
IMPROVED BOUNDS FOR STEIN’S SQUARE FUNCTIONS

SANGHYUK LEE KEITH M. ROGERS ANDREAS SEEGER

Abstract. We prove a weighted norm inequality for the maximal Bochner-Riesz operator
and the associated square-function. This yields new Lp(Rd) bounds on classes of radial
Fourier multipliers for p ≥ 2 + 4/d with d ≥ 2, as well as space-time regularity results for
the wave and Schrödinger equations.

1. Introduction

Consider the Bochner-Riesz means of order α defined for Schwartz functions f ∈ S(Rd)
by

Rα
t f(x) =

1

(2π)d

∫
|ξ|≤t

(
1− |ξ|2

t2

)α
f̂(ξ) eı⟨x,ξ⟩dξ,

where f̂(ξ) =
∫
f(y) e−ı⟨y,ξ⟩dy. In connection with questions regarding almost everywhere

summability, and in analogy to classical Littlewood-Paley functions for Poisson-integrals,
Stein [36] introduced a square function defined by

Gαf(x) =
(∫ ∞

0

∣∣∣ ∂
∂t

Rα
t f(x)

∣∣∣2t dt)1/2
.

One is interested in the inequality ∥Gαf∥p . ∥f∥p, where A . B denotes A ≤ CB with

an unspecified constant independent of f . As t∂tR̂α
t f(ξ) = 2α|ξ|2/t2(1 − |ξ|2/t2)α−1

+ f̂(ξ) ,
one can consider the Lp problem as a question regarding the boundedness of a vector
valued singular integral operator involving Riesz means of order α − 1. It is known that
Lp boundedness for 1 < p ≤ 2 holds if and only if α > d(1/p − 1/2) + 1/2 (see [40], [21]),
however the problem is more interesting in the range p > 2 for which the condition α >
max{1/2, d(1/2− 1/p)} is known to be necessary and conjectured to be also sufficient. For
d = 1 many proofs of the conjecture are known, for one of them see [41]. The conjecture

in two dimensions was proven by Carbery [3], and partial results for p > 2(d+1)
d−1 , d ≥ 3, are

in [8], [32]. Here we improve on the range in dimensions d ≥ 3.

Theorem 1.1. Let d ≥ 2 and p ∈ [2(d+2)
d ,∞). Then∥∥Gαf∥p . ∥f∥p, α > d

(1
2
− 1

p

)
.

As in the related work by the first author [23] our main tool will be Tao’s bilinear
estimate [42] for the adjoint of the Fourier restriction operator. The square function result
implies the currently known sharp Lp estimates for the maximal Bochner-Riesz operator
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obtained by Carbery [3] in two dimension and by the first author [23] in higher dimensions;
however, as pointed out in [23], somewhat weaker estimates are already enough to bound
the maximal function. More precisely, for a compact t-interval I ⊂ (0,∞), the estimate
in [23] could be formulated as a variational Lp(V4(I)) inequality for Riesz means of order
λ > λcrit := d(1/2− 1/p)− 1/2, or a slightly better regularity result involving the Sobolev
space L4

1/4+ε(I).

The Lp-estimate for the square function is significant for various reasons. Firstly, it
yields regularity results for wave and Schrödinger operators which will be discussed below.
Secondly, for compact I ⊂ (0,∞) it implies Lp(V2(I)) or L

p(L2
1/2+ε(I)) results for Bochner-

Riesz means of order λ > λcrit. Thirdly, the Lp-result for Gα implies boundedness results
for maximal operators associated with more general classes of radial Fourier multipliers as
in [5], [13], and finally, an inequality by Carbery, Gasper and Trebels [6] relating radial
multipliers and Gα yields the following sharp Lp → Lp boundedness result of Hörmander-
Mikhlin type.

Corollary 1.2. Let d ≥ 2 and p ∈ (1, 2(d+2)
d+4 ] ∪ [2(d+2)

d ,∞). Let φ be a nontrivial C∞

function compactly supported in (0,∞). Then

sup
f∈S: ∥f∥p≤1

∥∥F−1[m(| · |)f̂ ]
∥∥
p
. sup

t>0
∥φm(t · )∥L2

α(R), α > d
∣∣∣1
p
− 1

2

∣∣∣.
Weighted norm inequalities. More information about Gα can be obtained by consid-
ering an L2 weighted norm inequality which involves a “universal” maximal operator Vq

acting on the weights, and which is strong enough to imply the above Lp estimates. The
operator Vq is a maximal operator which is bounded on Lr for q < r ≤ ∞, and the Lp

estimates for Gα in Theorem 1.1 can be deduced after an additional interpolation if we take
q < (p/2)′. An informal discussion of the definition of the weight operator is given below.

Theorem 1.3. Let d ≥ 2 and q ∈ (1, d+2
2 ). Then there is an operator Vq which is bounded

on Lr for q < r ≤ ∞, such that

(1)

∫
Rd

∣∣Gαf(x)
∣∣2w(x) dx .

∫
|f(x)|2Vqw(x) dx, α >

d

2q
.

Moreover,

(2)

∫
Rd

sup
t>0

∣∣Rλ
t f(x)

∣∣2w(x) dx .
∫

|f(x)|2Vqw(x) dx, λ >
d− q

2q
.

The weighted inequalities (1) and (2) are motivated by one of Stein’s problems in [38].
It was asked whether the operator defining the weight on the right hand side of (2) could
be chosen to be a Nikodym maximal operator (see also Córdoba [9] for a related question).
This seems currently unknown. For the range q ∈ (1, d+1

2 ], Christ [8] proved the weighted

inequality with the simple weight (M |w|q)1/q, where M denotes the Hardy–Littlewood
maximal operator. In two dimensions, Carbery [4] proved a weighted inequality with an
operatorW2 in place of V2, such thatW2 is bounded on Lr(R2) for r ∈ (2, 4]. The extension
of that result with the weight operator bounded for r ∈ (2,∞] was established by Carbery
and the third author [7].

We now give an informal description of the weight operator Vq and refer to §2 for the
precise description of a closely related operator Wq (with a more technical definition) which
will be of weak type (q, q) and can be used instead of Vq. The reader may then check that
Vq satisfies Vq & Wq and is still bounded on Lr for r > q. In §2 we shall also prove a
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refinement of Theorem 1.3 which will be significant for endpoint bounds such as Theorem
1.4 below.

The weight Vqw involves the sum of two maximal functions associated with tubes of
large eccentricity;

Vqw =
(
M

[
sup
e≥1

e
−2( d

q
−1)(

MVew + [log(2 + e)]2 sup
l∈Z

MV main
e,l,q (Plw)

)]1+ε
) 1

1+ε
,

with some ε > 0. Here Plw is a standard dyadic frequency cutoff localizing ŵ to frequencies
of size ≈ 2l. The first summand is similar to the standard Nikodym maximal function,
but much better behaved due to the small damping factor. For e ≥ 1, the function Vew is
the usual maximal function associated with the tubes (or cylinders) which are centered at
the origin with eccentricity (defined as the quotient length/width) equal to e. The second
summand involves the maximal function

V main
e,l,q g(x) = sup

θ∈Sd−1

(
Mθ,e[sup

Ψ
|Ψ ∗ g|q](x)

)1/q
,

where the supremum in Ψ ranges over suitable classes of L1-normalized Schwartz functions
associated with tubes of length 2−le and width 2−l, in the direction of θ. The maximal
operator Mθ,e is associated with the tubes in the direction θ, with fixed eccentricity e. This
definition is reminiscent of the “grand maximal function” in the theory of Hardy spaces
([17]) as it involves a supremum over convolutions with kernels in a suitably normalized and
rescaled class of Schwartz functions, and a significant gain is achieved when these kernels
are convolved with functions that have a suitable cancellation property (such as Plw).

Concerning the boundedness properties of Vq, for the first summand we shall only need a
standard and non-optimal bound ∥Ve∥Lq→Lq = O(ea) with a > (d−2)/q, for q ≥ 2, and the

small factor e2−2d/q helps to get the claimed bound. For the main term the range cannot
be improved as the maximal function involves powers |Φ ∗ w|q. Here the terms with small
eccentricity (≈ 1) contribute most, and in order to establish the proper bounds for terms

with large eccentricity one uses cancellation, namely the annular support property of P̂lw.

Wave and Schrödinger operators. One can apply Lp bounds for variants of the Bochner-
Riesz square-function to obtain regularity results for spherical means and solutions of the
wave and Schrödinger equations. This application is suggested by a theorem of Kaneko and
Sunouchi [22] relating Gα to another square function which was introduced by Stein in his
study of spherical maximal operators (cf. [37]). Define the spherical mean of order β > 0
by

Aβ
t f(x) =

Γ(d+2β
2 )

πd/2Γ(β)

∫
|y|≤t

1

td

(
1− |y|2

t2

)β−1
f(x− y) dy;

for smaller values of β the definition can be extended by analytic continuation. In [22] an
application of Plancherel’s theorem with respect to t is used to show that Gα is pointwise
equivalent with a square function generated by spherical means, namely, for α > 0,

Gαf(x) ≈
(∫ ∞

0

∣∣∣ ∂
∂t

Aα− d−2
2

t f(x)
∣∣∣2t dt)1/2

,

for all Schwartz functions f . Here we shall not use this equivalence explicitly but prove
a closely related sharp Lp(L2) regularity result for solutions of the wave and Schrödinger
equations with initial data in Lp Sobolev spaces. In order to formulate a unifying result, for
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a ∈ (0,∞), we let Ua
t f denote the solution to the initial value problem ı∂tu+(−∆x)

a/2u = 0
with u( · , 0) = f ;

(3) Ua
t f = exp(ıt(−∆)a/2)f.

The case a = 2 corresponds to the Schrödinger equation and the case a = 1 to a wave
equation.

Theorem 1.4. Let d ≥ 2, p ∈ (2(d+2)
d ,∞), a ∈ (0,∞), and let I be a compact time interval.

Then

(4)
∥∥∥(∫

I
|Ua

t f |2 dt
)1/2∥∥∥

p
. ∥f∥

Lp
s
,

s

a
= d

(1
2
− 1

p

)
− 1

2
.

In fact this holds for initial data in the Besov space Bp
s,p (which contains Lp

s for p ≥ 2).
One can also consider the same regularity problem in the mixed norm space Lp(Lq(I))

with q ∈ (2,∞]. For this range the analogy between the wave and Schrödinger equation
breaks down (and some endpoint versions of the deeper ‘local smoothing’ result for the wave
equation are currently available only in four and higher dimensions, cf. [20]). However, for
a ∈ (0, 1) ∪ (1,∞) and d ≥ 2, one can deduce sharp Bp

s,p → Lp(Lq(I)) estimates with
s = ad(1/2 − 1/p) − a/q, in the range p ∈ (2 + 4/d,∞). This follows from a combination
of Theorem 1.4 and the result in Appendix A. Moreover, one can, for a limited range of
q, obtain further estimates for p > 2 + 4/(d + 1) and d ≥ 1, essentially by interpolation
with results in [29]; in dimensions d ≥ 2 this currently requires the restriction a > 1. These
Lp(Lq)-estimates are stated in §6, and a further, more substantial improvement for d = 2
will be considered in [25].

Remark. After the first version of this paper was submitted for publication, Bourgain and
Guth posted a preprint [2] containing very substantial improvements on the Lp boundedness
for oscillatory integrals related to the Fourier restriction problem, with implications for
Bochner-Riesz multipliers. It would be of great interest to investigate the impact of their
methods on Stein’s square-function, weighted norm inequalities, and other issues discussed
in this paper.

This paper. In §2 we formulate a more precise weighted inequality (Theorem 2.1), and give
the definitions and boundedness properties of suitable weight operators. In §3 we prove
some L2 → Lp estimates for radial convolution operators and prepare for the proof of the
weighted inequalities. These are established in §4. In §5 we prove Lp(L2) estimates for wave
and Schrödinger equations and in §6 we discuss some Lp(Lq) bounds for q > 2. Appendix A
contains auxiliary results on combining inequalities for frequency localized operators.

Some notational references. For two nonnegative quantities A, B the notation A . B, or
B & A, is used for A ≤ CB, with some unspecified positive constant C. We also use
A ≈ B to indicate that A . B and B . A. To avoid unwieldy formulas we will sometimes
shorten the notation for products involving a complex conjugate and use, given two complex
terms E1 and E2, the expression

∏∗
i=1,2[Ei] = E1E2. For convolution operators given by

Fourier multipliers a(ξ) we occasionally use the symbol notation a(D)f := F−1[af̂ ], where

F−1 denotes the inverse Fourier transform. By Pn, P̃n we denote dyadic frequency cutoff

operators which localize to frequencies of size ≈ 2n, so that PnP̃n = Pn, see §2 for the
precise definition.
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2. A stronger weighted norm inequality

We formulate a weighted norm inequality for a square function generated by thin pieces
of the Bochner-Riesz multiplier. To fix notation, let ϕ be a Schwartz function supported in
(1/2, 2) with the property that

(5) |ϕ(ν)(t)| ≤ 1, ν = 0, . . . , d+ 2.

Let 0 < δ < 1/2 and define the convolution operator Sδ
t ≡ Sδ,ϕ

t by

(6) Ŝδ
t f(ξ) = ϕ

(
δ−1

(
1− |ξ|2

t2

))
f̂(ξ).

Assuming (5) we shall usually drop the superscript ϕ, as our estimates will be understood
to be uniform in ϕ.

Theorem 2.1. Let d ≥ 2 and q ∈ (1, d+2
2 ). For 0 < δ < 1/2, there are operators Wq,δ

defined on Lq + L∞, so that the weighted norm inequality

(7)

∫
Rd

∫ ∞

0
|Sδ

t f(x)|2
dt

t
w(x) dx . δ2−d/q

∫
Rd

|f(x)|2Wq,δw(x) dx

holds for all w ∈ Lq + L∞ and the operators Wq,δ satisfy the following properties:
(i) The maximal operator defined by

(8) Wqw = sup
0<δ<1/2

Wq,δw

is of weak type (q, q) and bounded on Lr for q < r ≤ ∞.
(ii) If q ∈ [2, d+2

2 ), then the operators Wq,δ are bounded on Lq, uniformly in δ. Moreover

if q ∈ (1, 2) then ∥Wq,δ∥Lq→Lq . [log(1δ )]
1
q
− 1

2 .

We shall also consider local versions of (7) with the t-integral extended over a dyadic
interval and for which the Lq bounds of the corresponding weight operators are independent
of δ for all q ∈ (1, d+2

2 ), see Theorem 4.1 below.
To deduce inequality (1) with Wq in place of Vq one splits the multiplier into a part near

the origin and a part near the unit sphere. The part near the origin is dealt with by the
standard weighted norm inequality for singular integrals in [12]. One then decomposes the
part near the unit sphere into smooth multipliers supported on thin annuli of width δ = 2−j ,
applies Theorem 2.1, and sums a geometric series. The maximal inequality (2) follows from
(1) by well-known arguments in ([39, §VII.5]) together with a weighted norm inequality
for the Hardy–Littlewood maximal function ([16]). If we take q = (p/2)′ then by duality
and an application of the Marcinkiewicz interpolation theorem one obtains Theorem 1.1
for p > 2 + 4/d. Interpolation with an L2 inequality yields the result also for p = 2 + 4/d.
Theorem 2.1 also implies a sharp Lp result for the square-functions generated by Sδ

t which
is stated in Corollary 4.2 below.

Definition of Wq,δ. We assume throughout this section that d ≥ 2. The definition of
Wq,δw in (16) involves a suitably damped Nikodym maximal function and another (more
important) maximal function acting on functions with Fourier transform supported away
from the origin.

Let 0 < δ◦ < 1, let θ be a unit vector in Rd and let

Rθ
δ◦,t = {y ∈ Rd : |⟨y, θ⟩| ≤ t, |y − ⟨y, θ⟩θ| ≤ tδ◦}.
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Then the Nikodym maximal function associated with tubes of eccentricity δ◦ is defined by

(9) Mδ◦g(x) = sup
θ∈Sd−1

sup
t>0

1

|Rθ
δ◦,t

|

∫
Rθ

δ◦,t

|g(x+ y)|dy.

Now we describe our second maximal operator. Let N ≥ d+3 be a large positive integer
and let S(N ) be the set of all Schwartz functions ψ for which

(10) |||ψ|||N := max
|α|≤N

sup
x
(1 + |x|)N |∂αxψ(x)| ≤ 1.

The number N will be fixed throughout the paper and constants in inequalities will depend
on N (one may want to choose N = d+ 3).

For j ≥ 0 and θ ∈ Sd−1 let ℓθ,j be the unique linear transformation defined by

ℓθ,j(θ) = 2jθ, ℓθ,j(y) = y if ⟨θ, y⟩ = 0.

Then det ℓθ,j = 2j . Let Sθ,j
n be the set of all Ψ for which 2−nd2jΨ(ℓθ,j2

−n · ) belongs to

S(N ). Typical examples of functions in Sθ,j
n are L1 normalized bump functions essentially

supported on a tube with direction θ, length 2j−n and width 2−n. We define a maximal

function which involves convolutions with Ψ in the classes Sθ,j
n and in our application it is

crucial that these convolutions will be acting on functions with cancellation, namely with
frequency support in annuli. Let

Mθ,j
n g(x) = sup

Ψ∈Sθ,j
n

|Ψ ∗ g(x)|

and set, for τ > 0,

(11) Kθ,j
τ (x) :=

2−jτd

(1 + |ℓ−1
θ,j (τx)|)d+1

.

For future reference note that

(12) |Ψ(x)| . 2kd2−j(d+1)

(1 + 2k−2j |⟨x, θ⟩|+ 2k−j |x− ⟨x, θ⟩θ|)d+3
. Kθ,j

2k−j (x) if Ψ ∈ Sθ,j
k−j .

We use the dyadic frequency cutoff operator Pn defined by

(13) P̂nf(ξ) = χ(2−n|ξ|)f̂(ξ)

where χ ∈ C∞ is nonnegative and supported in (5/8, 15/8) so that
∑

k∈Z χ(2
−kt) = 1 for

all t > 0. Set

Wj
q,δ,kg(x) :=

(
sup
θ

Kθ,j
2k+jδ

∗
∣∣Mθ,j

k−jPk−jg|q(x)
)1/q

,(14)

Wj
q,δg(x) := sup

k∈Z
Wj

q,δ,kg(x) .(15)

Next, fix s ∈ (1, q) and define the maximal operator Wq,δ by

(16) Wq,δw :=
∑

1≤22j<δ−1

2
−2j( d

q
−1)(

M |M ◦Wj
q,δw|

s
)1/s

+ δ
d
q
−1(

M |M ◦M√
δw|

s
)1/s

where M is the Hardy–Littlewood maximal operator. We also recall from the statement of
Theorem 2.1 the definition Wqw = sup0<δ<1/2Wq,δw.
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Boundedness of the weight operators. In the proofs we will frequently use a dyadic

frequency cutoff P̃n which reproduces Pn and is similarly defined. That is to say,
̂̃
Pnf(ξ) =

χ̃(2−n|ξ|)f̂(ξ) where χ̃ is supported in (1/2, 2) and has the property χ̃(s) = 1 for s ∈
[5/8, 15/8]. Then PnP̃n = Pn.

It is obvious that the operators Wj
q,δ,k, Wj

q,δ, M√
δ are bounded on L∞. For the Lq

boundedness we state

Proposition 2.2. (i) For 1 ≤ q ≤ ∞, the operator Wj
q,δ,k satisfies

sup
δ,k

sup
∥w∥q≤1

∥Wj
q,δ,kw∥q .

{
2
j d−2

q if 2 ≤ q ≤ ∞,

2
j( d

q
−1)

if 1 ≤ q < 2.

(ii) For 1 < q ≤ ∞, the operator Wj
q,δ satisfies

sup
∥w∥q≤1

∥Wj
q,δw∥q .

{
2
j d−2

q if 2 ≤ q ≤ ∞,

2
j( d

q
−1)

[log(1δ )]
1
q
− 1

2 if 1 < q < 2.

Moreover for q = 1 the operator Wj
1,δ maps the Hardy space H1 to L1 with operator norm

. 2j(d−1)[log(1δ )]
1/2.

(iii) We also have the weak type (q, q) estimate

sup
∥w∥q≤1

∥∥ sup
0<δ<1/2

Wj
δ,qw

∥∥
Lq,∞ .

{
2
j d−2

q if 2 ≤ q <∞,

2
j( d

q
−1)

(1 + j)
1
q
− 1

2 if 1 < q < 2.

The proposition implies statements (i) and (ii) of Theorem 2.1. Clearly the operatorsWq,δ

and Wq are bounded on L∞ if q < d. The Lq bound for the first (main) term in (16) is

immediate from Proposition 2.2 since d−2
q − 2(dq − 1) < 0 iff q < d+2

2 . For the second term

in (16) we use standard non-endpoint Lq bounds for the Nikodym maximal operator (see

[9], [10], [1], [27]). Namely M√
δ is bounded on Lq with operator norm ≤ Cε(

√
δ)1−d/q−ε

if q < 2 and operator norm ≤ Cε(
√
δ)−(d−2)/q−ε if q ≥ 2. The damping factor δ−1+d/q is

enough to prove Lq boundedness for q < d+2
2 . Using for example the results in [44] this

final estimate can be significantly improved but any such improvement seems currently to
have no impact on our result, as the main contribution to the weight operator comes from

the terms Wj
q,δ. �

Elementary convolution estimates. The following simple and standard convolution esti-
mates will be used many times in the paper.

Lemma 2.3. (i) Let H(x) = (1 + |x|)−N and let N > d. Then there is Cd,N > 0 so that

for all x ∈ Rd

(17) sup
t≥1

sup
0≤s≤1

∫
tdH(ty)H(x− sy) dy ≤ Cd,NH(x).

(ii) Let HA(x) = |detA|H(Ax). Then HA ∗HA(x) ≤ Cd,NH
A(x) for all x ∈ Rd.

(iii) Let ℓ ∈ N, let h1, h2 be kernels with

(1 + |x|)ℓ|h1(x)| +
∑
|α|=ℓ

|∂αh2(x)| ≤ H(x)
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and assume that
∫
P (x)h1(x) dx = 0 for all polynomials P of degree ≤ ℓ− 1. Let hAi (x) =

|detA|hi(Ax). Then for t ≥ 1∣∣tdhA1 (t · ) ∗ hA2 (x)| ≤ Cd,N,ℓ t
−ℓHA(x) .

Proof. Let Ft,s(x) =
∫
tdH(ty)H(x− sy) dy then clearly Ft,0(x) . H(x) and for |x| ≤ 1 we

have Ft,s(x) . 1 so that the assertion holds for |x| ≤ 1.
If |x| ≥ 1 then sup|sy|≤|x|/2H(x− sy) . H(x) and sup|sy|≥2|x|H(x− sy) . H(x), so that∫

|sy|/∈[ |x|
2
,2|x|]

tdH(ty)H(x− sy) dy . ∥tdH(t · )∥1H(x) . H(x),

for all t > 0.
Next, if |sy| ≈ |x| then tdH(ty) ≈ tdH(tx/s). Letting Bl,s(x) = {y : |sy − x| ≤ 2l} for

l ≥ 0, we have |Bl,s(x)| . (2l/s)d and we may estimate (using N > d)∫
|x|/2≤|sy|≤2|x|

H(x− sy)tdH(ty) dy

. td−NsN |x|−N
∑
l≥0

∫
Bl,s(x)

2−lNdy . td−NsN−d|x|−N . H(x)

since t ≥ 1, s ≤ 1 and |x| ≥ 1.
(ii) follows immediately by a change of variable. Similarly for (iii) we may reduce to the

case where A is the identity. Then one can use Taylor’s formula and the cancellation of h1,
and (i), to estimate

|tdh1(t · ) ∗ h2(x)| .
∫ 1

0

(1− s)ℓ−1

(ℓ− 1)!

∫ ∣∣tdh1(ty)⟨y,∇⟩ℓh2(x− sy)
∣∣ dy ds

. t−ℓ sup
0≤s≤1

∫
tdH(ty)H(x− sy) dy . t−ℓH(x) .

�

For the kernels in (11), Lemma 2.3 yields the bound

(18) Kθ,j
t ∗ Kθ,j

τ (x) ≤ CdKθ,j
τ (x) , t > τ .

Proof of Proposition 2.2. We shall use many times that ∥Kθ,j
t ∥1 . 1, uniformly in θ, j, t.

Moreover,

(19) Kθ,j
t (x) ≈ Kθ̃,j̃

t̃
(x) , |θ − θ̃| ≤ C2−j , |j − j̃| ≤ C, C−1 ≤ t/t̃ ≤ C ,

where the implicit constants in the equivalence depend only on C and the dimension. Next,

the class Sθ,j
n is stable under small perturbation in the sense that given A > 0 there is a

constant C, depending only on A, d and the parameter N in the definition (10), so that

(20) Ψ ∈ Sθ,j
n =⇒ C−1Ψ ∈ S θ̃,j̃

ñ if |θ − θ̃| ≤ A2−j , |j − j̃| ≤ A, |n− ñ| ≤ A.

In what follows we let Θj be a maximal 2−j−d-separated subset of Sd−1. Clearly

card(Θj) . 2j(d−1); moreover each θ̃ ∈ Sd−1 has distance ≤ 2−j to at least one θ ∈ Θj .
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Lq-bounds for Wj
q,δ,k. We replace a sup in θ ∈ Θj by an ℓq norm and interchange a sum-

mation and integration to estimate for any fixed j, k∥∥∥( sup
θ

Kθ,j
2k+jδ

∗
∣∣Mθ,j

k−jPk−jg
∣∣q)1/q∥∥∥

q

.
( ∑

θ∈Θj

∫∫
sup

|θ̃−θ|≤2−j

Kθ̃,j
2k+jδ

(y) sup
|θ̃−θ|≤2−j

∣∣Mθ̃,j
k−jPk−jg(x− y)

∣∣qdydx)1/q

.
( ∑

θ∈Θj

∥∥Mθ,j
k−jPk−jg

∥∥q
q

)1/q
.

For the last inequality we have used (19) and (20).
We now need a further decomposition. Let η0 be supported in (−1, 1) so that η0(s) = 1

for s ∈ (−1/2, 1/2) and let

ηj,kθ (ξ) = η0
(√

|22j−k⟨ξ, θ⟩|2 + |2j−k(ξ − ⟨ξ, θ⟩θ)|2
)
.

For m ≥ 0 define operators Qθ,j,k
m , P θ,j,k

m as follows. For m = 0 set

Q̂θ,j,k
0 f(ξ) = P̂ θ,j,k

0 f(ξ) = ηj,kθ (ξ)f̂(ξ)

and, for m ≥ 1, set

Q̂θ,j,k
m f(ξ) =

(
ηj,kθ (2−mξ)− ηj,kθ (2−m+1ξ)

)
f̂(ξ) ,

P̂ θ,j,k
m f(ξ) =

(
ηj,kθ (2−mξ) + ηj,kθ (2−m+1ξ)

)
f̂(ξ) .

Then
∑∞

m=0Q
θ,j,k
m P θ,j,k

m is the identity; moreover Qθ,j,k
m Pk−j = 0 for m > j + 3. Using the

cancellation of Qθ,j,k
m it is straightforward to derive the estimate

sup
Ψ∈Sθ,j

k−j

|Qθ,j,k
m Ψ(x)| ≤ C2−2m 2(k−j)d2−j

(1 + 2k−2j |⟨x, θ⟩|+ 2k−j |x− ⟨x, θ⟩θ|)d+1

from Lemma 2.3 and (12); in fact if N > d + 3 in (10) one can also get a gain of higher
powers of 2−m. Now, for fixed k, j, θ( ∑

θ∈Θj

∥∥Mθ,j
k−jPk−jg

∥∥q
q

)1/q
.

( ∑
θ∈Θj

∥∥∥ sup
Ψ∈Sθ,j

k−j

∣∣∣ ∑
0≤m≤j+3

(Qθ,j,k
m Ψ) ∗ (P θ,j,k

m Pk−jg)
∣∣∣∥∥∥q

q

)1/q

.
∑

0≤m≤j+3

2−2m
( ∑

θ∈Θj

∥∥P θ,j,k
m Pk−jg

∥∥q
q

)1/q
(21)

and the desired bound follows when we establish the estimate

(22)
( ∑

θ∈Θj

∥∥∥P θ,j,k
m Pk−jg

∥∥∥q
q

)1/q
. max{2j

d−2
q , 2

j( d
q
−1)} 2m/q∥g∥q, 1 ≤ q ≤ ∞,

with the usual modification for q = ∞. To prove (22) we notice that by interpolation we
only have to verify the cases q = 1, 2,∞. The cases q = ∞ and q = 1 are immediate

since the operators P θ,j,k
m and Pk−j have convolution kernels with uniformly bounded L1

norms and since card(Θj) . 2j(d−1). For q = 2 we use Plancherel’s theorem. Write

F [P θ,j,k
m Pk−jg] = aj,k,θ,mĝ. Then the multiplier aj,k,θ,m is supported in

{ ξ : C−12k−j−3 ≤ |ξ| ≤ C2k−j+2, |⟨ξ, θ⟩| ≤ C2k−2j+m }.
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Since Θj is a 2−j−d-separated set we see that for fixed j, k,m every ξ ∈ Rd is contained in

no more than Cd2
m+j(d−2) of the sets supp (aj,k,θ,m), which implies the bound (22).

Lq-bounds for Wj
q,δ. We argue as above and now replace the sup in k ∈ Z, θ ∈ Θj by an ℓq

norm. This yields

(23)
∥∥∥( sup

k
sup
θ

Kθ,j
2k+jδ

∗
∣∣Mθ,j

k−jPk−jg(x)
∣∣q)1/q∥∥∥

q
.

(∑
k

∑
θ∈Θj

∥∥Mθ,j
k−jPk−jg

∥∥q
q

)1/q
.

A combination of (21) and (22) together with the use of the reproducing Littlewood-Paley

cutoff P̃k−j yields(∑
k

∑
θ∈Θj

∥∥∥Mθ̃,j
k−jPk−jg

∥∥∥q
q

)1/q

.
∑

0≤m≤j+3

2−2m
(∑

k

∑
θ∈Θj

∥∥P θ,j,k
m Pk−jP̃k−jw

∥∥q
q

)1/q

.
∑

0≤m≤j+3

2
−m(2− 1

q
)
max{2j

d−2
q , 2

j( d
q
−1)}

(∑
k

∥∥P̃k−jw
∥∥q
q

)1/q

and for q ≥ 2 this is . 2j(d−2)/q∥w∥q.
Now consider the case q < 2. By a standard linearization combined with an analytic

family argument the claimed Lq estimates can be deduced from the Hardy-space estimate
and the already proven L2 estimate. We omit the details of the interpolation argument (cf.
[17]). For the Hardy-space estimate we need to prove an inequality for an L2-atom, i.e. an

L2 function gρ supported on a ball {x : |x| ≤ ρ} with ∥gρ∥2 ≤ ρ−d/2 and
∫
gρ dx = 0. It

suffices to verify

(24) ∥Wj
1,δgρ∥1 . 2j(d−1)[log(1δ )]

1/2 .

By the Schwarz inequality we have

Wj
1,δg(x) . Wj

2,δg(x)

and thus by the above L2 estimates

∥Wj
1,δgρ∥L1(|x|≤2ρ) . ρd/2∥Wj

2,δgρ∥2 . 2j(
d
2
−1)ρd/2∥gρ∥2 . 2j(

d
2
−1).

On the complementary set we estimate

∥Wj
1,δgρ∥L1(|x|≥2ρ) .

∑
k∈Z

∥Wj
1,δ,kgρ∥L1(|x|≥2ρ) .

From our previous bound for Wj
q,δ,k and the cancellation of the atom,

∥Wj
1,δ,kgρ∥1 . 2j(d−1)∥P̃k−jgρ∥1 . 2j(d−1)min{1, 2k−jρ}.

Now if Ψ ∈ Sθ,j
k−j then by (12) with n = k − j, (18), and 22jδ ≤ 1,

Kθ,j
2k+jδ

∗ |Ψ|(x) . Kθ,j
2k+jδ

∗ Kθ,j
2k−j (x) .

(2kδ)d2j(d−1)

(1 + 2kδ|⟨x, θ⟩|+ 2j2kδ|x− ⟨x, θ⟩θ|)d+1
.

Thus a favorable estimate holds for 2kρ ≥ δ−1, namely

∥Wj
1,δ,kgρ∥L1(|x|≥2ρ) . 2j(d−1)(2kδρ)−1.
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These estimates can be summed for 2k ≤ ρ−1 and 2k ≥ δ−1ρ−1. For the intermediate terms
we use the L1 bounds and the Schwarz inequality∑

ρ−1≤2k≤(ρδ)−1

∥Wj
1,δ,kgρ∥1 . 2j(d−1)

∑
ρ−1≤2k≤(ρδ)−1

∥P̃k−jgρ∥1

. 2j(d−1)[log(1δ )]
1/2

(∑
k

∥P̃k−jgρ∥21
)1/2

,

and by Minkowski’s integral inequality and the Littlewood-Paley inequality on H1 (see e.g.
[18]) we have

(25)
(∑

k

∥P̃k−jgρ∥21
)1/2

≤
∥∥∥(∑

k

|P̃k−jgρ|2
)1/2∥∥∥

1
. ∥gρ∥H1 . 1.

Now collect the estimates and (24) is proved.

The weak type estimate. We observe the pointwise estimate

sup
k

Kθ′,j
2k+jδ

∗
∣∣Mθ′,j

k−jPk−jg
∣∣q .M θ,j

[
sup
k

|Mθ,j
k−jPk−jg|q

]
, |θ − θ′| ≤ 2−j ,

where M θ,j is the maximal operator associated with tubes of eccentricity 2−j , with the
long side pointing in the direction θ. For each (θ, j), M θ,j is a rescaled version of the
Hardy–Littlewood maximal function and therefore satisfies the standard weak-type (1, 1)
inequality with a bound independent of θ and j.

We use the continuous embedding ℓq(Lq,∞) ⊂ Lq,∞(ℓ∞) (see e.g. Lemma 2.1 in [19]) and
dominate∥∥∥ sup

0<δ<1/2
|Wj

q,δg|
∥∥∥
Lq,∞

.
( ∑

θ∈Θj

∥∥∥(M θ,j
[
sup
k

|Mθ,j
k−jPk−jg|q

])1/q∥∥∥q
Lq,∞

)1/q

.
( ∑

θ∈Θj

∥∥ sup
k

|Mθ,j
k−jPk−jg|

∥∥q
Lq

)1/q
,(26)

and for the last inequality we have used the uniform weak-type (1, 1) bounds for the M θ,j

together with the identity ∥F q∥L1,∞ = ∥F∥qLq,∞ for the usual quasinorms.
We may dominate (26) by ( ∑

θ∈Θj

∑
k

∥∥Mθ,j
k−jPk−jg

∥∥q
q

)1/q

which for q ≥ 2 has already been estimated by 2j(d−2)/q∥g∥q. Thus the asserted estimate
follows in this range.

For 1 < q < 2 we claim that( ∑
θ∈Θj

∥∥ sup
k

|Mθ,j
k−jPk−jg|

∥∥q
q

)1/q
. 2

j( d
q
−1)

(1 + j)1/q−1/2∥g∥q.

This follows by complex interpolation from the estimate for q = 2 already proved above
and an H1 → ℓ1(L1(ℓ∞)) bound. Again it suffices to consider an L2-atom gρ supported on
a ball of radius ρ centered at the origin and we need to check∑

θ∈Θj

∥∥ sup
k

|Mθ,j
k−jPk−jgρ|

∥∥
1
. 2j(d−1)(1 + j)1/2.



12 S. LEE K. ROGERS A. SEEGER

Now on the ball of radius 2ρ we use an L2 estimate and the trivial estimation |Mθ,j
k−jf | .

M θ,j(f) to obtain∑
θ∈Θj

∥∥ sup
k

|Mθ,j
k−jPk−jgρ|

∥∥
L1(|x|≤2ρ)

. ρd/2
∑
θ∈Θj

∥∥ sup
k

|Mθ,j
k−jPk−jgρ|

∥∥
2

. ρd/2
∑
θ∈Θj

∥∥∥(∑
k

(M θ,j(Pk−jgρ))
2
)1/2∥∥∥

2

. ρd/2
∑
θ∈Θj

(∑
k

∥Pk−jgρ∥22
)1/2

. 2j(d−1)ρd/2∥gρ∥2 . 2j(d−1) .

For |x| ≥ 2ρ we replace the sup in k by the sum. By standard L1 estimates and using the
cancellation of the atom we have∥∥Mθ,j

k−jPk−jgρ
∥∥
1
. ∥Pk−jgρ

∥∥
1
. min{2k−jρ, 1}

and, using estimates of the kernels,∥∥Mθ,j
k−jPk−jgρ

∥∥
L1(|x|≥2ρ)

. (2k−2jρ)−1 if 2kρ > 2j .

Thus
∑

θ∈Θj

∑
2kρ/∈[2j ,22j ]

∥∥Mθ,j
k−jPk−jgρ

∥∥
L1(|x|≥2ρ)

. 2j(d−1).Moreover, for the intermediate

terms,∑
θ∈Θj

∑
2kρ∈[2j ,22j ]

∥∥Mθ,j
k−jPk−jgρ

∥∥
1
. 2j(d−1)

∑
2kρ∈[2j ,22j ]

∥Pk−jgρ∥1 . 2j(d−1)(1 + j)1/2,

by the argument in (25). We combine these estimates and the L1 bound is proved. �

3. Multipliers and the bilinear adjoint restriction theorem

In this section we prove bilinear estimates for multiplier transformations, under suitable
separation conditions. The proofs rely on

Tao’s bilinear adjoint restriction theorem ([42], [24]). Let b > 1/2 and p > 2 + 4/d.
There exist ε◦ > 0, N◦ ∈ N and C, depending on b, p and d, that for all functions h defined
on [−b, b]d−1 and satisfying

(27) sup
ω∈[−b,b]d−1

max
|α|≤N◦
i=1,2

|∂αωh(ω)| ≤ ε◦

the following holds: For all pairs of functions (F1, F2) with dist(supp (F1), supp (F2)) ≥ 1/2
and Fi ∈ L2([−b, b]d−1),
(28)(∫ ∣∣∣ ∏

i=1,2

∫
[−b,b]d−1

Fi(ω) exp
(
ı⟨x′, ω⟩+ ıxd(|ω|2/2 + h(ω))

)
dω

∣∣∣p/2dx)2/p
.

∏
i=1,2

∥∥Fi

∥∥
L2 .

We will need to consider families of hypersurfaces which depend on a parameter s and
which, for fixed s, are small perturbations of the paraboloid ξd = |ξ′|2/2, where ξ′ =
(ξ1, . . . , ξd−1). These lead to “elliptic” phase-functions as considered in [43], [42].

Definition. We denote by Ell(b, ε,N◦) the class of functions (ξ′, s) 7→ γ(ξ′, s) defined on
[−b, b]d−1 × (−1, 1) which are of the form

γ(ξ′, s) =
|ξ′|2

2
− s+ h(ξ′, s),
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with

(29) sup
ω∈[−b,b]d−1

s∈(−1,1)

max
|α|≤N◦
i=1,2

|∂αω,sh(ω, s)| ≤ ε.

We may and shall assume in what follows that N◦ is large, say N◦ > 10d.
We now consider Fourier multipliers depending on a parameter s ∈ (−1, 1), supported

in a tubular neighborhood of (ξ′, γ(ξ′, s)).

Lemma 3.1. Let p > 2+ 4/d, b > 1/2. There are ε, N◦, depending on d, b, and p, so that
the following holds for all δ◦ < 1/2.

Let γ ∈ Ell(b, ε,N◦). For |s| ≤ 1 and i = 1, 2, let ai(·, s) be multipliers, supported on
[−b, b]d−1, satisfying the conditions

(30a) |ai(ξ, s)| ≤ 1 ,

(30b) ai(ξ, s) = 0 if |ξd − γ(ξ′, s)| ≥ δ◦,

and

(30c) (ξ′, ξd) ∈ supp a1( · , s), (ξ̃′, ξ̃d) ∈ supp a2( · , s) =⇒ |ξ′ − ξ̃′| ≥ 1 .

Then, for all pairs of L2 functions (f1, f2),

(31)
∥∥∥∫ 1/2

−1/2

∏
i=1,2

ai(D, s)fi ds
∥∥∥
p/2

. δ2◦
∏
i=1,2

∥fi∥2 .

Proof. For fixed s we introduce coordinates

ξ = Γs(ξ′, τ) := (ξ′, γ(ξ′, s) + τ)

in the Fourier integral. We then need to estimate the Lp/2 norm of∫ 1/2

−1/2

∏
i=1,2

[∫ δ◦

−δ◦

∫
[−b,b]d−1

[aif̂i](Γ
s(ξi

′
, τ i))eı(⟨x

′,ξi
′⟩+xd(γ(ξ

i′,s)+τ i))dξi
′
dτ i

]
ds;

here we denote by (ξi
′
, τ i) the variables in the two different copies of Rd. By Minkowski’s

integral inequality the Lp/2 norm is dominated by∫∫∫
[−δ◦,δ◦]2×[− 1

2
, 1
2
]

(∫ ∣∣∣ ∏
i=1,2

[ ∫
[−b,b]d−1

[aif̂i](Γ
s(ξi

′
, τ i))eı(⟨x

′,ξi
′⟩+xdγ(ξ

i,s))dξi
]∣∣∣p/2dx)2/p

ds dτ1dτ2.

By the bilinear adjoint restriction theorem and the boundedness of ai this is estimated by∫∫∫
[−δ◦,δ◦]2×[− 1

2
, 1
2
]

∏
i=1,2

(∫
[−b,b]d−1

∣∣f̂i(Γs(ξi
′
, τ i))

∣∣2dξi′)1/2
ds dτ1dτ2.

We apply the Schwarz inequality in the s variable. Then for fixed τ1, τ2, we change variables
(ξ′, s) 7→ ξ = (ξ′, γ(ξ′, s) + τ i), using that ∂sγ(ξ

′, s) = 1 + O(ε). Thus the last displayed
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expression is estimated by∫∫
[−δ◦,δ◦]2

∏
i=1,2

( ∫
[−b,b]d−1×[−1,1]

∣∣f̂(ξi′, γ(ξi′, s) + τ i)
∣∣2ds dξi′)1/2

dτ1dτ2

.
∫∫

[−δ◦,δ◦]2

∏
i=1,2

∥f̂i∥2 dτ1dτ2 . δ2◦
∏
i=1,2

∥fi∥2 .

�
In what follows we will use the notation

∏∗
i=1,2[Ei] = E1E2 for products involving a

complex conjugate.

Proposition 3.2. Let q ∈ [1, d+2
2 ) and b > 1/2. There are ε, N◦, depending on d, b and q,

so that the following holds for all δ◦ < 1/2.
Let γ ∈ Ell(b, ε,N◦). For |s| ≤ 1 and i = 1, 2, let ai(·, s) be multipliers, supported on

[−b, b]d−1, satisfying the conditions

(32a) |∂αξ ai(ξ, s)| ≤ δ
−|α|
◦ , |α| ≤ d+ 2,

(32b) ai(ξ, s) = 0 if |ξd − γ(ξ′, s)| ≥ δ◦,

and

(32c) (ξ′, ξd) ∈ supp a1( · , s), (ξ̃′, ξ̃d) ∈ supp a2( · , s) =⇒ |ξ′ − ξ̃′| ≥ 1 .

Then

(33)
∣∣∣ ∫

Rd

∫ 1/2

−1/2

∏
i=1,2

∗
[ai(D, s)fi(x)]w(x) dx ds

∣∣∣
≤ CNδ

2
◦
∏
i=1,2

(∫
|fi(x)|2

(∫
|w(x− y)|q

(1 + δ◦|y|)(d+1)q
dy

)1/q
dx

)1/2
.

Proof. We dyadically decompose the kernel of the convolution operators. Let ρ0 be a C
∞
c (R)

function supported on (−1, 1) and equal to one on [−1/2, 1/2] and define, for x ∈ Rd,

Φ0(x) = ρ0(δ◦|x|), Φj(x) = ρ0(2
−jδ◦|x|)− ρ0(2

1−jδ◦|x|), j ≥ 1.

Then the {Φj}∞j=0 form a radial partition of unity. We thus need to bound the sum∑
j1,j2≥0

∣∣∣ ∫
Rd

∫ 1/2

−1/2

∏
i=1,2

∗[ ∫
ai(D − ηi, s)fi(x)Φ̂ji(η

i) dηi
]
w(x) dx ds

∣∣∣.
By symmetry considerations it suffices to consider the terms with 0 ≤ j1 ≤ j2. The desired
estimate then follows if we can show that

(34)
∣∣∣ ∫

Rd

∫ 1/2

−1/2

∏
i=1,2

∗[ ∫
ai(D − ηi, s)fi(x)Φ̂ji(η

i) dηi
]
dsw(x) dx

∣∣∣ .
C(L)δ2◦2

−j2L
∏
i=1,2

(∫
|fi(x)|2

(∫
|y|≤C2j2δ−1

◦

|w(x+ y)|qdy
)1/q

dx
)1/2

for 0 ≤ j1 ≤ j2, L ≤ d+ 2. We shall first verify this inequality for L = 0 and then provide
the modification for 0 < L ≤ d+ 2.
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We now form a grid Q(j2) of dyadic cubes of sidelength 2j2δ−1
◦ . For every Q ∈ Q(j2) let

Q∗ be the double cube with same center as Q. By the support properties of the kernels,
and j1 ≤ j2, we have∫

ai(D − ηi, s)[fiχRd\Q∗ ](x)Φ̂ji(ηi) dηi = 0 if x ∈ Q, Q ∈ Q(j2), i = 1, 2.

Thus the left hand side of (34) is equal to

(35)
∣∣∣ ∑
Q∈Q(j2)

∫
Q

∫ 1/2

−1/2

∏
i=1,2

∗[ ∫
ai(D − ηi, s)[χQ∗fi](x)Φ̂ji(η

i) dηi
]
dsw(x) dx

∣∣∣ .
We use the formula m(D − η)f = Modηm(D)[Mod−ηf ] where Modηg(x) = g(x) eı⟨x,η⟩. In
order to obtain (34) for L = 0 (which is efficient for j2 = 0) we use Hölder’s inequality to
estimate (35) by

(36)

∫∫
|Φ̂j1(η

1)Φ̂j2(η
2)|

∑
Q∈Q(j2)

∥∥∥∫ 1/2

−1/2

∏
i=1,2

∗[
ai(D, s)Mod−ηi [χQ∗fi]

]∥∥∥
q′
∥wχQ∥qdη1dη2 .

Now ∥∥∥∫ 1/2

−1/2

∏
i=1,2

∗[
ai(D, s)Mod−ηi [χQ∗fi]

]
ds
∥∥∥
q′

≤
∫ 1/2

−1/2

∥∥∥ ∏
i=1,2

∗[
ai(D, s)Mod−ηi [χQ∗fi]

]∥∥∥
q′
ds

=

∫ 1/2

−1/2

∥∥∥ ∏
i=1,2

ai(D, s)Mod−ηi [χQ∗fi]
∥∥∥
q′
ds .

By our assumption on q we have q′ = p/2 for some p > 2 + 4/d and therefore we can use
Lemma 3.1 to bound the last displayed expression by

δ2◦
∏
i=1,2

∥fiχQ∗∥2 .

Since the L1 norms of Φ̂j1 are O(1), uniformly in δ◦, we have

(35) . δ2◦
∑

Q∈Q(j2)

∥f1χQ∗∥2∥f2χQ∗∥2∥wχQ∥q

. δ2◦
∏
i=1,2

( ∑
Q∈Q(j2)

∥fiχQ∗∥22∥wχQ∥q
)1/2

. δ2◦
∏
i=1,2

(∫
Q∗

|fi(x)|2
(∫

|y|≤C2j2δ−1
◦

|w(x+ y)|qdy
)1/q

dx
)1/2

which yields (34) for L = 0.
We now turn to the case L ≤ d + 2 where we need to improve the above estimate by

a factor of C(L)2−j2L. We expand the convolution
∫
a2(ξ − η, s)Φ̂j2(η) dη by a Taylor

expansion about η = 0. Since Φj2 vanishes in a neighborhood of the origin the integrals
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Φ̂j2(η)P (η) dη are zero for any polynomial P . Thus only the integral remainder term in

the Taylor expansion survives and we obtain

a2( · , s) ∗ Φ̂j2(ξ) =

∫ 1

0

(1− σ)L−1

(L− 1)!

∫
Φ̂j2(η)⟨−η,∇ξ⟩La2(ξ − ση, s) dη dσ .

We repeat the above argument in which we now have to bound∫
η1

∫
η2

∫ 1

0

∣∣Φ̂j1(η
1) dη1

∣∣ ∣∣Φ̂j2(η
2) dη2

∣∣ ∑
Q∈Q(j2)

∫
x∈Q

|w(x)| ×

∣∣∣ ∫ 1/2

−1/2
a1(D − η1, s)[χQ∗f1](x)⟨−η2,∇⟩La2(D − ση2, s)[χQ∗f2](x) ds

∣∣∣ dx dσ dη1dη2
in place of (35). In the estimate we may replace ⟨−η2,∇⟩L with (η2)α∂αξ , for any multiindex

α with |α| = L. As above we continue with Hölder’s inequality, and this time Lemma 3.1
and the differentiability assumptions on a2 yield for |α| = L∫ 1

0

∥∥∥∫ 1/2

−1/2
a1(D, s)[χQ∗Mod−η1f1]∂

α
ξ a2(D, s)Mod−ση2 [χQ∗f2] ds

∥∥∥
q′
dσ

. δ2−L
◦

∏
i=1,2

∥fiχQ∗∥2 .

The loss of δ−L
◦ in the previous formula is (more than) mitigated by∫∫

|Φ̂j1(η
1)(η2)αΦ̂j2(η

2)| dη1 dη2 . 2−j2LδL◦ , |α| = L.

Thus the above argument yields (34) for also for 0 < L ≤ d+ 2. �

4. Proof of the weighted inequality

In this section we prove inequality (7) of Theorem 2.1. We mainly focus on a local
inequality (with t-interval [1, 2]) which for later application we formulate for slightly more
general multipliers. Instead of Sδ

t we consider operators Sδ
t defined by

Ŝδ
t f(ξ) = ϕ

(
δ−1(1− |ξ|2

t2
)β(ξ, t)

)
f̂(ξ)

where ϕ is as in (5), β is a nonvanishing C∞ function on the set of (ξ, t) with 1/2 < t < 5/2
and 1/2 ≤ |ξ| ≤ 4. Of course β(ξ, t) = 1 in Theorem 2.1.

Theorem 4.1. Let d ≥ 2 and q ∈ [1, d+2
2 ). Then, for 0 < δ < 1/2,

(37)

∫
Rd

∫ 2

1
|Sδ

t f(x)|2
dt

t
w(x) dx . δ2−d/q

∫
Rd

|f(x)|2Ww(x) dx

with

Ww(x) =
∑

1≤22j<δ−1

2
−2j( d

q
−1)

M ◦Wj
q,δ,0w(x) + δ

d
q
−1
M ◦M√

δw(x).
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We now show that Theorem 4.1 (with β ≡ 1) implies assertion (7) of Theorem 2.1. Let
Wkw(x) =W [w(2−k · )](2kx). By (37) and rescaling we see that∫

Rd

∫ ∞

0
|Sδ

t f(x)|2
dt

t
w(x) dx

=
∑
k∈Z

∫
Rd

∫ 2

1

∣∣Sδ
2ks

2∑
i=−2

Pk+if(x)
∣∣2ds
s
w(x) dx

. δ2−d/q
∑
k∈Z

2∑
i=−2

∫
Rd

∫ 2

1

∣∣Pk+if(x)
∣∣2Wkw(x) dx

ds

s

. δ2−d/q

∫
Rd

∫ 2

1
|f(x)|2M(sup

k
|Wkw|s)1/s(x) dx

and the last inequality is a consequence of Coifman’s improvement of the Córdoba–Fefferman
weighted norm inequality for singular integrals (see for example [18, p. 417]). Now

M(supk |Wkw|s)1/s(x) . Wq,δw, by Minkowski’s inequality (cf. (16)).
Theorem 4.1 implies the following sharp Lp results, by a duality argument, the bound-

edness results of Proposition 2.2 and the Marcinkiewicz interpolation theorem.

Corollary 4.2. Let d ≥ 2 and p ∈ (2(d+2)
d ,∞). Then, for 0 < δ < 1/2,∥∥∥(∫ 2

1
|Sδ

t f(x)|2
dt

t

)1/2∥∥∥
p
. δ

1−d( 1
2
− 1

p
)∥f∥p.

Moreover if β ≡ 1 and Sδ
t is as in (6) then∥∥∥(∫ ∞

0
|Sδ

t f(x)|2
dt

t

)1/2∥∥∥
p
. δ

1−d( 1
2
− 1

p
)∥f∥p.

The remainder of this section is devoted to the proof of Theorem 4.1.

Preliminary considerations. We begin with a rescaled variant of Proposition 3.2. Such
rescaling arguments have been used in [43], [42], [23] and elsewhere. In what follows fix a
function ζ ∈ C∞(Rd) supported in {y : |y| ≤ 1/8} and define a convolution operator with
homogeneous multiplier by

(38) Q̂θ,jf = ζ
(
2j
( ξ
|ξ| − θ

)
In order to reduce estimates to Proposition 3.2 by rescaling we will need to localize all

multipliers to a narrow sector {ξ : | ξ
|ξ| − u| ≤ ε1} where u is a unit vector and ε1 is a small

constant.

Lemma 4.3. Given C > 1 there are small ε1, ε2 ∈ (0, 1/8) depending on q, d and C and
the function β so that the following statement holds for C2−j < ε1 and 22jδ < ε2.

Let ψ be supported in a ball of radius ε1 contained in {ξ : 1/4 ≤ |ξ| ≤ 4} such that
∥∂αψ∥∞ ≤ 1 for |α| ≤ d + 2, let θ1, θ2 ∈ Sd−1 be such that 2−j−1 ≤ |θ1 − θ2| ≤ C2−j, let
t0 ∈ [1, 2] and J be an interval of length 2−2j−2 containing t0. Then∣∣∣ ∫ ∫

J
Sδ
tQ

θ1,jψ(D)f1(x)Sδ
tQ

θ2,jψ(D)f2(x)
dt

t
w(x) dx

∣∣∣
. δ(22jδ)1−d/q

∏
i=1,2

(∫
|fi(x)|2

(
Kθi,j

2jδ
∗ |w|q(x)

)1/q
dx

)1/2
.
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Proof. Set ϑ = θ1+θ2
|θ1+θ2| and ed = (0, . . . , 0, 1). Take Rϑ to be a rotation satisfying Rϑed = ϑ

and let it act on functions by Rϑf(y) = f(Rϑy). Let Ajf(y) = f(Ajy), where Ajy =
(2jy1, . . . , 2

jyd−1,−22jyd). Finally we set Dt0f(y) = f(t0y) and, as before, the modulation

Moda is defined by Modag(x) = g(x) eı⟨x,a⟩.
For fixed δ, j and i = 1, 2, the multiplier for Sδ

tQ
θi,jψ(D) is given by

mθi(ξ, t) = ψ(ξ)ϕ
(
δ−1(1− |ξ|2

t2
)β(ξ, t)

)
ζ
(
2j( ξ

|ξ| − θi)
)
.

Let Ξϑ(η) = t0Rϑ(ed +A−jη) and t(s) = t0(1+ 2−2js). A rescaled multiplier depending on

the parameter s = 22j(t−1
0 t− 1) ∈ [−1/2, 1/2] is defined by

Mθi(η, s) := mθi(Ξϑ(η), t(s))

= ϕ
(
δ−1

(
1− |ed+A−jη|2

(1+2−2js)2

)
β
(
Ξϑ(η), t(s)

))
ζ
(
2jRϑ

[ ed+A−jη
|ed+A−jη| −R−1

ϑ θi
])
ψ
(
Ξϑ(η)

)
.

Now compute

1− |ed +A−jη|2

(1 + 2−2js)2
= 21−2j

(s(1 + 2−2j−1s) + ηd − |η′|2/2− η2d2
−2j−1

(1 + 2−2js)2

)
= 21−2j

(
s+ ηd −

|η′|2

2

)
+ 2−4jrj(η, s),(39)

where rj is a quadratic polynomial in η with coefficients uniformly bounded in s, j. More-

over the supports of the functions ζ
(
2jRϑ

[ ed+A−jη
|ed+A−jη| − R−1

ϑ θi
])
, i = 1, 2, are uniformly

separated and these functions have derivatives with bounds uniform in j.
Now let b = 10dC, and set M = 1 +

∑
|α|≤2max|ξ|≤bmax|s≤1 |∂αη rj(η, s)|, for the er-

ror terms rj in (39). Let ε be as in Proposition 3.2, and choose ε1 small compared to

(2d)−1(ε/M)1/2. By the assumed separation property we have

Sδ
tQ

θ1,jψ(D)f1 Sδ
tQ

θ2,jψ(D)f2 ≡ 0, 2−j ≥ dε1 .

For the relevant complementary range we have 2−2jM < ε so that the functions (η′, s) 7→
|η′|2/2 − s + 2−2j−1rj(η

′, s) belong to Ell(b, ε,N◦). Since β is smooth and satisfies an
inequality 2ε2 ≤ |β(ξ, t)| ≤ (2ε2)

−1 for 1/4 ≤ |ξ| ≤ 4, the formula (39) allows us to apply

Proposition 3.2 with ai(D, s) =Mθi(D, s)(1 + 2−2js)−1/2 and δ◦ = (2ε2)
−1δ22j < 1/2.

We obtain∣∣∣ ∫
Rd

∫ 1/2

−1/2

∏
i=1,2

∗
[Mθi(D, s)fi(x)]w(x) dx

ds

1 + 2−2js

∣∣∣
. (22jδ)2

∏
i=1,2

(∫
|fi(x)|2(22jδ)−d/qV22jδw(x) dx

)1/2
,

where

Vδ◦w(x) =
(∫

δd◦ |w(x− y)|q

(1 + δ◦|y|)(d+1)q
dy

)1/q
.

Now, with t = t0(1 + 2−2js), we have mθi(ξ, t) =Mθi(Aj(R
−1
ϑ t−1

0 ξ − ed), s), so that

Sδ
tQ

θi,jψ(D)fi(x) = Dt0R−1
ϑ ModedA−jMθi(D, s)gi(x) with gi = AjMod−edRϑD−1

t0
fi.
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This leads to∣∣∣ ∫ ∫
Ij,T

∏
i=1,2

∗
[Sδ

tQ
θi,jψ(D)fi(x)]

dt

t
w(x) dx

∣∣∣
= 2−2j

∣∣∣ ∫ ∫ 1/2

−1/2

∏
i=1,2

∗
[Dt0R−1

ϑ ModedA−jMθi(D, s)gi(x)]
ds

1 + 2−2js
w(x) dx

∣∣∣
. 2−2j(22jδ)2

∏
i=1,2

(∫
|fi(x)|2(22jδ)−d/qDt0R−1

ϑ Aj [V22jδ(AjRϑD−1
t0
w)](x) dx

)1/2

. 22j(1−d/q)δ2−d/q
∏
i=1,2

(∫
|fi(x)|2

(
Kϑ,j

2jt0δ
∗ |w|q(x)

)1/q
dx

)1/2
.

The assertion now follows from Kϑ,j
2jt0δ

(x) ≈ Kθi,j
2jδ

(x) since t0 ∈ [1, 2] and |ϑ− θi| . 2−j for

i = 1, 2. �
A version of the following lemma is originally due to Carleson (unpublished); slightly

different forms can be found in [11], [30] and [34]. For the sake of completeness we include
the proof.

Lemma 4.4. Let A be an invertible linear transformation and At its transpose. Suppose
that {mk}k∈N have disjoint supports. Then for s ≥ 0 and almost every x ∈ Rd(∑

k

∣∣F−1[mk(A
t · )f̂ ](x)

∣∣2)1/2
≤ C sup

k
∥mk∥L2

s

(∫
det(A−1)

(1 + |A−1y|2)s
|f(x− y)|2dy

)1/2
.

Proof. We can assume that mk = 0 for all but finitely many k. Since F−1[mk(A
t · )f̂ ](x) =

F−1[mkf̂(A · )](A−1x) we can reduce to the case where A is the identity transformation.
Also, using an analytic interpolation argument, we may assume that s ∈ N ∪ {0}.

Let gk = F−1[mk]. Then
∑

k

∣∣F−1[mkf̂ ](x)
∣∣2 = sup∥a∥

ℓ2(Zd)≤1 |
∑

k ak gk ∗ f(x)|2. Now,

for each fixed a ∈ ℓ2(Zd), we apply the Schwarz inequality in the convolution integral and
then Plancherel’s theorem to obtain∣∣∣∑

k

ak gk ∗ f(x)
∣∣ . ∥∥∥∑

k

akmk

∥∥∥
L2
s

(∫
|f(x− y)|2

(1 + |y|2)s
dy

)1/2
.

Thus, we are done as for s ∈ N ∪ {0},∥∥∥∑
k

akmk

∥∥∥2
L2
s

.
∑
|α|≤s

∥∥∥∑
k

akD
αmk

∥∥∥2
L2

. ∥a∥2ℓ2 sup
k

∥mk∥2L2
s
,

by the disjointness of the supports. �
Some reductions. We remark that it suffices to prove Theorem 4.1 only for very small
values of δ, as by straightforward estimation∫

Rd

∫ 2

1
|Sδ

t f(x)|2
dt

t
w(x) dx . δ−C

∫
Rd

|f(x)|2Mw(x) dx

for a suitable power C > 0, and clearly Mw . M√
δw. In particular we may assume that

δ is small compared to the constant ε2 in Lemma 4.3.
We may replace Sδ

t by

(40) T δ
t = ψ(D)Sδ

t
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where ψ is as in Lemma 4.3 (smooth and supported in a ball of radius ε1). In view of the
invariance properties of the weight operators one can use a partition of unity to deduce the
weighted inequality (37) from the corresponding result for T δ

t .
We now prepare for an application of Lemma 4.3 and decompose on the frequency side

the product F1F2 for suitable Fi (initially Fi = T δ
t fi). We let χ◦ to be a radial C∞

c function
χ◦(ω) = 1 for |ω| ≤ 25 and so that suppχ◦ is contained in {ω : |ω| ≤ 25 +1}, moreover set,

χ1(ω) = χ◦(ω)− χ◦(2ω).

We also let j◦ = j◦(δ) denote the integer with√
δ/ε2 ≤ 2−j◦ < 2

√
δ/ε2

where ε2 ∈ (0, 1) is as in Lemma 4.3.
Define bilinear forms for pairs of Schwartz functions by

(41)

B◦[F1, F2](x) =
1

(2π)2d

∫∫
χ◦(2

j◦(ξ − η))F̂1(ξ)F̂2(−η) eı⟨ξ−η,x⟩dξdη,

Bj [F1, F2](x) =
1

(2π)2d

∫∫
χ1(2

j(ξ − η))F̂1(ξ)F̂2(−η) eı⟨ξ−η,x⟩dξdη.

Then one easily verifies the decomposition

F1F2 = B◦[F1, F2] +
∑
j<j◦

Bj [F1, F2].

Later, in cases where the supports of the Fourier transforms of F1 and F2 are separated we
wish to dispense with the frequency cutoff Φj(ξ − η) and replace B◦ or Bj by a product.
This will be accomplished by using the identities

(42)
(2π)dB◦[F1, F2](x) = 2−j0dχ̂◦(2

−j0 · ) ∗ [F1F2](x),

(2π)dBj [F1, F2](x) = 2−jdχ̂1(2
−j · ) ∗ [F1F2](x)

which follow from the Fourier inversion formula (and the assumption that χ◦ is radial).
The desired weighted norm inequality (37) follows from the following two propositions,

applied for f1 = f2 = f . The proof of the first one is rather straightforward.

Proposition 4.5.∣∣∣ ∫ ∫ 2

1
B◦[T

δ
t f1, T

δ
t f2](x)

dt

t
w(x) dx

∣∣∣ . δ
∏
i=1,2

(∫
|fi(x)|2

∫
δd/2M√

δw(x− y)

(1 + δ1/2|y|)d+1
dy dx

)1/2
.

More substantial (and relying on §3) is

Proposition 4.6. Let q ∈ [1, d+2
2 ). Then, for j < j◦,∣∣∣ ∫ ∫ 2

1
Bj [T δ

t f1, T
δ
t f2](x)

dt

t
w(x) dx

∣∣∣
. δ

2− d
q 2

−2j( d
q
−1)

∏
i=1,2

(
max
|ν|≤8

∫
|fi(x)|2Hj ∗Wj−ν

q,δ,0w(x) dx
)1/2

,

where Hj(x) = 2−jd(1 + 2−j |x|)−d−1.
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We now introduce some basic decompositions. As in the definition (38) let ζ ∈ C∞
c (Rd)

be supported in {y : |y| ≤ 1/8}, now with the additional assumption that ζ(y) = 1 for

|y| ≤ 1/9. Let ζ̃ ∈ C∞
c (Rd) be supported in {y : |y| ≤ 1/7} so that ζ̃(y) = 1 for |y| ≤ 1/8;

hence ζ̃ζ = ζ. Let φ be a smooth function supported in [−9/8, 9/8] and equal to 1 on
[−7/8, 7/8] such that ∑

n∈Z
φ( · − n) = 1.

We let Θj be a maximal 2−j−d-separated set of Sd−1 and define for n ∈ Z, l ∈ Z, operators
via the Fourier transform by

F [Qθ,j
n f ](ξ) =

ζ(2j( ξ
|ξ| − θ))∑

θ′∈Θj
ζ2(2j( ξ

|ξ| − θ′))
φ(2j |ξ| − n)f̂(ξ),

F [P θ,j
l f ](ξ) = ζ̃(2j( ξ

|ξ| − θ))φ(22j |ξ| − l)f̂(ξ);

moreover, with Qθ,j as in (38) set

Qθ,j =
∑
n

Qθ,jQθ,j
n

so that

T δ
t f =

∑
θ∈Θj

T δ
t Qθ,jf =

∑
θ∈Θj

∑
n∈Z

∑
l∈Z

T δ
t Q

θ,jQθ,j
n P θ,j

l f,

for both cases j < j◦ and j = j◦.
Note that the multipliers for Qθ,j and Qθ,j are contained in a sector of width c2−j

around θ. The multiplier for Qθ,j
n is contained in a c2−j ball centered around Ξ with

|Ξ| = 2−jn + O(2−j). The multiplier for P θ,j
l is contained in a plate with (d − 1) sides of

length O(2−j) and a short side of length O(2−2j), the long sides being perpendicular to θ .
Note that for 2−2jm ∈ [1, 2]

(43)
T δ
t Q

θ,jQθ,j
n P θ,j

l ̸= 0 for some t ∈ [(m− 1)2−2j , (m+ 1)2−2j ],

=⇒ |m− l| . 1, |2−2jl − 2−jn| . 2−j .

We also notice that, from the localization and separation properties of the cutoff functions
χ◦(2

j◦(ξ − η)) and χ1(2
j(ξ − η)) in (41),

(44)
B◦(T

δ
t Q

θ,jg, T δ
t Q

θ′,jg) ̸= 0 =⇒ dist(θ, θ′) ≤ C2−j◦ ,

Bj(T
δ
t Q

θ,jg, T δ
t Q

θ′,jg) ̸= 0 =⇒ 2−j+3 ≤ dist(θ, θ′) ≤ 2−j+6 .

Proof of Proposition 4.5. We first observe by a straightforward integration by parts
that for t ∈ [1, 2] the convolution kernel associated with T δ

t Q
θ,j◦ is dominated by

Cd
δ

d+1
2

(1 + δ|⟨x, θ⟩|+ δ1/2|x− ⟨x, θ⟩θ|)N
. Kθ,j◦

2−j◦ (x) ≈ Kθ,j◦
2j◦δ

(x).

On the right hand side we may also replace θ by any θ̃ with |θ − θ̃| . 2−j◦ . For more
compact notation we write

Kθ,j◦(x) := Kθ,j◦
2−j◦ (x).
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Now for |θ1 − θ2| . 2−j◦ and each t ∈ [1, 2], we have

(45)

∣∣∣ ∫ ∏
i=1,2

∗
[T δ

t Q
θi,j◦gi(x)]w(x) dx

∣∣∣ . ∫ [ ∏
i=1,2

(Kθi,j◦ ∗ |gi|2(x))1/2
]
|w(x)|dx

.
∏
i=1,2

(∫
Kθi,j◦ ∗ |gi|2(x)|w(x)|dx

)1/2
.

∏
i=1,2

(∫
|gi(y)|2Kθi,j◦ ∗ |w|(y) dy

)1/2
;

here we used ∥Kθ,j◦∥1 = O(1) and applied the Schwarz inequality twice.
By Lemma 4.4

(46)
∑
l

∣∣P θ,j◦
l f(x)|2 . Kθi,j◦ ∗ |f |2(x).

Now let Ij◦m = [2−2j◦m, 2−2j◦(m+1)]. It will be implicit in allm-summations that Ij◦m ⊂ [1, 2].
In what follows Am

j◦ will be an index set consisting of (l1, l2, n1, n2) with |li − m| . 1,

|2−2j◦ li − 2−j◦ni| . 2−j◦ for i = 1, 2. Then∣∣∣ ∑
θ1,θ2∈Θj

|θ1−θ2|≤C2−j◦

∫ ∫ 2

1

∏
i=1,2

∗
[T δ

t Qθi,j◦fi(x)]
dt

t
w(x) dx

∣∣∣
=

∣∣∣ ∑
θ1,θ2∈Θj

|θ1−θ2|≤C2−j◦

∑
m

∫
Ijm

∑
(l1,l2,n1,n2)

∈Am
j◦

∫ ∏
i=1,2

∗
[T δ

t Q
θi,j◦P θi,j◦

li
Qθi,j◦

ni
fi(x)]w(x) dx

dt

t

∣∣∣
. 2−2j◦

∑
θ1,θ2∈Θj◦

|θ1−θ2|≤C2−j◦

∑
m

∑
(l1,l2,n1,n2)

∈Am
j◦

∏
i=1,2

(∫
|P θi,j◦

li
Qθi,j◦

ni
fi(x)|2Kθi,j◦ ∗ |w|(x) dy

)1/2
;

here we have applied (45) and carried out the t integration. We now notice that |n1−n2| . 1,
|l1 − l2| . 1 for (l1, l2, n1, n2) ∈ Am

j◦ and that for fixed (l1, l2, n1, n2) there are only O(1)

integers m for which (l1, l2, n1, n2) ∈ Am
j◦ . Hence, by various applications of the Schwarz

inequality and then by (46) the last displayed quantity is controlled by

2−2j◦
∏
i=1,2

( ∑
θi∈Θj◦

∑
li

∑
ni

∫ ∣∣P θi,j◦
li

Qθi,j◦
ni

fi(x)
∣∣2Kθi,j◦ ∗ |w|(x) dx

)1/2

. 2−2j◦
∏
i=1,2

( ∑
θi∈Θj◦

∑
ni

∫ ∣∣Qθi,j◦
ni

fi(x)|2Kθi,j◦ ∗ Kθi,j◦ ∗ |w|(x) dy
)1/2

(47)

where, by Lemma 2.3, we may replace Kθi,j◦ ∗ Kθi,j◦ with Kθi,j◦ .
By Lemma 4.4 we have, with Hj◦(x) = 2−j◦d(1 + 2−j◦ |x|)−d−1,∑

θ∈Θj◦

∑
n

∣∣Qθ,j◦
n f |2 . Hj◦ ∗ |f |2(x)

so that we may estimate the term (47) by

(48) 2−2j◦
∏
i=1,2

(∫
|fi(x)|2Hj◦ ∗ sup

θ
[Kθ,j◦ ∗ |w|](x) dx

)1/2
.
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Now by the definition of B◦, (42) and translation invariance

B◦[T
δ
t f1, T

δ
t f2](x) =

∑
θ1,θ2∈Θj◦

|θ1−θ2|≤C2−j◦

B◦[T
δ
t Qθ1,j◦f1, T δ

t Qθ2,j◦f2](x)

=
∑

θ1,θ2∈Θj◦
|θ1−θ2|≤C2−j◦

1

(2π)d

∫
2−j◦dχ̂◦(2

−j◦h)
∏
i=1,2

∗
[T δ

t Qθi,j◦τhfi](x) dh

where τhf(x) = f(x − h). We combine this identity with the previous estimate and the
obvious inequality |2−j◦dχ̂◦(2

−j◦ ·)| . Hj◦ to obtain∣∣∣ ∫ ∫ 2

1
B◦[T

δ
t f1, T

δ
t f2](x)

dt

t
w(x) dx

∣∣∣
.

∫
Hj◦(h)

∣∣∣ ∫ ∫ 2

1

∑
θ1,θ2∈Θj◦

|θ1−θ2|≤C2−j◦

∏
i=1,2

∗
[T δ

t Qθi,j◦τhfi](x)
dt

t
w(x) dx

∣∣∣ dh
.

∫
Hj◦(h)2

−2j◦
∏
i=1,2

(∫
|fi(x− h)|2Hj◦ ∗ sup

θ
[Kθ,j◦ ∗ |w|](x) dx

)1/2
dh .

Clearly supθ[Kθ,j◦ ∗ |w|] . M√
δ[w]. By the Schwarz inequality and a subsequent change of

variable the last displayed quantity is bounded by

Cδ
∏
i=1,2

( ∑
θi∈Θj◦

∫
|fi(x)|2Hj◦ ∗Hj◦ ∗M√

δ[w](x) dx
)1/2

.

Since Hj◦ ∗Hj◦(x) . δd/2(1 + δ1/2|x|)−d−1, by Lemma 2.3, this concludes the proof of the
proposition. �

Proof of Proposition 4.6. We fix j < j◦ so that 22jδ < 1/2. We define that θ ∼ θ′ if
θ ∈ Θj , θ

′ ∈ Θj and 2−j+3 ≤ |θ − θ′| ≤ 2−j+6; this is the relevant range in (44).
Below we shall prove the estimate

(49)
∣∣∣ ∫ ∫ 2

1

∏
i=1,2

∗
[T δ

t Qθi,jfi(x)]
dt

t
w(x) dx

∣∣∣
. δ

2− d
q 2

−2j( d
q
−1)

∏
i=1,2

(∑
n

∫
|Qθi,j

n fi(x)|2(Kθi,j
2jδ

∗ |w|q(x))1/qdx
)1/2

for any θ1, θ2 with θ1 ∼ θ2. We first show why (49) implies the asserted estimate.
It is crucial to observe that for θ1 ∼ θ2 and any g1, g2 the Fourier transform of the

product T δ
t Q

θ1,jg1 T δ
t Q

θ2,jg2 is supported in

{ξ : 2−j+2 ≤ |ξ| ≤ 2−j+6, |⟨ξ, ϑ⟩| ≤ 2−2j+12} ;

here ϑ = θ1+θ2
|θ1+θ2| . Let η0 ∈ C∞

c (R) be even and supported in [−213, 213] so that η0(s) = 1

for |s| ≤ 212 and let η1 ∈ C∞
c (R) be supported in [2, 128] so that η1(s) = 1 for s ∈ [4, 64].

Consider the even Schwartz function Ψ ≡ Ψj,θ1,θ2 defined by

Ψ̂j,θ1,θ2(ξ) = η0(2
2j⟨ξ, ϑ⟩)η1(2j |ξ|).
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Note that there is a constant C (independent of j, θ1, θ2) so that

C−1Ψj,θ1,θ2 ∈ Sθi,j
j−ν

for ν = 0, . . . , 8, i = 1, 2.
From these considerations it follows that∫ ∏

i=1,2

∗
[T δ

t Qθi,jfi](x)w(x) dx =
∑
|ν|≤8

∫ ∏
i=1,2

∗
[T δ

t Qθi,jfi](x)Ψ
j,θ1,θ2∗ Pν−jw(x) dx

and therefore, for any θ1, θ2 with θ1 ∼ θ2, (49) can be changed to

(50)
∣∣∣ ∫ ∫ 2

1

∏
i=1,2

∗
[T δ

t Qθi,j ](x)
dt

t
w(x) dx

∣∣∣ . ∏
i=1,2

(∑
n

∫
|Qθi,j

n fi(x)|2Uθi,j
q,δ w(x) dx

)1/2
,

where

U θ,j
q,δw(x) = δ

2− d
q 2

−2j( d
q
−1)

∑
|ν|≤8

(
Kθ,j

2jδ
∗ sup
Ψ∈Sθ,j

ν−j

|Ψ ∗ Pν−jw|q(x)
)1/q

.

By the definition of Bj we have

Bj [T δ
t f1, T

δ
t f2](x) =

∑
θ1∼θ2

Bj [T δ
t Qθ1,jf1, T δ

t Qθ2,jf2](x)

=
∑
θ1∼θ2

(2π)−d

∫
h
2−jdχ̂1(2

−jh)
∏
i=1,2

∗
[T δ

t Qθi,jτhfi](x)dh .

Therefore (50) yields∣∣∣ ∫ ∫ 2

1
Bj [T δ

t f1, T
δ
t f2](x)

dt

t
w(x) dx

∣∣∣
.

∫
Hj(h)

∏
i=1,2

( ∑
θi∈Θj

∑
n

∫
|Qθi,j

n fi(x− h)|2U θi,j
q,δ w(x) dx

)1/2

.
∏
i=1,2

( ∑
θi∈Θj

∑
n

∫
|Qθi,j

n fi(x)|2Hj ∗ [sup
θ
U θ,j
q,δw](x) dx

)1/2
,

by the Schwarz inequality. Now, for |ν| ≤ 8, observe Kθ,j
2jδ

≈ Kθ,j−ν
2j−νδ

and therefore

sup
θ
U θ,j
q,δw(x) . δ

2− d
q 2

−2j( d
q
−1)Wj−ν

q,δ,0w(x).

Moreover, by Lemma 4.4, ∑
θ∈Θj

∑
n

|Qθ,j
n f(x)|2 . Hj ∗ |f |2(x) .

Hence, using the Schwarz inequality again, we get∣∣∣ ∫ ∫ 2

1
Bj [T δ

t f1, T
δ
t f2](x)

dt

t
w(x) dx

∣∣∣
. δ

2− d
q 2

−2j( d
q
−1)

max
|ν|≤8

∏
i=1,2

(∫
|fi(x)|2Hj ∗Hj ∗Wj−ν

q,δ,0w(x) dx
)1/2

and since Hj ∗Hj . Hj we obtain the asserted estimate.
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Proof of (49). We argue as in the proof of Proposition 4.5 and rely on Lemma 4.3. We let

Ijm = [2−2jm, 2−2j(m + 1)] if this interval is a subset of [1, 2] (otherwise Ijm = ∅). Define
the index sets Am

j as in the proof of Proposition 4.5 (with j instead of j◦).

Then the right hand side of (49) is equal to∣∣∣∑
m

∑
(l1,l2,n1,n2)∈Am

j

∫ ∫
Ijm

∏
i=1,2

∗
[T δ

t Q
θi,jQθi,j

ni
P θi,j
li

fi(x)]
dt

t
w(x) dx

∣∣∣
and, by Lemma 4.3, this is estimated by∑

m

∑
|l1−m|.1
|l2−m|.1

∑
|n1−n2|.1

δ
2− d

q 2
−2j( d

q
−1)

∏
i=1,2

(∫ ∣∣P θi,j
li

Qθi,j
ni
fi(x)

∣∣2(Kθi,j
2jδ

∗ |w|q(x)
)1/q

dx
)1/2

. δ
2− d

q 2
−2j( d

q
−1)

∏
i=1,2

(∑
ni

∑
li

∫ ∣∣P θi,j
li

Qθi,j
ni
fi(x)

∣∣2(Kθi,j
2jδ

∗ |w|q(x)
)1/q

dx
)1/2

. δ
2− d

q 2
−2j( d

q
−1)

∏
i=1,2

(∑
ni

∫ ∣∣Qθi,j
n fi(x)

∣∣2Kθi,j
2−j ∗

(
Kθi,j

2jδ
∗ |w|q(x)

)1/q
dx

)1/2
;

here we have used the Schwarz inequality and the bound∑
l

|P θ,j
l g(x)|2 . Kθ,j

2−j ∗ |g|2(x)

which is a consequence of Lemma 4.4. We also have

Kθ,j
2−j ∗

(
Kθ,j

2jδ
∗ |w|q(x)

)1/q . (
Kθ,j

2−j ∗ Kθ,j
2jδ

∗ |w|q(x)
)1/q . (

Kθ,j
2jδ

∗ |w|q(x)
)1/q

;

where the first estimate follows from Hölder’s inequality and the second from (18) and
the assumption 2jδ < 2−j . This completes the proof of (49) and thus the proposition is
established. �

5. Lp(L2) estimates for solutions of Schrödinger and wave equations

Proposition 5.1. Let d ≥ 2 and p ∈ (2(d+2)
d ,∞], or d = 1 and p = ∞, and let a ∈ (0,∞).

Let I denote a compact interval of time. Then for k ≥ 1,

(51)
∥∥∥(∫

I
|Ua

t Pkf |2 dt
)1/2∥∥∥

p
. 2kaλ(p) ∥f∥Lp , λ(p) = d

(1
2
− 1

p

)
− 1

2
.

Proof of Theorem 1.4. The result is an immediate consequence of Proposition 5.1 and the
case q = 2, r = 1, υ = p of Proposition A.3. �

Proof of Proposition 5.1. We may assume that 2k is large. Let ϕ be an even real-valued

function so that ϕ̂(t) > c > 0 for t ∈ I and suppϕ ⊂ [−1/4, 1/4]. It suffices to estimate

the Lp(Rd, L2(R)) norm of ϕ̂(t)Ua
t Pkf(x). For fixed x the L2(R) norm of this expression is

equal to

1

(2π)1/2

(∫
R

∣∣∣ ∫ ϕ̂(t) exp(−ıtτ)Ua
t Pkf(x) dt

∣∣∣2dτ)1/2

=
1

(2π)1/2

(∫ 2(k+3)a

2(k−3)a

∣∣∣F−1
[
ϕ(| · |a − τ)χ(2−k| · |)f̂

]
(x)

∣∣∣2dτ)1/2
.
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By a finite splitting we may replace the integral over [2(k−3)a, 2(k+3)a] by an integral over
((2kT )a, (2k+1T )a) with T ≈ 1. After changing variables τ = (2kTr)a it suffices to show
that ∥∥∥(∫ 2

1

∣∣∣F−1
[
ϕ(| · |a − (2kTr)a)χ(2−k| · |)f̂

]∣∣∣2dr)1/2∥∥∥
p
. 2a(λ(p)−

1
2
)k∥f∥p,

or, after scaling and setting δ = (2kT )−a,

(52)
∥∥∥(∫ 2

1

∣∣∣F−1
[
ϕ(δ−1(| · |a − ra))χ(T | · |)f̂

]∣∣∣2dr)1/2∥∥∥
p
. δ

1
2
−λ(p)∥f∥p .

But as ϕ is even, ϕ(δ−1(|ξ|a − ra)) = ϕ
(
δ−1β(ξ, r)(1− |ξ|2/r2)

)
where β(ξ, r) = r2 r

a−|ξ|a
r2−|ξ|2 is

smooth for ξ away from the origin, and nonvanishing. Thus Corollary 4.2 may be applied
and we get the Lp inequality (52) for d ≥ 2 and p > 2 + 4/d.

The case d = 1, p = ∞ is more straightforward; the estimate

(53)
(∫ 2

1

∣∣F−1
[
ϕ(δ−1(| · |a − ra))χ1(T | · |)f̂

]
(x)

∣∣2dr)1/2
. δ1/2∥f∥∞

for T ≈ 1 follows from∑
0≤n<δ−1

∣∣F−1
[
ϕ(δ−1(| · |a − (1 + nδ + σ)a)χ1(T | · |)f̂

]
(x)

∣∣2 . ∥f∥2∞, 0 < σ ≤ δ,

and integration in σ. The last displayed inequality however is a consequence of Lemma 4.4.
�

We finish by stating a global variant of the one-dimensional square function estimate
which does not use Sobolev spaces and which we will not use elsewhere in the paper.

Proposition 5.2. Let d = 1, p ∈ [2,∞), a ∈ (0,∞), and let I be a compact interval. Then∥∥∥(∫
I
|Ua

t f |2 dt
)1/2∥∥∥

Lp(R)
. ∥f∥Lp(R).

Moreover ∥∥∥(∫
I
|Ua

t f |2 dt
)1/2∥∥∥

BMO(R)
. ∥f∥L∞(R).

Given the reduction in the localized case, in the proof of Proposition 5.1, the Lp(L2)
estimates can be deduced from a regularized version of Rubio de Francia’s square func-
tion estimate [31] associated with arbitrary disjoint collection of intervals. The L∞-BMO
estimate can be obtained from Sjölin’s proof [35] of that estimate. We omit the details.

6. An Lp(Lq) estimate

We state the Lp(Lq) estimates alluded to in the introduction. We work with the norm

∥u∥Lp(Lq(I)) =
∥∥∥(∫

I
|u( · , t)|qdt

)1/q∥∥∥
Lp(Rd)

in Lp(Rd;Lq(I)), with the usual modification ∥u∥Lp(L∞(I)) = ∥ supt∈I |u( · , t)|∥p if q = ∞.

Theorem 6.1. Let a ∈ (1,∞) and let I be a compact interval of time. Then

(54)
∥∥Uaf

∥∥
Lp(Lq(I))

. ∥f∥Lp
s
,

s

a
= d

(1
2
− 1

p

)
− 1

q

holds true in each of the following three cases:
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(i) d = 1, 4 < p <∞, 2p
p−2 < q ≤ ∞.

(ii) d ≥ 2, 2(d+3)
d+1 < p ≤ 2(d+2)

d , 2p
(d+1)p−2(d+2) < q ≤ ∞.

(iii) d ≥ 2, 2(d+2)
d < p <∞, 2 ≤ q ≤ ∞.

Remark. The statements (i) and (iii) also hold for 0 < a < 1.

Proof. The stated results for p ≤ q ≤ ∞ are in [29]. Consider the inequality

(55) sup
k∈N

2
−ka( d

2
− d

p
− 1

q
)∥∥Ua[Pkf ]

∥∥
Lp(Lq(I))

. ∥f∥Lp

which holds for 2(d+3)/(d+1) < p ≤ q ≤ ∞, d ≥ 2 and 4 < p ≤ q ≤ ∞, d = 1, by [29]. It
holds for q = 2 if p = ∞, d = 1 and 2+4/d < p ≤ ∞ if d ≥ 2, by Theorem 1.4. By complex

interpolation (55) also holds for d ≥ 2, 2(d+3)
d+1 < p ≤ 2(d+2)

d and 1
q <

d+1
2 − d+2

p which is

equivalent with 2p
(d+1)p−2(d+2) < q ≤ ∞. Moreover for d = 1 complex interpolation shows

that (55) holds for 2
q < 1 − 2

p (i.e. 2p
p−2 < q ≤ ∞). Finally we may combine the dyadic

pieces by using Proposition A.3 in the appendix. �

Remark. For a = 2, we obtain further improvements in [25], in particular in two dimensions
an Lp(L4) bound for p > 16/5.

Appendix A. Combining frequency localized pieces

We state a variant of results by Fefferman and Stein [17] and Miyachi [26] which is
motivated by its application to prove Theorems 1.4 and 6.1. The approach extends and
somewhat simplifies the one in [29] (see also [33], [28] for related results). For later applica-
tions in [25] we formulate the results in slightly more generality than needed in this paper
(in particular here we just need the case p = υ in Theorem A.1.

Let B be a Banach space with norm | · |B; in our application B = Lq(I) for a com-
pact interval I. We consider convolution operators Tk, with k ∈ N, mapping L1(Rd) into
L1(Rd,B), a space of B-valued functions. We define Tk by

Tkf(x) = hk ∗ f(x) =
∫
hk(x− y)f(y) dy,

where for each k we make, for simplicity, the a-priori assumption that hk ∈ L1(Rd,B) but
we do not assume a bound on these L1 norms. We shall be interested in situations where,
for some a > 0, the part of the kernel hk supported in |x| ≥ C12

k(a−1) can be neglected. In
particular, this is true of Ua

t as defined in (3).
In what follows let ρk ∈ C1(Rd) be such that

(56)
|ρk(x)|+ 2−k|∇ρk(x)| ≤ 2kd,

supp ρk ⊂ {x : |x| ≤ 2−k}.

We define Rk on B-valued functions g by

(57) Rkg(x) = ρk ∗ g(x) =
∫
ρk(y)g(x− y) dy.

In applications the operators Rk often arise from dyadic frequency decompositions, however
no cancellation condition on ρk is needed in the following result.



28 S. LEE K. ROGERS A. SEEGER

Theorem A.1. Let υ0 ∈ (1,∞), υ0 ≤ p0, 1/υ0 − 1/p0 = 1/υ1 and a ∈ (0,∞). With Tk
and Rk defined as above, let

(58) A := sup
k>0

2kad/p0∥Tk∥Lυ0→Lp0 (B)

and, for 1/υ1 + 1/υ′1 = 1,

(59) B := sup
k>0

2kad/p0
(∫

|x|≥C12k(a−1)

|hk(x)|υ1B dx
)1/υ′

1

for some fixed constant C1 ≥ 1. Then for all p ∈ (p0,∞) and r > 0, there exists C =
C(p0, p, r, C0, C1, d) so that
(60)∥∥∥(∑

k>0

2kadr/p|RkTkfk|rB
)1/r ∥∥∥

p
≤ CA

(
1 +

B

A

)1−p0/p(∑
k>0

∥fk∥pυ
)1/p

,
1

υ
− 1

p
=

1

υ0
− 1

p0
.

Moreover,

(61)
∥∥∥(∑

k>0

|RkTkfk|rB
)1/r ∥∥∥

BMO
≤ C

(
A+B

)
sup
k>0

∥fk∥υ1 .

Before we begin with the proof we state a preliminary lemma.

Lemma A.2. Define

Tkf(x) = 2kd
∫
|x−y|≤2−k

|Tkf(y)|Bdy

and, with the notation as in (58) and (59), let

(62) A(p) = C
d(1/p0−1/p)
1 A+Ap0/pB1−p0/p .

Then, for p0 ≤ p ≤ ∞,

∥Tkf∥Lp(B) . 2−kad/pA(p)∥f∥υ
1

υ
− 1

p
=

1

υ0
− 1

p0
.

Proof. We interpolate between p = p0 and p = ∞. Since A(p0) = A the inequality is
immediate for p = p0 from assumption (58).

To prove the inequality for p = ∞ we choose a grid Qk
a of cubes Q of sidelength 2k(a−1),

so that the cubes in Qk
a have disjoint interior and

∑
Q∈Qk

a
χQ = 1 almost everywhere. For

each Q ∈ Qk
a let Q∗ be the cube with same center as Q and sidelength 10dC12

k(a−1). It
then suffices to show that for each cube Q ∈ Qk

a

(63) χQ(x)|Tkf(x)|B .
(
C

d/p0
1 A+B

)
∥f∥∞

for every x. Given Q we split f = bQ + gQ where bQ = fχQ∗ and gQ = fχRd\Q∗ . For bQ
we apply Hölder’s inequality and use assumption (58), so that

|TkbQ(x)|B . 2kd/p0
∥∥|TkbQ|B∥∥p0 . 2kd/p0A2−kad/p0∥bQ∥υ0

. A2kd/p02−kad/p0 |Q∗|1/υ0−1/υ1∥f∥υ1 . C(d)C
d/υ0−d/υ1
1 A ∥f∥υ1

since |Q∗| ≈ Cd
12

k(a−1)d.
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For gQ we note that when x ∈ Q, w /∈ Q∗ and |x− z| ≤ 2−k, then |z − w| ≥ C12
k(a−1),

so we can use (59) to estimate

|TkgQ(x)|B ≤ 2kd
∫
|x−z|≤2−k

∫
|z−w|≥C12k(a−1)

|hk(z − w)|B|f(w)| dw dz

. B ∥f∥υ1
Combining the two estimates, we get (63). �
Proof of Theorem A.1. We may assume r ≤ 1 and that the summation in k is extended
over a finite set. We proceed as in [28] and, by the Fefferman-Stein theorem [17] on the
#-maximal operator and the inequality | |u|rB − |v|rB| ≤ |u− v|rB we get∥∥∥(∑

k

|2kad/pRkTkfk|rB
)1/r∥∥∥

p

.
∥∥∥ sup
Q:x∈Q

∑
k

2kadr/p \
∫
Q

\
∫
Q
|RkTkfk(y)−RkTkfk(z)|rB dz dy

∥∥∥1/r
Lp/r(dx)

.

Let x 7→ Q(x) depend measurably on x, so that for each x the cube Q(x) is centered at x

and has sidelength in [2L(x), 2L(x)+1). It suffices to estimate the Lp norm of(∑
k

2kadr/p \
∫
Q(x)

\
∫
Q(x)

|RkTkfk(y)−RkTkfk(z)|rB dz dy
)1/r

.

We let F = {fk}k>0 and estimate the displayed expression by
∑3

i=1SiF (x) where

S1F (x) =
( ∑

k+L(x)≤0

2kadr/p \
∫
Q(x)

\
∫
Q(x)

|RkTkfk(y)−RkTkfk(z)|rB dz dy
)1/r

,

S2F (x) =
( ∑

k+L(x)>0
k(a−1)≤L(x)

2kadr/p \
∫
Q(x)

|RkTkfk(y)|rB dy
)1/r

,

S3F (x) =
( ∑

k+L(x)>0
k(a−1)>L(x)

2kadr/p \
∫
Q(x)

|RkTkfk(y)|rB dy
)1/r

.

Set ∥F∥ℓp(Lυ) = (
∑

k ∥fk∥
p
υ)1/p for p <∞ and ∥F∥ℓ∞(Lυ1 ) = supk ∥fk∥υ1 . For p > p0 we will

bound the Lp norms of SiF by CA(p)∥F∥ℓp(Lυ). In the proofs we shall use the notation

ωk(x) = 2kdχ{|x|≤
√
d2−k+3}(x).

Lp bound for S1(F ). Using the estimate (56) for ∇ρk we see that for y, z ∈ Q(x)

|RkTkfk(y)−RkTkfk(z)|B . 2L(x)+k

∫
ωk(x− u)|Tkfk(u)|Bdu .

Using the embedding ℓp/r ↪→ ℓ∞ we estimate

S1F (x)
r . sup

L

[ ∑
k+L≤0

2k+L

∫
ωk(x− u)|2kad/pTkfk(u)|Bdu

]r
.

(∑
L

[ ∑
0<k≤−L

2k+L

∫
ωk(x− u)|2kad/pTkfk(u)|Bdu

]p)r/p
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and therefore, with the change of summation variable n = −L − k and Minkowski’s in-
equality

∥S1F∥p =
∥∥[S1F ]

r
∥∥1/r
p/r

.
∑
n>0

2−n
( ∑

L>−n

∥∥∥2−(L+n)d

∫
|y|≤C2L+n

2−(L+n)ad/p|T−L−nf−L−n( · − y)|B dy
∥∥∥p
p

)1/p
.

By Lemma A.2 this can be estimated by

A(p)
∑
n>0

2−n
( ∑

L>−n

∥f−L−n∥pυ
)1/p

. A(p)∥F∥ℓp(Lυ).

Lp bound for S2(F ). The Lp bound for S2F follows by interpolating the inequalities

(64)
∥S2F∥p0 . A∥F∥ℓp0 (Lυ0 ) ,

∥S2F∥∞ . (C
d/p0
1 A+B)∥F∥ℓ∞(Lυ1 ) .

For the Lp0 bound, we sum a geometric series, using p > p0, to estimate(
\
∫
Q(x)

∑
k+L(x)>0

k(a−1)≤L(x)

2kadr/p|RkTkfk(y)|rBdy
)1/r

.
(
M

[
sup
k>0

2kadr/p0 |RkTkfk|rB
]
(x)

)1/r
and by the Lp0/r boundedness of the Hardy–Littlewood operator we get

∥S2F∥p0 .
∥∥ sup

k>0
2kadr/p0 |RkTkfk|rB

∥∥1/r
p0/r

=
∥∥ sup

k>0
2kad/p0 |RkTkfk|B

∥∥
p0

.
(∑

k>0

∥∥2kad/p0 |RkTkfk|B
∥∥p0
p0

)1/p0
.

(∑
k>0

∥∥2kad/p0 |Tkfk|B∥∥p0p0)1/p0

. A∥F∥ℓp0(Lυ0 ) ,

For the L∞ bound, we fix x, Q = Q(x), L = L(x) and let yQ = yQ(x) be the center of Q.
By Hölder’s inequality and (56),

S2F (x) .
( ∑

k+L>0
k(a−1)≤L

2kadr/p
[
\
∫
Q

∫
ωk(y − z)

∣∣Tkfk](z)∣∣B dz dy]r)1/r
.

Let Q∗ be the C12
10d dilate of Q with respect to yQ. We may estimate the last displayed

expression by Enear + E far where

Enear =
( ∑

k+L>0
k(a−1)≤L

2kadr/p
[
\
∫
Q

∫
ωk(y − z)

∣∣Tk[fkχQ∗ ](z)
∣∣
B
dz dy

]r)1/r
,

E far =
( ∑

k+L>0
k(a−1)≤L

2kadr/p
[
\
∫
Q

∫
ωk(y − z)

∣∣Tk[fkχRd\Q∗ ](z)
∣∣
B
dz dy

]r)1/r
,

and it suffices to check that

Enear . C
d/p0
1 A∥F∥ℓ∞(Lυ1 ) ,(65)

E far . B∥F∥ℓ∞(Lυ1 ) .(66)
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To prove (65) we apply Hölder’s inequality, use p0 < p and assumption (58):

Enear .
(∑

k

2kadr/p
( Cd

1

|Q∗|

∫ ∣∣Tk[fkχQ∗ ](z)
∣∣p0
B
dz

)r/p0)1/r

. C
d/p0
1 sup

k
2kad/p0 |Q∗|−1/p0

∥∥Tk[fkχQ∗ ]
∥∥
Lp0 (B)

. AC
d/p0
1 sup

k
|Q∗|−1/p0

∥∥fkχQ∗
∥∥
υ0

. AC
d/p0
1 sup

k
|Q∗|−1/p0 |Q∗|1/υ0−1/υ1

∥∥fkχQ∗
∥∥
υ1

. AC
d/p0
1 ∥F∥ℓ∞(Lυ1 ) .

To prove (66) we use assumption (59). Note that if y ∈ Q, |y − z| ≤
√
d2−k+3 (and

k(a− 1) ≤ L), w ∈ Rd \Q∗, then |z − w| ≥ C12
k(a−1). Thus

\
∫
Q

∫
ωk(y − z)

∣∣Tk[fkχRd\Q∗ ](z)
∣∣
B
dz dy

. \
∫
Q

∫
ωk(y − z)

∫
|z−w|≥C12k(a−1)

|hk(z − w)|B|fk(w)|dw dz dy

. 2−kad/p0B∥F∥ℓ∞(Lυ1 )

and (66) follows.

Lp bound for S3(F ). Let BL be the ball of radius 10d2L centered at the origin. We may
estimate∥∥S3(F )

∥∥
p
.

∥∥∥ sup
L

χBL

|BL|
∗
[ ∑

k+L>0
k(a−1)>L

2kadr/p|RkTkfk|rB
]∥∥∥1/r

p/r

.
(∑

n>0

∥∥∥ sup
L<(1−a−1)n

χBL

|BL|
∗
[
2(n−L)adr/p|Rn−LTn−Lfn−L|rB

]∥∥∥
p/r

)1/r

by Minkowski’s inequality. By Hölder’s inequality on each ball BL we see that the last
expression is dominated by(∑

n>0

∥∥∥ sup
L<(1−a−1)n

χBL

|BL|
∗ 2(n−L)ad/p|Rn−LTn−Lfn−L|B

∥∥∥r
p

)1/r
.

Now for n > 0 we have χBL
∗ ωn−L(x) . χBL+1

(x). Thus we get∥∥S3(F )
∥∥
p
.

(∑
n>0

∥S3,nF∥rp
)1/r

where

S3,nF (x) = sup
L<(1−a−1)n

2−LdχBL+1
∗ 2(n−L)ad/p|Tn−Lfn−L|B.

It thus suffices to prove

(67) ∥S3,nF∥p . 2
−nd( 1

p0
− 1

p
)A(p)∥F∥ℓp(Lυ) .

We shall use an analytic interpolation argument and for this it is necessary to linearize
the operator. For any bounded linear functional λ ∈ B∗ we denote by ⟨v, λ⟩ the action of
λ on v ∈ B. Let (x, y) → uL(x, y) be any measurable function with values in B∗, so that
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∥uL∥∞ ≤ 1. After replacing a sup in L by an ℓp norm and interchanging an integral and a
summation it then suffices to bound( ∑

L<(1−a−1)n

∥∥∥2(n−L)ad/p2−Ld

∫
χBL+1

(y)
⟨
Tn−Lfn−L( · − y), uL( · , y)

⟩
dy

∥∥∥p
p

)1/p

by the right hand side of (67), with a constant uniform in the choices of the uL. In what
follows we fix such a choice.

Define an analytic family

Gz
L,nF (x) = 2(n−L)ad(1−z)/p02−Ld

∫
χBL+1

(y)
⟨
Tn−Lfn−L(x− y), uL(x, y)

⟩
dy.

We then show that for p0 ≤ p̃ ≤ ∞

(68)
( ∑

L<(1−a−1)n

∥∥Gz
L,nF

∥∥p̃
p̃

)1/p̃
. 2

−nd( 1
p0

− 1
p̃
)A(p̃)∥F∥ℓp̃(Lυ̃) ,

(1− Re (z))(
1

υ0
,
1

p
) + Re (z)(

1

υ1
,
1

∞
) = (

1

υ̃
,
1

p̃
)

and the required Lp estimate follows if we let z = (1−p0/p). By Stein’s theorem on analytic
families of operators it suffices to show (68) for Re (z) = 0, p̃ = p0 and Re (z) = 1, p̃ = ∞.

First, for p̃ = p0, z = ıγ we bound( ∑
L<(1−a−1)n

∥∥Gıγ
L,nF

∥∥p0
p0

)1/p0
.

( ∑
L<(1−a−1)n

2(n−L)ad
∥∥Tn−Lfn−L

∥∥p0
Lp0 (B)

)1/p0

. A
(∑

L<n

∥∥fn−L

∥∥p0
υ0

)1/p0
. A∥F∥ℓp0(Lυ0 )

which is (68) for Re (z) = 0.

Now let p̃ = ∞, Re (z) = 1. The required bound for G1+ıγ
L,n follows if we can show that

for any fixed x0 and fixed L < (1− a−1)n

(69) 2−LdχBL+1
∗
∣∣Tn−Lfn−L

∣∣
B
(x0) . 2−nd/p0(C

d/p0
1 A+B)∥F∥ℓ∞(Lυ1 ) .

Let Q∗ be a cube of sidelength 20dC12
(n−L)(a−1) centered at x0; recall the inequality

(n− L)(a− 1) > L. We dominate the left hand side of (69) by C(Enear
n + E far

n ), where

Enear
n =

∫
2−LdχBL+1

(x0 − z)
∣∣Tn−L[fn−LχQ∗ ](z)

∣∣
B
dz ,

E far
n =

∫
2−LdχBL+1

(x0 − z)
∣∣Tn−L[fn−LχRd\Q∗ ](z)

∣∣
B
dz .

By Hölder’s inequality

Enear
n .

(
2−Ld

∫ ∣∣Tn−L[fn−LχQ∗ ](z)
∣∣p0
B
dz

)1/p0

. A2−(n−L)ad/p02−Ld/p0
∥∥fn−LχQ∗

∥∥
υ0

and since ∥fn−LχQ∗∥υ0 . C
d/p0
1 2(n−L)(a−1)d/p0∥fn−L∥υ1 this yields

Enear
n . C

d/p0
1 A2−nd/p0∥F∥ℓ∞(Lυ1 ) .
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Next observe that if x0 − z ∈ BL+1 and y ∈ Rd \ Q∗ then |z − y| ≥ C12
(n−L)(a−1) and

thus

E far
n .

∫
2−Ldχ

BL+1
(x0 − z)

∫
|z−y|≥C12(n−L)(a−1)

|hn−L(z − y)|B|fn−L(y)| dy dz

. 2−(n−L)ad/p0B∥fn−L∥υ1 .
Since by assumption aL < (a− 1)n we get

E far
n . B2−nd/p0∥F∥ℓ∞(Lυ1 ) .

The estimates for Enear
n and E far

n yield (69). This finishes the estimation of S3,n(F ) and
thus concludes the proof of the theorem.

�
Applications. We show how for the semigroups Ua

t one can use Theorem A.1 to prove
global estimates from frequency localized versions.

Let φ ∈ C∞(R) be supported in (1/4, 4) and not identically zero. Define scr = sa,cr by

(70) scr(υ; p, q) := d
(1
υ
− 1

p

)
+ a

(d
2
− d

υ
− 1

q

)
which, for a large range of parameters, turns out to be a critical for Lυ

s → Lp(Rd;Lq(I))
estimates; in particular scr(p; p, q) = a(d2 − d

p − 1
q ). Let

(71) Γa(υ; p, q) := sup
R>1

Rscr(υ;p,q)
∥∥Uaφ

(
R−1|D|

)∥∥
Lυ→Lp(Rd;Lq [−1/2,1/2])

.

Clearly this definition depends on φ, however the finiteness of Γa(υ; p, q) is independent of
the particular φ used.

Proposition A.3. Let υ0, p0, q0 ∈ [1,∞], p ∈ (p0,∞), q ≥ q0, r ∈ (0,∞), υ0 ≤ p0, and
let I be a compact interval. Suppose that Γa(υ0; p0, q0) is finite and let scr be as in (70).
Assume that 1/υ0 − 1/p0 = 1/υ − 1/p. Then:

(i)
(72)∥∥∥(∑

k>0

(∫
I
|PkU

af( · , t)|qdt
)r/q)1/r∥∥∥

Lp(Rd)
.

(∑
k>0

2ksp∥Pkf∥pυ
)1/p

, s = scr(υ; p, q),

and

(73)
∥∥∥(∫

I
|Uaf(·, t)|q dt

)1/q∥∥∥
Lp(Rd)

. ∥f∥Bυ
s,p(Rd), s = scr(υ; p, q) .

(ii) If 1/υ0 − 1/p0 = 1/υ1 then

(74)
∥∥∥(∑

k>0

(∫
I
|PkU

af( · , t)|qdt
)r/q)1/r∥∥∥

BMO(Rd)
. sup

k>0
2ks∥Pkf∥υ1 , s = scr(υ1;∞, q) .

(iii) If t 7→ ϖ(t) is smooth and compactly supported then

(75)
∥∥ϖUaf

∥∥
Lp(Rd;Bq

γ,r(R))
. ∥f∥Bυ

s+aγ,p(Rd), s = scr(υ; p, q) .

If f ∈ Bυ
s,p(Rd) with s = scr(υ; p,∞) then the function t 7→ Uaf(x, t) is continuous locally

in Bq
1/q,r(R), for almost every x ∈ Rd, and we have the maximal inequality

(76)
∥∥ sup

t∈I
|Uaf( · , t)|

∥∥
Lp(Rd)

. ∥f∥Bυ
s,p(Rd), s = a(d2 − d

υ ) + d( 1υ − 1
p) .
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We note that the constants implicit in (72) and (75) depend on p, q, q0, I, a, d,ϖ.
For the proof of Proposition A.3 we need a standard imbedding result.

Lemma A.4. Let υ, p ∈ [1,∞] and 1 ≤ q0 ≤ q ≤ ∞. Then

Γa(υ; p, q) . Γa(υ; p, q0).

Proof. Let h be in C1(−1/2, 1/2). By the fundamental theorem of calculus,

|h(t)|q0 ≤ |h(τ)|q0 + q0

∫ 1/2

−1/2
|h(y)|q0−1|h′(y)| dy.

for all t, τ ∈ (−1/2, 1/2). Integrating in τ ∈ (−1/2, 1/2) and applying Hölder’s inequality
yields

sup
−1/2<t<1/2

|h(t)|q0 ≤ ∥h∥q0q0 + q0∥h∥q0−1
q0 ∥h′∥q0

where the Lq norms are on (−1/2, 1/2). Now, as ∥h∥qq ≤ ∥h∥q−q0
∞ ∥h∥q0q0 , we have

∥h∥q ≤ 21/q
(
∥h∥q0 + q

1
q0

− 1
q

0 ∥h∥
1− 1

q0
+ 1

q
q0 ∥h′∥

1
q0

− 1
q

q0

)
.

Setting URf(x, t) := Ua[φ(R−1|D|)f ](x, t), for fixed x we apply the displayed inequality
with h(t) = URf(x, t), then integrate and apply Hölder’s inequality in x to get

∥URf∥Lp(Lq) ≤ 2
1
p
+ 1

q

(
∥URf∥Lp(Lq0 ) + q

1
q0

− 1
q

0 ∥URf∥
1
q′0

+ 1
q

Lp(Lq0 )∥∂tURf∥
1
q0

− 1
q

Lp(Lq0 )

)
.

Now by definition ∂tU
a = ı(−∆)a/2Ua, so that

∥URf∥Lp(Lq0 ) +R−a∥∂tURf∥Lp(Lq0 ) . Γa(υ; p, q0)R
scr(υ;p,q)∥f∥υ

and substituting these bounds into the displayed inequality implies the assertion. �

Proof of Proposition A.3. We can reduce to the situation where I = [−1/2, 1/2] or ϖ ∈
C∞
c ((−1/2, 1/2)), by a change of variables argument. By Lemma A.4 we may assume

q0 = q.
To prove (72) we apply Theorem A.1. Let ρ be a radial C∞(Rd)-function which is

compactly supported in the ball of radius 1/2 centered at 0, with the property that ρ̂ is
positive on suppχ(| · |). Denote by Rk the operator of convolution with 2kdρ(2k · ). Let
Lk = φ(2−k|D|) where φ is chosen so that φ(| · |)ρ̂ = 1 on suppχ(| · |). Thus RkLkPk = Pk.

Now let B = Lq[−1/2, 1/2] and let Tkf(x, t) = 2
k(a−1)d( 1

υ0
− 1

p0
)
2
−ka( d

2
− 1

q
)
LkU

af(x, t).
Then the hypothesis that Γa(υ0; p0, q0) is finite implies

A := sup
k>0

2kad/p0∥Tk∥Lυ0→Lp0 (B) <∞.

For fixed t let htk be the convolution kernel for Tk (at fixed time t); it can be written as

htk(x) = 2
k(1−a)d( 1

υ0
− 1

p0
)
2
−ka( d

2
− 1

q
)
2kd(2π)−d

∫
Rd

φ(|ξ|)eı(2k⟨x,ξ⟩+2akt|ξ|a)dξ.

An N -fold integration by parts yields

2
k(a−1)d( 1

υ0
− 1

p0
)
2
ka( d

2
− 1

q
)|htk(x)| ≤ CN2k(d−N)|x|−N , |x| ≥ 2(a−1)k+4, t ∈ [0, 1] ,
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and thus condition (59) is satisfied with C1 = 25. Thus, by Theorem A.1 we obtain the
inequality

(77)
∥∥∥(∑

k>0

2
ka d

p
r∥RkTkfk∥rLq [−1/2,1/2]

)1/r ∥∥∥
p
.

(∑
k>0

∥fk∥pυ
)1/p

.

Notice that, in view of 1/υ0 − 1/p0 = 1/υ − 1/p,

2kad/pTk = 2−kscr(υ;p,q)LkU.

Thus if we apply (77) with fk = 2kscr(υ;p,q)Pkf , then (72) follows. The assertion (74) is
obtained in the same way.

We now need to show how to obtain (73) from (72). The right hand side in (72) is just
the Bυ

s,p-norm of f . We also have for 1 < q, p <∞

(78)
∥∥∥(∫

I
|G(·, t)|qdt

)1/q∥∥∥
p
.

∥∥∥(∫
I

[(∑
k≥0

|PkG(·, t)|2
)1/2]q

dt
)1/q∥∥∥

p

which we apply for G(x, t) = Uf(x, t). For p = q this is just a consequence of the standard
Littlewood-Paley inequality (after interchanging the x and the t integral). By Calderón-
Zygmund theory the estimate also holds for 1 < p < q (and is obtained by interpolation with
a weak-type (1,1) estimate for Lq(ℓ2)-valued functions). If we dualize a similar reasoning
yields the case q > p. Inequalities (72), (78) easily imply (73).

Now consider a standard inhomogeneous Littlewood-Paley decomposition {Pk}∞k=0 on

Lp(Rd) so that Pk = Pk for k > 0 and where P0 localizes to frequencies with |ξ| ≤ 2. For
the estimation of P0U

a standard multiplier arguments apply. We also need to consider a
similar inhomogeneous Littlewood-Paley decomposition in the t variable, which we denote
by {Lj}∞j=0. Then inequality (75) can be rewritten as

(79)
∥∥∥( ∞∑

j=0

2jγr
∥∥Lj [ϖU

af ]
∥∥r
Lq(R)

)1/r∥∥∥
Lp(Rd)

.
(∑

k

2k(s+aγ)p
∥∥Pkf

∥∥p
Lυ(Rd)

)1/p
.

We claim that there is a constant M for which

(80)
∥∥Lj [ϖU

aPkg]
∥∥
Lp(Lq)

≤ CN min{2−jN , 2−kaN}∥g∥υ whenever |ka− j| ≥M,

so that for the essential terms k and j are coupled via |ka − j| ≤ M . This would mean
that a t derivative of order α could be traded with an x derivative of order aα, so that (79)
would follow from (77). Thus it remains to prove (80). Note that for k > 0, j > 0, the
convolution kernel of g → Lj [ϖU

aPkg]( · , t) can be written as

1

(2π)d+1

∫∫ {∫
ϖ(s) eıs(|ξ|

a−τ)χ1(2
−j |τ |)χ1(2

−k|ξ|) ds
}
eı(⟨x,ξ⟩+tτ)dτ dξ

and similar formulas hold if either k = 0 or j = 0. One checks that if |ka − j| ≫ 1 then
for ξ and τ in the support of the indicated cutoff functions the inequality ||ξ|a − τ | ≥
cmax{|ξ|a, |τ |} holds. We perform N + d + 1 integration by parts in s. For t large, we
follow this by integrations by parts in τ . This easily yields (80).

The final assertions of the proposition are a consequence of the fact that for r ≤ 1 the
space Bq

1/q,r(R) is imbedded in the space of bounded continuous functions. �
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[9] A. Córdoba, The Kakeya maximal function and the spherical summation multipliers, Amer. J. Math.
99 (1977), 1–22.

[10] , A note on Bochner-Riesz operators, Duke Math. J. 46 (1979), no. 3, 505–511.
[11] , Geometric Fourier analysis, Ann. Inst. Fourier (Grenoble) 32 (1982), no. 3, vii, 215–226.
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