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1. Introduction

We consider the free Schrodinger equation, i0;u = —Aw, with initial data in H*(R%),
the inhomogeneous Sobolev space with s derivatives in L?(R9). A classical problem,
originating in the work of Carleson [6], is to identify the exponents s for which

o itA _ d
tlgr(l)e f(z)=f(z) ae zeR?

whenever f € H*(R%).

In one spatial dimension, Carleson proved the convergence for data in H*(R) with
s = 1/4, and Dahlberg and Kenig [9] proved that the convergence is not guaranteed
when s < 1/4. In two spatial dimensions, the first author [16] proved the convergence
for data in H®(R?) with s > 3/8, improving the work of a number of authors (see for
example [3,18,28,29]). In higher dimensions, the best known result is that of Sjolin [26]
and Vega [30] who proved the convergence for H*(R?) with s > 1/2.

We also consider the Schrodinger equation for the harmonic oscillator, i0;u = Hu,
where H is the Hermite operator defined by

1

H= 5(—A+\x|2), r € R (1)
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This is an important model in quantum mechanics, as it approximates any trapping
Schrodinger equation with real potential at its point of equilibrium (see for example [11]).
As for the free equation, there has been an effort to identify the exponents s for which

o —itH _ d
th_rg%e f(z) = f(z) a.e. zeRY

whenever f € H*(R).

The first nontrivial result which held in sufficient generality to include the harmonic
oscillator is due to Cowling [8]. This was improved by Yajima [31] who proved convergence
for data in H*(R?) with s > 1/2. Recently, Sjogren and Torrea [25] proved the sharp
result in one spatial dimension. That is to say, the convergence holds for data in H*(R)
with s > 1/4, and the convergence is not guaranteed for data in H*(R) when s < 1/4.
For d > 2 it can be shown that the convergence fails for s < 1/4 (see the paragraph
below Theorem 3.1) but no result was known below s = 1/2.

We improve Yajima’s result in two spatial dimensions.

Theorem 1.1 Let f € H*(R?) with s > 3/8. Then
lime " f(z) = f(z) a.e. xR
t—0

Since the spectrum of H is discrete, recalling the free equation with periodic data (see
for example [19]), one may expect that the usual analysis on Euclidean space does not
work directly. However, by making use of a transformation (as in [25]) we are able to
work with the free Schrédinger operator along curves (p(z,t),t) = (V1 + t2x,t), and so
we consider the problem in general. In the second section we will prove the following
theorem in which B? denotes the unit ball centred at the origin.

Theorem 1.2 Suppose that p € C*(R? x [0,1],R%) satisfies p(z,0) = x, and that there
exist constants Cs > 0 such that

|| sup |e"Af] ||L2(Bd) S Collf s mey, 8> o
0<t<1

Then for all f € H*(R?) with s > s,,
o itA d
th_r}(l)e f(p(z,t)) = f(z) ae xR
Combining this with the estimates of [12,16,26,30] yields convergence along C* curves
for all f € H*(RY) with s > s4, where s; = 1/4, so = 3/8 and s4 = 1/2 if d > 3. In
particular this yields Theorem 1.2. This also improves the result of Sjégren and Sj6lin [24]
who obtained the convergence for p(x,t) = x + at, with a € R?, for all f € H*(RY) with
s>1/2.
In the third section we will prove the following equivalence between estimates for the

free and Hermite Schrodinger operators. This yields Theorem 1.2 in the case (p(z,t),t) =
(V14 t2z,t). We denote by Br = B(0, R) the ball of radius R > 1, centred at the origin.

Theorem 1.3 Let gq,r > 2. If r # oo, then there exist constants cr such that
€2 Fll L2 (B, r0)) < €8 | f1lprere) (2)
if and only if there exist constants Cr such that
le™™ ™ fll e (Br, 017 < Cr |1f l#rs(ra)- (3)
If r = oo, then (2) holds for s > s, if and only if (3) holds for s > s,.
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In particular, taking ¢ = r = 2, Theorem 1.3 shows that the local smoothing estimate
of Constantin and Saut [7], Sjolin [26] and Vega [30] for the free equation, is equivalent
to that of Yajima [31] for the harmonic oscillator. Combining Theorem 1.3 with the work
of Planchon, Tao and Vargas [21,28,29] (see [17] for the endpoint) we also obtain the
following corollary. It is not possible to bound the solution to the harmonic oscillator in
Li(Bg, L7 (R)), with r # oo, as the solution is periodic. Nor is it possible to bound the
solution in L (R?, L$°[0,1]) (see [25]). When g = r however, estimates which are global
in space are possible (see for example [14]).

Corollary 1.1 Let Qgidjf) <g<r<oo, % + % < % and s = 4 — g — % Then

le™ " fllLa(se, 710.1)) < Crlfllars may-

When d = 2, the restriction on ¢ can be relaxed to ¢ > 16/5 by combining Theorem 1.3
with [17,22].

N

Corollary 1.2 Let%—G<q<7‘<oo,2+%<1and5:1f%f . Then

<

e fll e (Br, 70,17 < CrIIf i 2)-

In Section 2 we will prove an equivalence lemma which will be key to the proof of all of
these results. This follows by developing in a Fourier series the exponential function eval-
uated at perturbations of the phase. However the Fourier coefficients are badly behaved
when the time is localized at scale 1. We get around this problem by proving a sharp
temporal localization lemma which reduces estimates on time intervals of length 1 to es-
timates on intervals of length A~! under the assumption that the frequency of the initial
datum is localized at scale A. We then combine these lemmas to prove Theorem 1.2. In
Section 3, we will describe the aforementioned transformation for harmonic oscillator in
more detail and see that the condition 2L + % < g in Corollary 1.1 is sharp. We then
prove a Littlewood—Paley style lemma, allowing us to prove equivalences without loss
in regularity. This allows us to prove a somewhat more general version of Theorem 1.3.
We also prove an equivalence of convergence along sequences for the free and Hermite
Schrédinger equation. In the final section we discuss a refinement of almost everywhere
convergence as in [1], and parts of the paper prior to that point are written in sufficient
generality to be of use there.

Indeed, from now on y, v will denote measures, and for an interval I C R we write

Flegaen = ([, ([P0l a0) duw)

Also, ¢ and C will denote positive constants that will depend on the dimension d. Their
values may change from line to line.

2. Proof of Theorem 1.2

For p : Rt — R?, we define the operator U, by
Upf(xat) = eitAf(p(‘rat))'

The following localization lemma extends and sharpens Lemma 2.3 of [16]. The proof
makes use of the wave packet decomposition which has been used in the study of restric-
tion and Bochner—Riesz problems (see for example [10,15,28]). In contrast with previous
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arguments, we decompose U, f into pieces which are, in some sense, compactly supported
in space instead of compactly supported in frequency. This enables us to exploit the
localization property more effectively. Unfortunately this obscures the geometric reason
behind why such a result should hold, and so we briefly describe the main idea. As the
frequency is supported away from the origin, the wave packets have nonzero velocities,
and so the space-time tubes to which they are adapted only interact with small pieces of
the region of integration. The lemma is not true if the functions are Fourier supported
in the ball By instead of the annulus Ay = {£ : A\/2 < |£] < 2A}, as is easily seen by
considering p(z,t) = x with ¢ = r = 2, because then the tubes will interact with the
whole region. On the other hand, the lemma continues to hold if the order of integration
is interchanged.

Lemma 2.1 Let q,r € [2,00], A > 1, supp(v) C [-2,2], A > ||1||1L/quM and suppose that
sup |z, 1) < M,
x€supp(p), tEsupp(v)

where M > 1. Suppose that, for a collection of boundedly overlapping intervals I of
length \=1, there exists a C, > 1 such that

1oLz sy < Collfll2 (4)

whenever f is supported in Ax. Then there is a constant Cq > 1 such that
HU;’f”LZLg(UI) < CdM1/2Co||f”2

whenever f s supported in Ay.
We introduce two partitions of unity and decompose U, f into packets which are suited
for our purpose. Fix a positive and smooth function ¢, supported in B, 3, such that

d -y =1.

We also fix a smooth ¢,, supported in By—4, that satisfies ¢ * do * Po * Do * Do * P (0) = 1,
so that, by the Poison summation formula,

Z (50)6(5 - 'U) =1
vezZd

We set ¢ = ¢, * ¢o. Define f, and f,, by
@) =@ —y)f@@)  and  fuu(@) = ()€ ~v)fy(©),
respectively. It follows that
f=>f, and  f=>">"f,. (5)
A yEZd veZd

Note that f, is supported in the ball of radius (v/d + 1) with centre y. For the rest of
this section y and v are reserved to denote elements in Z<.

Proof. Since the intervals are boundedly overlapping, by Minkowski’s inequality we may
assume that they are disjoint. We decompose f as in (5) so that

Uf= >, Ufp+ > Up Fyos

y,0:N/A<|v|<4N y,u:|v|<A/4, [v|Z4X



where

M@led/ﬂ“”&wW@%—WMQ% (6)

(2m)
As fis supported in Ay, the second term is an error. Indeed, for any N > 1,
ol = [(Fe(- =) < OnIFI* (L +]- 7N

So, if [£] < 3A/8 or [£] = 5A/2, we have |J/‘;(§)| < CnA™Y| | f|l2. Substituting this into
(6), we see that [|U,fyullcc < ONATN| f]l2 when [v] < A/4 or [v] = 4A. As A > ||1H1/d

LiLr»
this yields
> U fyw
yvi|v|<A/4, v 24N

<C .
s < Call 1o

Thus, discarding this harmless error we can suppose that A/4 < |v| < 4. For notational
convenience we write simply

U;)f = Z %fyv

y,0:N/4<|v| <4

We now analyse the kernel of the U, combined with the projection operators. Note
that

wm:/ﬁm@wmam (7)
where

Koz, 2,t) = /ei(p(w7t)-£—t|£\2—z-£) (6)3(€ — v) de.
By translation £ — £ + v the kernel K, (z, z,t) is equal to
i (ot —2)vtlo]?) /ei(p@,t),m,z).g(5)2(5) e~IE1 3¢ de.
Now, since gg is rapidly decaying and [¢| < 2 on supp(v), we can write
e Ge) = [ oo Q
where |®(n,t)| < Cn(1+ |n|)~" uniformly in ¢ € [~2,2]. This decay is easily calculated

by repeated integration by parts in the formula for the Fourier transform.
For notational simplicity let us set

&, (:L‘, Z,t,?’]) _ ei((p(w,t)—z)»v—t|v\2) /ei(p(x,t)—Qtv—z){($)2(£) ein§d§

= i (0@0=0=t) (44 ) (2, ) — 20 — 2 + 1), (9)

so that the kernel can be represented as the average

&m%w=/¢wwau%mmw

Substituting into (7), we see that
Upfinlt) = [ ®(.0) P (o) (10)
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where

ngv(x’t) :/5v(1',z7t,77) fy(Z) dz

Since f, is supported in a ball of radius Vd centred at y, and ¢ is supported in a ball of
radius 272, from (9) we see that P}, is supported in the set

Ty = { (1) = [p(a,t) = 2tv —y +n| < 2d}.

Setting Q7 = supp(p) X (INsupp(v) ), when r > ¢, by concavity, (10) and Minkowski’s
inequality,

1/
||U;’f“LﬁL$(U1) < (Z”U;?fH%ZL;‘(I)) '
/
C/ +[nl) MH)(ZHZ HL‘?LT )1qd77
—cfarmyen (] X R
1

y,0: Ty, NQ T #0D

q 1/q
dn. 11
LZLS(I)) ! (1)

For the last equality we use the fact that P}, is supported on Tj},. On the other hand,
when r < ¢, by the L%/"—triangle inequality combined with similar arguments,

/r
CAPEPELCY CRATIRCEIO B! D Sy )
I

y,0: Ty, NQ#0
The arguments for each case are now essentially the same, so we only consider the case
that r > q.
The strategy is to partially urzngo the decomposition and then apply the hypothesis.
From (9) and the fact that e™léI" (&) = [ €¢¢®(¢, —t) d(, it follows that

LiLy(Qr)

Sz, z,t,m) = ci(p(@,t)=2)v—t|v|?)
o // (ilp(a ) =2t0=2) € —iHIE* J(¢) i+ € g B(C, —t) dC.
By translation £ — & — v, this is equal to
// il -6t =26 5 ¢ _ ) 30O (€= ge (¢, —t) dC.
So, we have that
(z,1) /U et n+Q)-(D— v)fy (¢, —t) dC.

Here m(D) is defined by (m(D)f)” = mJ. Substituting this into (11) and applying
Minkowski’s inequality, we obtain

HUf’f”LﬁL;(UI) < C//(l + |m)7(d+1)(1 + |<|)f(d+1)
(Xl X dp -y
I

Y,0: Ty NQr#0

/a
dnd(.

LiL3(Qr ))



By hypothesis, this yields
108y y g < CCo [ [+ a0+ o4+
~ ) 1/q
_ ) i Q) (D—v) Hq
x (;H > D -ve f|,) " dndc.

y,0:T,, NQ 1 #D

Now recall that a = (qAﬁo)Q. By Plancherel’s theorem, the Cauchy—Schwarz inequality and
making use of support properties of ¢, and 1 it is easy to see that

D SR R ELE AT Ere) i D DR X RO IA

YTy, NQ 1 #0D YTy NQ 170

<c Y

y,0: Ty, NQ 1740

—~ 2
oo

Using the embedding ¢2 < ¢9 and then integrating in ¢, we have that

||Upf||LgL;(U I) (12)
_ ~ 2\ 1/2
<cc, [waly (Y X [aw-onl)
I y,’U:T;UﬁQI;ﬁ@

Now we claim that for p satisfying |p| < M on supp (1) X supp(v),

> o <cMm (13)
I:T),NQr#0

uniformly in 7. Assuming this for the moment, by changing the order of summation we

see that
oY le@-anll=3 X oD -0)sl;

I yu:T,),NQr#0 Y,v LT, NQr#0D

<MY [3o(D = v)f, |12

Y,v
Substituting this into (12) and integrating in 7, we see that

R 1/2
10 g ry < CMY2Co( X NIGolD )1 3)
Y,v

The result follows by showing >°, HQASO(D - v)fyH; < C||f||% which follows using the
support properties of ggo and .

It remains to prove (13). Since the intervals are disjoint and of length A=1, (13) will
follow by proving that if Q7, N T}, # 0 and dist(Z, I,) > 50dM A1, then Q; N T, = 0.

Let (%o,t0) € Q1, NT}), and (z,t) € Qr, so that and [p(7e,t,) — y — 2vt, + 7| < 2d, and
we are required to prove that |p(x,t) —y — 2vt + | > 2d. Now
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lp(z,t) —y —2vt + 1| = |p(z,t) —y — 20t + 0 — (p(2o, to) — y — 20, +n)| — 2d
! (to = t)v + (p(z,t) = p(wo,to)) | — 2d
>§\(to—t)|—2M—2d>2d,

where in the second inequality we use the fact that |[v| > A/4 at the beginning. Thus
(z,t) ¢ T, which proves (13), and we are done.

By taking p(z,t) = x, ¢ = r = 2 and p and v to be localized Lebesgue measure, (4)
holds, with o = —1/2, by Fubini’s theorem and the conservation of the L2 norm. Thus,
this provides a new, somewhat geometric, proof of the local smoothing phenomena due
to Constantin and Saut [7], Sj6lin [26] and Vega [30].

Having localized in time, we are now able to prove an equivalence between space-time
estimates.

Lemma 2.2 Let I = [t;,t; + A7, and suppose that

|p(x,t2) B p(x7t1)|
|ta — 1]

sup < M.

z€supp(p), t1,t2€supp(v)

Setting pr(x,t) = p(x,tr), suppose that there exists Cy > 1 such that
1Up: fllLs Ly < Collfl2 (14)
whenever f is supported in Ax. Then there exists Cy > 1 such that
10 fllzarray < CaM*™1C,| £l (15)

whenever f is supported in Ay. Conversely, if (14) holds with pr replaced by p, then (15)
holds with p replaced by py.

Proof. We show only the implication from (14) to (15), the converse being very similar.
After scaling & — A we note that

U f(x,t) = (2)\:)(1 /¢(§) eiA(P(M)*p(MI))f ei(Ap(w,tz)-E*/\2t|§|2)f()\§) de,

where 1) is smooth and equal to 1 on By and supported on (—m, 7)%. Now by hypothesis,
we have

IA(p(z, ) = pla,tr))] < MAJE —t7] < tel

Thus, expanding in a Fourier series on (—, )

w(g) eik(p(ac,t)—p(w,tz)) § d Z a(x,t, k i€ k

kezd

where the Fourier coefficients, which also depend on A and t¢;, uniformly satisfy

la(z,t, k)| < CMPH 1+ k)", t e I, x € supp(p). (16)
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This is easily calculated by integrating by parts the formula for the Fourier coefficients.
Thus, we have that

) e itk
U, f(x,1t) 277 T Z a(z,t, k) / RICVICHIOR SIS )eékf()\g) de.

kezd

Now, by the triangle inequality, combined with (14) and (16), we see that

”UPf”LZL,T,(I C Z ”a : ||L°°L°°(I)HUPI (f(Aflk + )) ||LZL5(I)
kezd
<O (14K HIMC £
kezd

< CM™Co| |2,

and so we are done.

The following result yields Theorem 1.2 by standard arguments. Indeed, one can cover
R? by a countable number of the balls which are generated by Theorem 2.1, then extend
the operator U, from the Schwartz functions to H*(R?) using the estimates (18). This
yields a countable number of functions which are continuous in time for almost every
r € R4

Theorem 2.1 Let q,7 € [2,00], z, € R?, and let p, satisfying p(z,0) = z, be continu-
ously differentiable. Then there exist constants Cs > 0 such that
||6itAf||Lg(]Bd,LT[O 1)) < Cs Il s ray, s> S0, (17)

if and only if there exist constants €,cs > 0 such that

N0 f 22 (B(wo.e), Lr0, ) < Cs [1f s may, 8> So. (18)

Proof. Since det D, p(z,,0) = 1 and D,p is continuous, by the inverse function theorem
there is an € > 0 such that p(-,t) : B(x,,2¢) — R? has its inverse p~1(-,t) for all
t € [—2¢,2¢]. The determinants of the Jacobians are uniformly bounded for all ¢ € [0, €],
and we set E; = p~1(B(xo,€),t).

First we prove that (17) implies (18). By translation invariance and scaling if necessary,
we have that

e fllza (e, y0.0) < Cs 1flme@ay, s> so, (19)

for any fixed ¢’ € [0, ¢]. We cover [0, €] by a union of disjoint intervals I = [t7,t; + A71],
where A > e~1. Then, by the change of variables x — p(z,t), the estimate (19) implies

1Us, fllLa ) < CA°|| ]2

whenever f is supported in Ay, where p; = p(,tr), du(x) = XB(zo,e)dx, and dv(t) =
X[o,]dt. By the boundedness of |0;p| on B(z,,€) x [0, €] and the mean value theorem, we
can apply Lemma 2.2, so that

0o fllLg Ly ) < CA°[|fl2
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whenever fis supported in Ay. By the boundedness of |p| on B(z,,€) x [0, €], we can
apply Lemma 2.1 to obtain

0o fllLg Lyfo.q < CA°|[fl2

whenever f is supported in Ay. Now the triangle inequality and summation along a
geometric series gives the desired bound (18) for s > s,.
The converse direction is slightly easier. By the hypothesis (18), we have that

1o f | 29(B(xo,e),L7(10)) < CA°[I ]2

whenever fis supported in Ay, where we take Iy = [0, A\~!]. Then by Lemma 2.2 we may
replace p by po = p(x,0) = z, obtaining

€2 Fll L2 (B(wore), L7 (o)) < CA°[Ifl2

whenever ]? is supported in Ay). By time translation this is valid for any interval I of
length A=1, and we cover [0, €] with such intervals. By Lemma 2.1 this yields

HeitAf”LZ(B(ﬂcmE)»Ll‘[O»S]) < G )\S”sz

Summing a geometric series and scaling we get (17), and so we are done.
3. The quantum harmonic oscillator

For k = (ki,...,kq) € Nd, let hy be Hermite functions which are normalized in L?(R4).
Then, the solution to the Schrédinger equation for the harmonic oscillator is given by

. . q
eflt’Hf _ Z efzt(\k|+§)akhk
keNg

where ay are the Fourier-Hermite coefficients ax = [p. f(z) hi(z) dz. It follows that
e fllr2@ay = [Ifllz2(ray, for all time ¢. By the Mehler formula we also have the
integral representation

e f(a) = /RdKAx,y) Fw)dy, te(0,7/4),

where

_ i 2 , ¢

Ki(z,y) = Wexp (2|a: —y|®cott — iz - ytan 2) .

By comparing this with the integral representation of the solution to the free equation,
ilz—y|?

it 1
2 w) = s [T S 1€ (0,09

one can calculate (see [5], [20] or [25] for details) that for Schwartz functions, we have
the transformation

e‘“anflt%f(w) = e_%ll‘z(l + t2)d/4e’%Af(\/ 1+t2z), te(0,00). (20)

By simple rescaling we see that e'22 f(z) = e [f(271/2)](21/22), and (1+tan®¢)%/* <
C for t € (0,1), so that

|€7it7{f(271/2x)| ~ |ei(tant)A[f(271/2 . )](mx) ‘7 t e (O, 1)
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Hence, the pointwise convergence problem for the harmonic oscillator can be thought
of as the problem for e®2 f along the curves t — (v/1+t2x,t). Of course this fits into
the framework of the previous section, however slightly more can be said when p takes
this simple product structure.

For ¢ > 1, define I'* by

ta) — (¢
1"‘}:{760‘7[—2,2] D14 <y < 4, sup Mgzl},
ttael—2,2]  [t2 —t1]

and for v € I'* we define the operator S by

SP@1) = g [ SOOI i) e (21)

so that S'f = ™2 f. Note that Lemmas 2.1 and 2.2 of the previous section hold in the
Lipschitz case; for p(z,t) = y(t)x with v € T'°. The choice of 4 in the definition of T'* is
of no importance; it can be any positive number bigger than 1. Similarly the v need not
be defined in the whole interval [—2, 2].

For the proof of Theorem 1.3, we will require the following Littlewood—Paley—type
lemma in order to sum estimates restricted to dyadic pieces without losing any regularity.
Let x be a smooth function such that supp x C A; and

dox@ ) =1

kEZ

As usual, we define the projection operators Py by

Pf =x(27%)f.

Lemma 3.1 Let1 <r <oo andycTI'* with€>l+%+%. Then

| S8 P ey < CICE IS PA )

2k >8R 2k >8R

L7[-2,2] + CNHf”H*N(Rd)
whenever x € Br.

Proof. Let ¢ be smooth cutoff, equal to one on [0, 1], and supported in (—2,2). Then
for a fixed « € By, we consider S7f, defined by

SYF(t) = b(t)S7f (x,t),

as a function of ¢ only. It will suffice to show that

| £ 5l el T Sr)
2k>8R Lo 2k>8R

We define projection operators in time frequency. Let ¥ be a smooth function, equal to
one on {c;! < || < ¢}, and supported on {(2¢,)~! < |7| < 2¢,} for some large ¢, > 0,
and define P, by

c - :
- Nl fll - may

P.F =27 *)F(r), k>1.
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Then by Minkowski’s inequality,
H Z gVPkf‘ < H Z ﬁ2k§Vpka
2k >8R 2F>8R
The first term is majorized by a multiple of [|(3 okogp ST P, f]2)2 ||, by the usual
Littlewood—Paley inequality, so it remains to show that for N < 2(¢ — 1) — d/2,

> |a-BwsEg], <Ol
2F>8R

+ 3 |a- s pg]
2k>8R

L7[0,1] L7 (R) Lr[0,1]

which follows from
(1 = Par)S” Py fllro.1) < Cn 2 V¥ Pf o (22)

This can be shown by a routine integration by parts argument.
Indeed, write

1 - P%)SVPkf( 9
/ / @) (1 — (2 20) K. €,7) F(€)e™ drde,
el <2r+2

where

K(z,&,7) /¢ i(v(Oe=t1€P+7) gy

Choosing ¢, sufficiently large, |4 (y(t)z - & — t(|¢]* + 7)) = Cmax(22k |7]) on the region
of integration because 2 > 8R, |v/(t)z| < cR and 7 ¢ (22k¢;1,2%%¢,). By repeated
integration by parts, we see that

|K(x, &, 1) < C27 271 =M (1 4 |r]) =049, e >0,

whenever 7 is in the region of integration. Hence, for ¢ € [0, 1], we obtain

(1= Pa)® ()] < -k [ kg o de

|§]<2h+2
<Cl2 2(6—1— e)k+dkHPkf||2,
by Holder’s inequality and Plancherel’s theorem, and this implies (22).

Now we show the necessary conditions for the space-time estimates (3), enabling us to
take N =1 in the previous lemma. Consideration of f given by f=v(\"1"), where ¢ is

smooth and supported in Ay, reveals that the condition s > g — % — % is a necessary for
(3) to hold. In particular we may assume s > —1 when ¢,r 2. To see that % + % < %
is necessary when s = 4 — g — 2, we use f given by F = d(A"1/2(¢ = Aey)) with nontrivial

¢ € C§°. By a change of Varlables, it is easy to that [S7f(x)| > CAY/? the set defined by
ly(t)z — 2Xert] < coA™2 and |t| < coA~! for some small ¢, > 0, so that

d_d-1_ 3
”SWfHLZ(BR, r[0,1]) Z > CN27 2¢ " 2r,

Meanwhile || f| z= ey < CAt/% 5o by letting A — 0o, we obtain the desired condition.
Thanks to the transformation (20), Theorem 1.3 is a consequence of the following
proposition. There is no reason to believe that the conditions on ¢ or 3 are sharp.
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Proposition 3.1 Let q,r > 2, r # oo, and suppose that
157 fllza (B, Lroa) < CRY S| ms (ray (23)
for some v € T with £ > %. Then for all v € T¢ and B > 2d + 3 + a,

1 q/r dz 1/q
S t)|"dt _ <C . ' 2
</]Rd (/0 |57 (@, 1)) ) (1+ xl)ﬁq) 11l s (ra) (24)
If r =00 and £ =0, then (23) for s > s, implies that (24) holds for s > s,.

Proof. The proof is very similar to the proof of Theorem 2.1, the main difference being
that p is defined by p(z,t) = v(t)z and ~ is uniformly bounded above and away from
zero, so we can invert p for a fixed ¢ easily without need of the inverse function theorem.
This means that the neighbourhoods of integration only change by mild dilation.

Consider first the case r = oo and £ = 0. Taking du(x) = xp,dr and dv(t) = x[_2,94dt,
the constant M which appears in the Lemmas 2.1 and 2.2 can be taken to be 4R.
Combining the lemmas as before yields that

1S s (Br, L710,17) < OB\ fll s (may
implies that
||51f||Lg(BR/4,L;'[0,1]) < CRd+3/2+a||fHHS(Rd)~ (25)

The domain of integration is smaller due to the change of variables, in order to convert
S7(t1) to S1. We can return to the original domain of integration by simply covering Br
with balls of radius R/4 and using the translation invariance of (25). Conversely, suppose
that the roles of SYand S' in the above are interchanged, then the same implication holds.
Combining the two implications, then summing a geometric series in spatial dyadic annuli
yields the result.

For the endpoint result when r # oo, we apply the Littlewood—Paley Lemma 3.1.
By using the symmetry and scaling invariance of (25), a very slight modification of the
previous argument gives that (23) implies

1S7f | La(Ba, py1—2.2) < CREFHON]| £z (26)

whenever fis supported in Ay. It remains to combine the dyadic pieces without loss in
regularity. By Lemma 3.1 with N =1,

H ZSVPkf(%'H Lo S C|( Z‘S’ypkf(za')|2)§HL:[—2,2] + Clflg— (e
2F>8R 2k >8R

whenever x € Bg and £ > #, and trivially,

1S | 22 (Br, Lrio1)) < 1l 2a(Br, L0 1 f 11
d d
S CRa%2| flla < CR™| fll g

~

whenever f is supported in Bigg. Hence by the triangle inequality we see that

| > sny| +| > sng|
Jh<oR L3 (Br, L}[0,1]) o >BR
1/2
< CRM oy +C( Y 1S Pes B emenraa) -
2k>2CR

S q r <
1SNl 22 (Br, Lr10.1)) L8 (Br, LE[0.1])

13



From (26) it follows that

1/2
HS’nyLg(BR,L{[O,l]) < C’Rd+1||f||H,1(Rd) + CR2d+3+a( Z ||25kPka§)
2k>8R

< CR¥34 | f|l s may,

which we can sum as before to obtain the desired estimate. In the final inequality we use
the fact that s is necessarily greater than —1, as proven above.

Combining Proposition 3.1, the transformation (20) and the known bounds for the free
Schrédinger operator one can obtain a global weighted estimate for the maximal operator
[ = supgcy<q le7 " f|. Failure of global unweighted estimates for the maximal operator
was shown in [25].

Remark 3.1 Let e*P(P) f be the solution of the equation
z@tu+P(D)U:0, ’LL(,O):f,

where P is a polynomial of degree m > 2 with VP(§) # 0 if |§| is sufficiently large.
Lemmas 2.1 and 2.2 can be extended to this case, however Lemma 8.1 is unavailable.
Thus Theorem 1.2 and the nonendpoint part of Proposition 3.1 hold for the nonellip-
tic Schrédinger operator, which, combined with the estimates of [23], yields convergence
along curves in this case. We note that the nonendpoint part of the previous proposi-
tion also holds with Lebesque measure in time replaced by a general measure v such that
11022 (Ba L7 [-2,2)) < CR?®. Again this is because Lemma 3.1 is not used.

From this we obtain the following equivalence. We remark that an analogous equiva-
lence for the Bochner-Riesz and Hermite Bochner—Riesz problems was proven by Kenig,
Stanton and Tomas [13].

Theorem 3.1 Let (t,) be a real sequence that converges to zero. Then
lim e'an A f(g) = f(x) a.e z€R?
k—o0
whenever f € H*(RY) with s > s, if and only if
lim e~ f(x) = f(z) ae zeR?
k—o0

whenever f € H*(R?) with s > s,.

Proof. Thanks to the transformation (20) and scaling we have

le™ M (271 2g)| ~ |eitan A £(271/2. N(V1+tan?ta)|, te(0,1).
By Proposition 3.1 and Remark 3.1 we see that
1S fll 2 (Br, L2 0,1)) < Cs 1 f lmr=ray, s> 5o,
if and only if
157 fll2 (Br, L2 [0,1]) < Cs [|fll s (mays 8> So,
where v(t) = /1 + (tan1)2¢? and v is the discrete measure which has mass at tant.
Thus, the result follows by applying the Nikisin—Stein maximal principle [27], with the

14



weak (2,2) estimates converted into strong estimates by interpolation with the trivial
H*® — L, s > n/2, estimate followed by Holder’s inequality.

From this one can easily deduce the failure of lim; e @ f = f a.e. for certain
f € H*(RY) with s < 1/4. This was shown in [25] when d = 1. Indeed, if the convergence
held for all f € H*(R?) with some s < 1/4, then in particular limy,_, emitan " g f — f
a.e., so that limy_,o e¥2 f = f a.e. by Theorem 3.1. We remark that this is the sequence
of time along which Carleson originally considered the convergence [6]. By the Nikisin—
Stein maximal principle [27] followed by interpolation and Holder’s inequality as before,
we would get

H b};l;lfl)|€k f| HLQ(BR) C ||f||H Rd)

for all f € H*(R%) with some s < 1/4, and this is well-known to be false via the Dahlberg—
Kenig counterexample [9]. Indeed to see this one can consider f = d(A"V2(¢—Ney)) with
nontrivial ¢ € C§°. Note that |2 f(z)| = CAY? if (z,t) € A = {(z,t) : |x — 2)\est]| <
coA"2, [t| < oA} for some small ¢, > 0. If (z0,t,) € A, there is an interval I of
length ~ A~ % such that t, € I C (0, CO)\’l) and {z,} x I C A. Since 1 — &5 <

k1
A2 if £ < eA7!, there is a ko such that 7~ € I. Thus, |eko f(xo)| = CAY2, and it
follows that SUDPg> lexd f(z)] = CAY/2 if \x1| < o and |(zg, 3, ..., 24)| < coA™/2. Since

Hf||Hé(Rd) < OX14/4 ] the maximal bound implies A(+1)/4 < OAs*T4/4, Letting A — oo
this gives s > 1/4 which is a contradiction.

4. Fractal dimension of the divergence set

We have proven that, under various conditions, the set of points where convergence
fails is null with respect to Lebesgue measure. In this section we attempt to bound the the
Hausdorff dimension of this set. This makes no sense while considering Sobolev spaces,
as the functions are only defined up to a set of full Hausdorff dimension. Instead, we
consider the potential spaces, which we also call H*(R?), defined by

HRY ={G,xf: feL*RY}.

Here G,(€) = (14 |€[2)7%/2, so that each equivalence class of the Sobolev space has a
representative in the potential space.

Similarly we have to take more care with the definition of 7. We may define S7 f as
the pointwise limit

VE(. = li £
whenever the limit exists, where the operator Sy is defined by
S @t) = g [ Ve T 0

Here, for convenience, we take 1 to be the Gaussian 1 (r) = e By standard arguments,
this coincides with the traditional L?-limit, almost everywhere with respect to Lebesgue
measure, however it is also well defined with respect to fractal measures when s > 0

(see [1]).
15



We denote by ay(s,7y) the supremum of
dimy { z € RY © S7f(z,t) 4 f(z) as k— oo } (28)

over all f € H*(R?) and all sequences (t;) that converge to zero. Here, as usual, dimp
denotes the Hausdorff dimension. In [1], a sharp result was proven,

1, s < 1/4,
a1(s,1) = 1-2s,1/4<s<1/2
0, 1/2 < s,

which improved upon previous upper bounds due to Sjogren and Sjolin [24]. The lower
bound is a consequence of the fact that Gy % f, with f € L?(R9), can be singular on
sets of dimension o when o < d — 2s (see [32]), combined with the Dahlberg—Kenig
counterexample [9]. Restricting attention to radial data, in [2] it was proven that

d, s<1/4,
aq(s,1) =4 d—2s, 1/4<s<1/2
0, 1/2 < s,

which is again sharp.
We say that a positive Borel measure p is a—dimensional if

,u(B(x,r)) -

o 00, 0<a<sn,
zERL, r>0 r

Calp) =

and denote by M®(Bgr) the a—dimensional measures which are supported in Bg. Upper
bounds for ag follow from appropriate maximal estimates. Indeed, if for all R > 1, we
have

H sup sup ‘S]?;f( ! ?tk)l HL2(dp,) < CR V CO&(.U) ||fHHS(Rd)7 a > O, (29)
k=21 N>1

whenever € M(Bg), f € H*(R?) and (t;) € (0,1)N, then aq(s,7) < ao. This is
can be proven by standard arguments including an application of Frostman’s lemma (see
[2, Appendix B] for details).

Using the results of Section 2 we are able to extend these results (losing the endpoint
s =1/4), so that they hold for

ai(s) = sup (s, 7).
~elo

In particular we extend the refinement to the quantum harmonic oscillator. In the fol-
lowing theorem we consider general data; the radial data extension is proven similarly.

Theorem 4.1 Let ¢ < s < 4. Then o(s) =d — 2s.

Proof. Writing f = G, * g, we are required to prove

Hsup sup ‘S]’\;(Gs*g)(”tk”HL%du) <CR\/CQ(H)HQH27 O‘>d7257 (30)
E>1N>1
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whenever v € ', u € M*(Bg) and g € L*(R?). First we reduce this to proving
l Sup 157(Caxg)(-o0)] L2y < CrvVea(w) lgllz, o >d—2s, (31)

whenever v € T°, u € M%(Bg) and g € L*(R%) with compact Fourier support. To see
this, we note that by the Fundamental Theorem of Calculus,

< d
up [S(G. +)] < 157(Gova)l + [ | ZESUG x| av. (32)

N>1

and we can calculate | %Sy (G5 * g)| = N72|S7 (' (N1 - )| - |C/¥\s’g\)v | Substituting this
into (32), and (32) into (30), by Minkowski’s integral inequality, it will suffice to prove

I Sup [S7(Gw(- D) ) ] o gy < CrVCalr) llglas
which follows from (31) as ||(¢(] - |)A)V||2 < |lgll2, and for 0 < € < 1/100,
> A YN DI
8! GO I V) Cr/Ca
/1 Hoiligl‘s (Gs{ (1+[g[?)e/2 D H Nz S ) g1l

where we lose an e of regularity which is permissable. Now this would follow from (31)

B WD [g
H(T)e/gg) |, <en=lglk.

L2(dp) N

so it remains to prove (31).

We will apply Lemmas 2.1 and 2.2 as before; the difference here is that the measures
1 are not necessarily translation invariant, and so the changes of variables in order to
pass from S' to S7(*1) change the supports of the measures. However we can argue in a
very similar way. Indeed, in [1, Proposition 3.1 and Lemma C.1], it was proven that

| sup IS0 poggy < CVCalw) NN fll2, o> d—2s, (33)
o<t<1 (du)

whenever p € M (B9) and f is supported in Ay. Now any measure in the class M*(Byg)
can be represented as the sum of a finite number of translated a-dimensional measures
supported in BY, so that (33) yields

||Os<lt151|51f( | ||L2(du) RV C )‘SHf”Q? o> d7257 (34)

whenever p € M%(Byg) and f is supported in Ay. Applying Lemmas 2.1 and 2.2 as
before, from this we can conclude that

H OS<1£1 |S’Yf( | ||L2(du) ﬁA ||fH27 a>d—2s,

whenever v € I, 1 € M%(Bg) and f is supported in Ay with A > [| 12|/, Supposing for
a moment that p is a probability measure, trivially we also have that

| sup (01 pagay < IFI < Veal Il @ >d—2s,
0<t<1
whenever v € T, p € M®(Bg), and fis supported in Ay with A < ll12)|*/¢. The argument

is completed by summing a geometric series, and then considering ||u|[~'x in order to
remove the condition that ||u|| = 1.
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