵ > 0. This completes the proof.
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