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Abstract. In this note, we consider Lp and maximal Lp estimates for the general-
ized Riesz means which are associated with the cylindrical distance function ρ(ξ) =
max{|ξ′|, |ξd+1|}, (ξ′, ξd+1) ∈ Rd ×R. We prove these estimates up to the currently known
range of the spherical Bochner-Riesz and its maximal operators. This is done by estab-
lishing implications between the corresponding estimates for the spherical Bochner-Riesz
and the cylindrical multiplier operators.

1. Introduction and statement of results

In this paper we consider multiplier operators associated with a rough distance function,
which are known as the cylinder multiplier operators. More precisely, we define a distance
function ρ by

ρ(ξ) = max{|ξ′|, |ξd+1|}, ξ = (ξ′, ξd+1) ∈ Rd × R.
The generalized Riesz means of order α ≥ 0 which are associated with ρ is defined by

Ŝα
t f(ξ) =

(
1− ρ(ξ)

t

)α
+
f̂(ξ).

Here aα+ = aα for a > 0 and aα+ = 0 otherwise. In connection with the convergence of
Stf → f in Lp as t→ ∞, the inequality

(1.1) ∥Sα
1 f∥Lp(Rd+1) ≤ C∥f∥Lp(Rd+1)

has been studied by some authors [16, 22].
As it was shown in [22], Lp boundedness of Sα

1 is closely related to those of the spherical
Bochner-Riesz and the cone multiplier operators. For 1 ≤ p ≤ ∞, let

α(p) = max

{
d

∣∣∣∣1p − 1

2

∣∣∣∣− 1

2
, 0

}
be the critical exponent for Lp boundedness of Bochner-Riesz operator in Rd and the cone
multiplier operator in Rd+1. We now set

T̂α
t g(ξ

′) =
(
1− |ξ′|2

t2

)α
+
ĝ(ξ′), ξ′ ∈ Rd.

The conjecture which is known as Bochner-Riesz conjecture is that for 1 ≤ p ≤ ∞
(1.2) ∥Tα

1 g∥Lp(Rd) ≤ C∥g∥Lp(Rd)

if and only if α > α(p). When d = 2, it was verified by Carleson and Sjölin [5]. In higher
dimensions it is still open and some partial results are known. Indeed, Lp boundedness on
the range (2d + 2)/(d − 1) ≤ p ≤ ∞ and 1 ≤ p ≤ (2d + 2)/(d + 1) is due to the sharp
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L2 restriction estimate [23] and the argument of Stein (for example, see p.422–p.423, [18]).
Beyond these results, progresses have been made (see [1, 2, 13, 21] and references therein).
Most recent results are due to the third author [13] (also see [14]) when d = 3, 4, and
Bourgain and Guth [3] when d ≥ 5.

By de Leeuw’s restriction theorem the boundedness of Sα
1 on Lp(Rd+1) implies that of

Bochner-Riesz operator of the same order on Lp(Rd). From the known necessary condition
for (1.2), it follows that Sα

1 is bounded on Lp only if α > α(p). When d ≥ 3 there is

an additional necessary condition that 2d
d+3 < p < 2d

d−3 . It is due to the fact that near

the surface |ξ′| = ξd+1, the multiplier
(
1 − ρ(ξ)

t

)α
+

behaves similarly as the cone multiplier

of order 1. So it was conjectured ([16, 22]) that (1.1) holds if and only if α > α(p) and
2d
d+3 < p < 2d

d−3 when d ≥ 3 and 1 < p < ∞ when d = 2. In [22] the problem was settled
when d = 2, and some partial results were obtained when d ≥ 3. For further progress in
higher dimensions, one should improve boundedness of Bochner-Riesz operators. However,
thanks to recent progress on the problem of the cone multiplier [7] (also see [8] and [15]), it
is possible to show that Lp boundedness of Sα

1 is equivalent to that of Tα
1 .

Theorem 1.1. Let 1 < p <∞ when d = 2, and let 2d
d+3 < p < 2d

d−3 when d ≥ 3. (1.2) holds

for α > α(p) if and only if (1.1) holds for α > α(p).

So this establishes Lp boundedness of the cylinder multiplier operators up to the currently
known range of Bochner-Riesz operators. That is to say, (1.1) holds if p◦ ≤ p ≤ ∞,
1 ≤ p ≤ p′◦, and α > α(p) where p◦ is given by

p◦ = 2 +
12

4d− 3− k
if d ≡ k (mod 3), k = −1, 0, 1.

Nextly we consider the maximal operator

Sα
∗ f(x) = sup

t>0
|Sα

t f(x)|.

In general, Lp estimate for Sα
∗ f has been of interest in connection with almost everywhere

convergence of Sα
t f as t → ∞ and it is also an obvious extension of (1.1). The same

problems for the maximal Bochner-Riesz operator Tα
∗ g(x

′) = supt>0 |Tα
t g(x

′)| have been
studied in [4, 6, 13] and it is conjectured that for 2 ≤ p ≤ ∞

(1.3) ∥Tα
∗ g∥Lp(Rd) ≤ C∥g∥Lp(Rd)

holds if and only if α > α(p). This was settled by Carbery [4] when d = 2. Partial results
are known [6, 13] when d ≥ 3 so that the conjecture is verified for p ≥ 2 + 4

d . It seems
possible that recent progress [3] leads to further improvement. On the contrary, for p < 2
Tao [19] showed that the Lp boundedness of Tα

∗ is different from that of Tα
1 , and when d = 2

he [20] also obtained some improvement upon the classical result [17].
It is natural to expect that the maximal estimate

(1.4) ∥Sα
∗ f∥Lp(Rd+1) ≤ C∥f∥Lp(Rd+1)

holds provided that α > α(p), and 2 ≤ p ≤ ∞ when d = 2 and 2 ≤ p < 2d
d−3 when d ≥ 3.

For 0 < p < 1 the boundedness of Sα
∗ from Hp to Lp,∞ was shown in [11]. But, as far as

the authors know, nothing is known about (1.4) for p ≥ 1. In what follows we shall show
that the similar implication also holds for the maximal estimates.

Theorem 1.2. Let 2 ≤ p ≤ ∞ when d = 2 and let 2 ≤ p < 2d
d−3 when d ≥ 3. If (1.3) holds

for α > α(p), then (1.4) holds for α > α(p).
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Hence, this establishes the boundedness of Sα
∗ up to that of currently known range of

maximal Bochner-Riesz operator. So, (1.4) holds for p > 2 + 4
d (see [13]).

2. Preliminaries

In this section we present various preliminary estimates which will be used for the proof
of theorems. We need to obtain the sharp estimates for the multiplier operators of which
multipliers are essentially supported in a δ-neighborhood of the sphere and the cone. They
are crucial for the proof of theorems.

Specifically, let ϕ ∈ C∞
c [12 , 2] and for 0 < δ ≪ 1 we define

T̂ t
δ g(ξ

′) = ϕ
(
δ−1
(
1− |ξ′|

t

))
ĝ(ξ′), ξ′ ∈ Rd.

The sharp bounds for T 1
δ can be deduced from (1.2).

Lemma 2.1. Let 2 ≤ p ≤ ∞. Suppose ∥Tα
1 g∥Lp(Rd) ≤ C∥g∥Lp(Rd) for α > α(p). Then for

ϵ > 0

(2.1)
∥∥T 1

δ g
∥∥
Lp(Rd)

≤ Cδ−α(p)−ϵ∥g∥Lp(Rd).

Here the constant C remains uniform as long as ∥ϕ∥CN ≤ C for some large N .

This can be proven by making use of the standard Carleson-Sjölin-Hörmander reduction
which involves asymptotic expansion of the kernel (see [19] for details). For the convenience
of the reader we include a proof.

Proof. By the standard Carleson-Sjölin reduction and rescaling the assumption implies that

(2.2)
∥∥∥∫

Rd

e±iλ|x′−y|a(|x′ − y|)f(y) dy
∥∥∥
Lp(Rd)

≤ Cλ
− d

p
+ϵ∥f∥Lp(Rd)

whenever a ∈ C∞
c [12 , 2] and the bound C remains uniform as long as a is uniformly contained

in C∞
c [12 , 2]. By a simple argument with dyadic decomposition it can be further extended

to any a ∈ S and it is also possible to replace a with a singular function. In fact, let a ∈ S
and 0 ≤ κ < d

2 . Then (2.2) implies

(2.3)
∥∥∥ ∫ e±iλ|x′−y|a(|x′ − y|)|x′ − y|−κf(y) dy

∥∥∥
p
≤ Cλ

− d
p
+ϵ∥f∥p.

Let β ∈ C∞
c ([−7/8,−3/8] ∪ [3/8, 7/8]) satisfying

∑∞
j=−∞ β(2jt) = 1 for t ̸= 0. To show

(2.3) we decompose

a(|x′ − y|)|x′ − y|−κ = a0(|x′ − y|) + a1(|x′ − y|) + a2(|x′ − y|),

where

a0(t) =
∑

2j≤λ−1

β(2−jt)a(t)t−κ, a1(t) =
∑

λ−1<2j≤λϵ

β(2−jt)a(t)t−κ,

a2(t) =
∑
λϵ<2j

β(2−jt)a(t)t−κ.

It is easy to see ∥a0(| · |)∥1 ≲ λ−
d
2 and ∥a2(| · |)∥1 ≲ λ−N for any large N . By scaling and

(2.2) it follows that if λ−1 < 2j ≤ 1,∥∥∥ ∫ e±iλ|x′−y|a(|x′ − y|)β(2−j |x′ − y|)|x′ − y|−κf(y) dy
∥∥∥
p
≤ C2

j(d−κ− d
p
+ϵ)
λ
− d

p
+ϵ∥f∥p
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and if 1 < 2j ≤ λϵ∥∥∥ ∫ e±iλ|x′−y|a(|x′ − y|)β(2−j |x′ − y|)|x′ − y|−κf(y) dy
∥∥∥
p
≤ C2−Njλ

− d
p
+ϵ∥f∥p.

For the second we use the rapid decay of a. Hence we get (2.3).
Now by rescaling we have

(2.4)
∥∥∥ ∫ e±i|x′−y|a

( |x′ − y|
λ

)( |x′ − y|
λ

)−κ
f(y) dy

∥∥∥
p
≤ Cλ

d− d
p
+ϵ∥f∥p.

Set λ = δ−1. Now let us consider the kernel K = F−1
(
ϕ
(
λ(1− |ξ′|)

))
with ϕ ∈ C∞

c [12 , 2].

Here F(f) and F−1(f) denote the Fourier and the inverse Fourier transforms of f , respec-
tively. Then

K(x′) = (2π)−d

∫ ∫
Sd−1

eix
′·rθdθ ϕ(λ(1− r))rd−1dr

= −(2π)−dλ−1

∫ ∫
Sd−1

ei(1−rλ−1)x′·θ (1− rλ−1)d−1 dθ ϕ(r) dr.

Since
∫
Sd−1 e

ix′·θdθ = cd|x′|−
d−2
2 J(d−2)/2(|x′|), using the asymptotic expansion of Bessel func-

tions (see [18, p.347, p.356]) we see that

K(x′) = c±λ
−1 1

|x′|
d−1
2

e±i|x′|
∫
e∓iλ−1|x′|rϕ(r) dr + less singular terms

= c±λ
− d+1

2 e±i|x′|
( |x′|
λ

)− d−1
2
ϕ̂
(∓|x′|

λ

)
+ less singular terms.

We now apply (2.4) to get the desired bound. □

As before, by the standard Carleson-Sjölin reduction, rescaling, and the assumption (1.3)
it follows that ∥∥∥ sup

1≤t≤2

∣∣∣ ∫ e±itλ|x′−y|a(t|x′ − y|)f(y) dy
∣∣∣∥∥∥

p
≤ Cλ

− d
p
+ϵ∥f∥p

whenever a ∈ C∞
c [12 , 2] and the bound C remains uniform as long as a is uniformly contained

in C∞
c [12 , 2]. By a similar argument as above, it is easy to see the following.

Lemma 2.2. Suppose ∥Tα
∗ f∥p ≤ C∥f∥p for α > α(p). Then for ϵ > 0

(2.5)
∥∥∥ sup
1≤t≤2

|T t
δ f |
∥∥∥
Lp(Rd)

≤ Cδ−α(p)−ϵ∥f∥Lp(Rd).

Here the constant C remains uniform as long as ∥ϕ∥CN ≤ C for some large N .

Let m be a bounded measurable function on Rd+1. Let us denote by m(D) the multiplier
operator given by

F(m(D)f)(ξ) = m(ξ)f̂(ξ).

Let b ∈ [12 , 2] and I(b, j) = [b − 21−j , b + 21−j ]. Let Bj be a function in C∞
c ([12 , 2] × R)

with the following properties:

(2.6)

supp Bj(ρ, ·) ⊂ I(b, j),

|∂γτBj(ρ, τ)| ≤ Cγ2
γj ,

∥∂γτBj(·, τ)∥CN ≤ Cγ uniformly for τ ∈ I(b, j),
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for sufficiently large N where Cγ is independent of j and ρ. The following is a slight
modification of [22, Lemma 2.12].

Lemma 2.3. Let Bj be a smooth function in C∞
c ([12 , 2] × R) which satisfies (2.6). Then

(2.1) implies ∥∥Bj(2
j(1− |D′|), Dd+1)f

∥∥
Lp(Rd+1)

≤ C 2j(α(p)+ϵ)∥f∥Lp(Rd+1).

Proof. Let ω ∈ C∞
c be supported in (−1, 1) such that

∑
ν∈Z ω(· − ν) ≡ 1 and denote

ων(τ) = ω
(
2j(1+ϵ)

(
τ − ν

2j(1+ϵ)

))
. We decompose Bj(2

j(1 − |D′|), Dd+1) =
∑

ν Bj(2
j(1 −

|D′|), Dd+1)ων(Dd+1). By the first condition of (2.6) there are O(2ϵj) nonzero terms. Hence,
it is enough to show that

(2.7)
∥∥Bj(2

j(1− |D′|), Dd+1)ων(Dd+1)f
∥∥
Lp(Rd+1)

≤ C2j(α(p)+ϵ)∥f∥Lp(Rd+1).

To obtain the above estimate from (2.1) we use Taylor expansion in the τ variable around
ν

2j(1+ϵ) (see Lemma 2.12 in [22]). More precisely, we have

Bj(ρ, τ) =
N−1∑
m=0

1

m!
∂mτ Bj

(
ρ,

ν

2j(1+ϵ)

)(
τ − ν

2j(1+ϵ)

)m
+RN (ρ, τ)

(
τ − ν

2j(1+ϵ)

)N
=

N−1∑
m=0

2−ϵm 2−jm

m!
∂mτ Bj

(
ρ,

ν

2j(1+ϵ)

)(
2j(1+ϵ)(τ − ν

2j(1+ϵ)
)
)m

+ 2−ϵNj [2−Nj RN (ρ, τ)]
(
2j(1+ϵ)(τ − ν

2j(1+ϵ)
)
)N
.

Now let us set

Bm
j (ρ) =

2−jm

m!
∂mτ Bj

(
ρ,

ν

2j(1+ϵ)

)
, ωm

ν (τ) =
(
2j(1+ϵ)(τ − ν

2j(1+ϵ)
)
)m
ων(τ).

Then, it follows that

Bj(2
j(1− |ξ′|), ξd+1)ων(ξd+1) =

N−1∑
m=0

2−ϵmBm
j (2j(1− |ξ′|))ωm

ν (ξd+1)

+ 2−ϵNj [2−NjRN (2j(1− |ξ′|), ξd+1)]ω
N
ν (ξd+1).

It is easy to see that Bm
j satisfies (2.6). Since ωm

ν is smooth, by Lemma 2.1 we get∥∥Bm
j (2j(1− |D′|)ωm

ν (Dd+1)f
∥∥
Lp(Rd+1)

≤ C 2j(α(p)+ϵ)∥f∥Lp(Rd+1).

If N is sufficiently large, using the condition (2.6), one can see that the contribution from
2−ϵNj [2−Nj RN (2j(1−|ξ′|), ξd+1)]ω

N
ν (ξd+1) is negligible. Hence we get (2.7) by summation.

□

Using the maximal estimate (2.5) instead of (2.1) and repeating the same argument as
before, we have a statement which is similar to the one in Lemma 2.3 but for the maximal
operator.

Lemma 2.4. Let Bj be a smooth function in C∞
c ([12 , 2] × R) which satisfies (2.6). Then

(2.5) implies∥∥∥ sup
1≤t≤2

∣∣∣Bj

(
2j
(
1− |D′|

t

)
,
Dd+1

t

)
f
∣∣∣∥∥∥

Lp(Rd+1)
≤ C2j(α(p)+ϵ)∥f∥Lp(Rd+1).
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For 0 < δ ≪ 1 and ψ ∈ C∞
c [12 , 2], we define the operator Cδ by

Cδf = ψ(Dd+1)β
(
δ−1
(
1− |D′|

|Dd+1|

))
f.

Theorem 2.5. Let d ≥ 4 and p > 2d−2
d−3 . Then

(2.8) ∥Cδf∥Lp(Rd+1) ≤ Cδ−α(p)−ϵ∥f∥Lp(Rd+1).

This is basically due to Heo [7]. In fact (2.8) can be deduced from Heo’s results by the
standard Carleson-Sjölin reduction and asymptotic expansion for kernels as before (see
Lemma 2.1 and [12]). Alternatively, the estimate without even ϵ-loss can also be deduced
from sharp local smoothing estimate for the wave equation which is obtained in [8] 1 (also
see [9]). Now note that α(2d−2

d−3 ) < 1 when d ≥ 4. Hence, in particular, this gives sharp

Lp bound for the cone multiplier of order 1 when d ≥ 3 (one can use the trivial L∞ bound
when d = 3) so that ∥(|Dd+1| − |D′|)+ψ(Dd+1)f∥Lp(Rd+1) ≤ C∥f∥Lp(Rd+1) for 2 ≤ p < 2d

d−3 .

Proposition 2.6. (Proposition 2.3 in [22]) Let 2 ≤ pB ≤ pC ≤ ∞ and l ≥ j − 5. Suppose
that (2.1) and (2.8) hold for p = pB and p = pC , respectively. Then for pB ≤ p ≤ pC <∞,∥∥∥ψ(Dd+1)β

(
2l
(
1− |D′|

|Dd+1|

))
β(2j(1−|D′|))f

∥∥∥
Lp(Rd+1)

≤ C2(l−j)λ(p,pB ,pC)2l(α(p)+ϵ)∥f∥Lp(Rd+1)

where

λ(p, pB, pC) =
(1
p
− 1

pC

)( 1

pB
− 1

pC

)−1(
1− 2

pB

)
.

The case pC = ∞ was excluded in [22] but it is clear that Proposition 2.6 also holds with
pC ≤ ∞. By Lemma 2.3 the estimate (2.1) implies∥∥∥ψ(Dd+1)β

(
2l
(
1− |D′|

|Dd+1|

))
ω
(
2l(1+ϵ)

(
Dd+1 −

ν

2l(1+ϵ)

))
β(2j(1− |D′|))f

∥∥∥
pB

≤ C 2l(α(pB)+ϵ)∥f∥pB .

Then interpolation with this (also making use of orthogonality) and (2.8) gives the desired
estimate. See [22] for the details of the proof.

3. Proof of Theorems 1.1 and 1.2

We decompose the multiplier (1 − ρ(ξ))α+ = (1 −max{|ξ′|, |ξd+1|})α+ similarly as in [22].

Let us set β1(t) = 1 −
∑∞

j=2 β(2
j(1 − t)). Here we use β which is given in Section 2 (see

below (2.3)). For j, k ≥ 1 let us define

βj,k(ξ) = β(2j(1− |ξ′|))β(2k(1− |ξd+1|)) for j, k ≥ 2,

β1,k(ξ) = β1(|ξ′|)β(2k(1− |ξd+1|)) for k ≥ 2,

βj,1(ξ) = β(2j(1− |ξ′|))β1(|ξd+1|) for j ≥ 2,

β1,1(ξ) = β1(|ξ′|)β1(|ξd+1|).

So we have
∑

j,k≥1 βj,k(ξ) = (1− |ξ′|)+(1− |ξd+1|)+. We also set

mj,k(ξ) = (1− ρ(ξ))α+βj,k(ξ).

1One also can obtain (2.8) without ϵ by adopting the argument in [8].
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We decompose the multiplier

(1− ρ(ξ))α+ =
∑
j,k≥1

mj,k := M+N,(3.1)

where

M =
∑

k≥j+2

mj,k, N =
∑

k<j+2

mj,k.

3.1. Proof of Theorem 1.1. The implication from (1.1) to (1.2) follows from de Leeuw’s
theorem as already explained. Hence it is sufficient to show (1.1) by assuming (1.2). By
duality we may assume that 2 ≤ p <∞ when d = 2 and 2 ≤ p < 2d

d−3 when d ≥ 3.
It is easy to treat the operator defined by the first sum M. In fact, when k ≥ 2 + j, the

multiplier mj,k is equal to (1− |ξd+1|)α+)β(2k(1− |ξd+1|))β(2j(1− |ξ′|). So,

(3.2) mj,k(ξ) = 2−kαβ̃(2k(1− |ξd+1|))β(2j(1− |ξ′|))

for some β̃ ∈ C∞
c [12 , 2]. Since

∥∥β̃(2k(1 − |ξd+1|))f
∥∥
Lp(Rd+1)

≤ C∥f∥Lp(Rd+1) for 1 ≤ p ≤ ∞,

applying Lemma 2.1, we see that ∥mj,k(D)f∥Lp(Rd+1) ≲ 2−kα2j(α(p)+ϵ)∥f∥Lp(Rd+1). Hence,

for α > α(p) we get

∥M(D)f∥Lp(Rd+1) ≤
∑

k≥2+j

∥mj,k(D)f∥Lp(Rd+1)

< C
∑

k≥2+j

2−kα2j(α(p)+ϵ)∥f∥Lp(Rd+1) ≤ C ∥f∥Lp(Rd+1).

We now handle the operator N(D). Let us set̂̃
Ttf(ξ) =

(
1− |ξ′|

t

)α
+
f̂(ξ).

Then from the assumption (1.2) it is obvious that ∥T̃1f∥Lp(Rd+1) ≤ C∥f∥Lp(Rd+1). Hence it
is enough to show that

∥N(D)f − T̃1f∥Lp(Rd+1) ≤ C∥f∥Lp(Rd+1).

Note that

(3.3)

N(ξ)− (1− |ξ′|)α+ =
∑

k<j+2

βj,k(ξ)
(
(1− ρ(ξ))α+ − (1− |ξ′|)α+

)
−
∑

k≥j+2

βj,k(ξ)(1− |ξ′|)α+.

Since
∑∞

k≥j+2 β(2
kt) = β̃(2jt) for some smooth function β̃ which is supported in [−2, 2],∑∞

k≥j+2 βj,k(ξ) = β(2j(1− |ξ′|))β̃(2j(1− |ξd+1|)). Thus

(3.4)
∑

k≥j+2

βj,k(ξ)(1− |ξ′|)α+ =
∑
j≥1

2−jαβ(2j(1− |ξ′|))β̃(2j(1− |ξd+1|)).

By Lemma 2.3∥∥∥ ∑
k≥j+2

βj,k(D)(1− |D′|)α+f
∥∥∥
Lp(Rd+1)

≤
∑
j≥1

2−αj∥β(2j(1− |D′|))β̃(2j(1− |Dd+1|))f∥Lp(Rd+1)

≤ C
∑
j≥1

2−αj+α(p)j+ϵj∥f∥Lp(Rd+1) ≤ C∥f∥Lp(Rd+1)
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if α > α(p). Hence we are further reduced to showing that∥∥∥ ∑
k<j+2

βj,k(D)
(
(1− ρ(D))α+ − (1− |D′|)α+

)
f
∥∥∥
Lp(Rd+1)

≤ C ∥f∥Lp(Rd+1).

Note that if j ≥ k + 2, βj,k(D)
(
(1− ρ(D))α+ − (1− |D′|)α+

)
= 0. So, it is sufficient to show

that ∥∥∥ ∑
k−1≤j≤k+1

βj,k(D)
(
(1− ρ(D))α+ − (1− |D′|)α+

)
f
∥∥∥
Lp(Rd+1)

≤ C ∥f∥Lp(Rd+1).

By the support property of βj,k and the mean value theorem

βj,k(ξ)
(
(1− ρ(ξ))α+ − (1− |ξ′|)α+

)
= (|ξd+1| − |ξ′|)+βj,k(ξ)ψ̃α(ξ)(3.5)

where

ψ̃α(ξ) = α

∫ 1

0

(
(1− s)(1− |ξd+1|) + s(1− |ξ′|)

)α−1
ds.

We firstly consider β1,1(D)
(
(1 − ρ(D))α+ − (1 − |D′|)α+

)
. On the support of β1,1,

(
(1 −

s)(1− |ξd+1|) + s(1− |ξ′|)
)α−1 ∼ 1. So β1,1ψ̃α is a smooth function. Hence it is sufficient to

show that

∥(|Dd+1| − |D′|)+ϕ(D)f∥Lp(Rd+1) ≤ C∥f∥Lp(Rd+1)

for 2 ≤ p < ∞ when d = 2 and 2 ≤ p < 2d
d−3 when d ≥ 3. Here ϕ ∈ C∞

c (Rd+1).

In fact, by dyadic decomposition it follows from ∥β(2k|Dd+1|)(|Dd+1| − |D′|)+f∥Lp(Rd+1) ≤
C2−k∥f∥Lp(Rd+1), k ≥ 0 which is obvious from rescaling since the (truncated) cone multiplier

of order 1 is bounded on Lp provided that 2 ≤ p < ∞ when d = 2 and 2 ≤ p < 2d
d−3 when

d ≥ 3.
It remains to show that∥∥∥ ∑

k−1≤j≤k+1
(j,k)̸=(1,1)

βj,k(D)
(
(1− ρ(D))α+ − (1− |D′|)α+

)
f
∥∥∥
Lp(Rd+1)

≤ C ∥f∥Lp(Rd+1).

Let us set

ηj,k(ξ) = 2j(α−1)βj,k(ξ)ψ̃α(ξ).

Then we have

βj,k(ξ)
(
(1− ρ(ξ))α+ − (1− |ξ′|)α+

)
= 2−j(α−1)(|ξd+1| − |ξ′|)+ηj,k(ξ).

Note that ηj,k(ξ) = βj,k(ξ)α
∫ 1
0

(
(1 − s)2j(1 − |ξd+1|) + s2j(1 − |ξ′|)

)α−1
ds. Since k − 1 ≤

j ≤ k + 1, k, j ̸= 1, and |s2j(1− |ξd+1|) + (1− s)2j(1− |ξ′|)| ∼ 1, it is easy to see that ηj,k
is smooth and

|∂γξ ηj,k| ≤ C2j|γ|.

We make further decomposition to treat the singularity near the cone. We can write

(1− |ξ′|/|ξd+1|)+ =
∑∞

l=−∞ 2−lβ̃(2l(1− |ξ′|/|ξd+1|)) for some β̃ ∈ C∞
c [12 , 2]. In fact, β̃(t) =

tβ(t). Note that βj,k(ξ)β(2
l(1− |ξ′|/|ξd+1|)) = 0 if l < j − 5. Now we have for k − 1 ≤ j ≤

k + 1, k, j ̸= 1,

(3.6) βj,k(ξ)
(
(1−ρ(ξ))α+− (1−|ξ′|)α+

)
=
∑

l≥j−5

2−l2−j(α−1)|ξd+1|β̃(2l(1−|ξ′|/|ξd+1|))ηj,k(ξ).
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Since |k − j| ≤ 1, we see that ηj,k in (3.6) satisfies the condition (2.6). So, by Proposition
2.6∥∥|Dd+1|β̃(2l(1− |D′|/|Dd+1|))ηj,k(D)f

∥∥
Lp(Rd+1)

≤ C2l(α(p)+ϵ)2(l−j)λ(p,pB ,pC)∥f∥Lp(Rd+1).

When d ≥ 4, by Theorem 2.5 we can take any pC > 2d−2
d−3 . When d = 2, 3, we may set

pC = ∞ by the obvious L∞ estimate. Thus, by the triangle inequality and the summation
along j it follows that∥∥βj,k(D)

(
(1− ρ(D))α+−(1− |D′|)α+

)
f
∥∥
Lp(Rd+1)

≤ C
( ∞∑

l>j−10

2l(α(p)+ϵ)2−jα2(l−j)(λ(p,pB ,pC)−1)∥f∥Lp(Rd+1)

)
≤ C 2−j(α−α(p)−ϵ)∥f∥Lp(Rd+1).

For the second inequality we used the fact that α(p) + λ(p, pB, pC) < 1 for pB ≤ p < 2d
d−3 if

we choose pC = 2d
d−3 . Therefore we get the desired (3.1) for pB ≤ p < 2d

d−3 .

3.2. Proof of Theorem 1.2. We make use of the decomposition (3.1). The proof of the
maximal bound is actually parallel with that of Lp bound.

First we show that if α > α(p), then∥∥∥ sup
t>0

∣∣M(D
t

)
f
∣∣∥∥∥

Lp(Rd+1)
≤ C∥f∥Lp(Rd+1).

Now observe that supp M is contained in {ξ : 3
8 ≤ |ξ| ≤ 1}. Then for the above it is

sufficient to show that ∥∥∥ sup
1≤t≤2

∣∣M(D
t

)
f
∣∣∥∥∥

Lp(Rd+1)
≤ C∥f∥Lp(Rd+1).

Here we use the following elementary lemma. We include a proof of it for reader’s conve-
nience.

Lemma 3.1. Let M̃ be a bounded measurable function supported in {ξ : 2−B+1 ≤ |ξ| ≤
2B+1} for some B > 1. Suppose that

∥∥ sup1≤t≤2 |M̃
(
D
t

)
f |
∥∥
Lp(Rd+1)

≤ C∥f∥Lp(Rd+1) for

1 ≤ p ≤ ∞. Then, ∥∥∥ sup
t>0

∣∣M̃(D
t

)
f
∣∣∥∥∥

Lp(Rd+1)
≤ C∥f∥Lp(Rd+1).

Proof. In fact, let Pl be the projection operator which is defined by P̂lf = β(2−l| · |)f̂ . We
note that

sup
t>0

∣∣M̃(D
t

)
f
∣∣ ≤ sup

k
sup

2−k<t≤2−k+1

∣∣M̃(D
t

)
f
∣∣

= sup
k

sup
2−k<t≤2−k+1

∣∣M̃(D
t

)( ∑
k−B≤l≤k+B

Plf
)∣∣

≤

 ∞∑
k=−∞

sup
2−k<t≤2−k+1

∣∣M̃(D
t

)( ∑
k−B≤l≤k+B

Plf
)∣∣p 1

p

.
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By the assumption and scaling we see that
∥∥ sup2−k<t≤2−k+1

∣∣M̃(Dt )f ∣∣∥∥Lp(Rd+1)
≤ C∥f∥Lp(Rd+1)

holds uniformly for any k. Hence, using the above inequality∥∥∥ sup
t>0

∣∣M̃(D
t

)
f
∣∣∥∥∥p

Lp(Rd+1)
≤

∞∑
k=−∞

∥∥∥ sup
2−k<t≤2−k+1

∣∣M̃(D
t

)( ∑
k−B≤l≤k+B

Plf
)∣∣∥∥∥p

Lp(Rd+1)

≤ C

∞∑
k=−∞

∥∥∥ ∑
k−B≤l≤k+B

Plf
∥∥∥p
Lp(Rd+1)

≤ C Bp
∞∑

l=−∞
∥Plf∥pLp(Rd+1)

≤ CBp∥f∥p
Lp(Rd+1)

.

For the last inequality we use the inequality
(∑∞

l=−∞ ∥Plf∥pLp(Rd+1)

)1/p ≤ C∥f∥Lp(Rd+1) for

2 ≤ p ≤ ∞, which follows from interpolation between the estimates with p = 2, p = ∞.
The first is a consequence of Plancherel’s theorem and the second is obvious because the
kernel of Pl is uniformly contained in L1. □

Recalling (3.2), note that

(3.7) sup
1≤t≤2

∣∣mj,k

(D
t

)
f
∣∣ ≤ 2−kα sup

1≤t≤2

∣∣β̃(2k(1− |Dd+1

t

))
β
(
2j
(
1− |D′|

t

))
f
∣∣.

By the smoothness of β̃ and the fact that k ≥ 3 (here we are assuming k ≥ 2 + j)

a simple computation shows that the kernel of β̃(2k(1 − |Dd+1|/t)) is bounded by K =
CN2−k(1 + 2−k|xd+1|)−N with CN independent of t ∈ [1, 2]. From this the right hand side
of (3.7) is bounded by

2−kαK ∗d+1

(
sup

1≤t≤2

∣∣β(2j(1− |D′|
t

))
f
∣∣).

Here ∗d+1 denotes the convolution with respect to (d+ 1)-th variables. By Young’s convo-
lution inequality it follows that∥∥∥ sup

1≤t≤2

∣∣mj,k

(D
t

)
f
∣∣∥∥∥

Lp(Rd+1)
≤ C 2−kα

∥∥∥ sup
1≤t≤2

∣∣β(2j(1− |D′|
t

))
f
∣∣∥∥∥

Lp(Rd+1)
.

Using Lemma 2.2 and summation, we get, for α > α(p),∥∥∥ sup
1≤t≤2

∣∣M(D
t

)
f
∣∣∥∥∥

Lp(Rd+1)
≤
∑

k≥2+j

∥∥∥ sup
1≤t≤2

∣∣mj,k

(D
t

)
f
∣∣∥∥∥

Lp(Rd+1)

< C
∑

k≥2+j

2−kα2j(α(p)+ϵ)∥f∥Lp(Rd+1) ≤ C∥f∥Lp(Rd+1).

Now we handle the operator f → supt>0 |N(Dt )f |. From the assumption it is obvious

that
∥∥ supt>0

∣∣T̃tf ∣∣∥∥Lp(Rd+1)
≤ C∥f∥Lp(Rd+1). Hence it is enough to show that∥∥∥ sup

t>0

∣∣(N(D
t

)
− T̃t

)
f
∣∣∥∥∥

Lp(Rd+1)
≤ C∥f∥Lp(Rd+1).
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We use Lemma 2.4 and Lemma 3.1 to get, for α > α(p),∥∥∥ sup
t>0

∣∣ ∑
k≥j+2

βj,k

(D
t

)(
1− |D′|

t

)α
+
f
∣∣∥∥∥

Lp(Rd+1)

≤ C
∑
j≥1

2−αj
∥∥∥ sup

t>0

∣∣β(2j(1− |D′|
t

))
β̃
(
2j
(
1− |Dd+1|

t

))
f
∣∣∥∥∥

Lp(Rd+1)

≤ C
∑
j≥1

2−j(α−α(p)−ϵ)∥f∥Lp(Rd+1) ≤ C∥f∥Lp(Rd+1).

Here β̃ is given as in (3.4). Hence by (3.3) and (3.4) it is sufficient to show that∥∥∥ sup
t>0

∣∣ ∑
k−1≤j≤k+1

βj,k

(D
t

)((
1− ρ

(D
t

))α
+
−
(
1− |D′|

t

)α
+

)
f
∣∣∥∥∥

Lp(Rd+1)
≤ C∥f∥Lp(Rd+1).

As before, we separately handle f → supt>0

∣∣β1,1(Dt )((1 − ρ(Dt ))
α
+ − (1 − |D′|

t )α+
)
f
∣∣, and

claim that∥∥∥ sup
t>0

∣∣β1,1(D
t

)((
1− ρ

(D
t

))α
+
−
(
1− |D′|

t

)α
+

)
f
∣∣∥∥∥

Lp(Rd+1)
≤ C∥f∥Lp(Rd+1).

By a simple scaling argument it is sufficient to show that∥∥∥ sup
0<t≤1

∣∣β1,1(D
t

)((
1− ρ

(D
t

))α
+
−
(
1− |D′|

t

)α
+

)
f
∣∣∥∥∥

Lp(Rd+1)
≤ C∥f∥Lp(Rd+1).

So, we may assume that f̂ is supported in {ξ : |ξ| ≤ 2}. LetM denote the Hardy-Littlewood

maximal function. Since |ξd+1|β1,1ψ̃α (see (3.5)) is a smooth function,

sup
t>0

∣∣β1,1(D
t

)((
1− ρ

(D
t

))α
+
−
(
1− |D′|

t

)α
+

)
f
∣∣ ≤ CM

((
1− |D′|

|Dd+1|

)
+
f
)
.

Hence it is sufficient to show that

(3.8)
∥∥∥(1− |D′|

|Dd+1|

)
+
f
∥∥∥
Lp(Rd+1)

≤ C∥f∥Lp(Rd+1)

for 2 ≤ p <∞ when d = 2 and 2 ≤ p < 2d
d−3 when d ≥ 3.

Let us first consider the case d = 2 which is easy because we are not concerned with the
sharp estimate. In fact, by following the argument in [10] which makes use of the kernel
estimate and the Calderón-Zygmund decomposition, it is not difficult to see that

(3.9)
∥∥∥(1− |D′|

|Dd+1|

)α
+
f
∥∥∥
L1,∞(Rd+1)

≤ C∥f∥L1(Rd+1)

for α > d−1
2 . This also remains valid for complex α, provided that ℜ(α) > d−1

2 , and

the bound is bounded above by CN (1 + |ℑ(α)|)N for some large N . When d = 2, taking
α = 1 we interpolate (real interpolation) this with the obvious L2 estimate to get (3.8) for
1 < p ≤ 2. By duality, the desired bound for 2 ≤ p < ∞ follows. When d = 3, by the
complex interpolation between the estimates L2 → L2 for ℜ(α) ≥ 0 and (3.9) for ℜ(α) > 1
we have for 1 < p ≤ 2

(3.10)
∥∥∥(1− |D′|

|Dd+1|

)
+
f
∥∥∥
Lp,∞(Rd+1)

≤ C∥f∥Lp(Rd+1).
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As for d ≥ 4 the same estimate can be deduced from the estimate in [9, Corollary 1.3] where
the weak type endpoint estimates at the critical exponent∥∥∥(1− |D′|2

D2
d+1

)α(p)
+

f
∥∥∥
Lp,∞(Rd+1)

≤ C∥f∥Lp(Rd+1)

were shown for 1 < p < 2d−2
d+1 . Even though the multipliers are slightly different, the same

estimate can be shown for f →
(
1− |D′|

|Dd+1|
)α(p)
+

f by following the argument in [9] (the proof

of Corollary 1.3) 2. Hence, in particular, (3.10) holds for 1 < p < 2d
d+3 when d ≥ 3. Then the

desired estimate (3.8) follows from interpolation with the trivial L2 estimate and duality.
We now turn to the operator

f → sup
t>0

∣∣ ∑
k−1≤j≤k+1
(j,k)̸=(1,1)

βj,k

(D
t

)((
1− ρ

(D
t

))α
+
−
(
1− |D′|

t

)α
+

)
f
∣∣.

Note that the support of
∑

k−1≤j≤k+1
(j,k) ̸=(1,1)

βj,k(ξ)
(
(1 − ρ(ξ))α+ − (1 − |ξ′|)α+

)
is contained in

{2−c ≤ |ξ| ≤ 2c} for some c > 0. By Lemma 3.1 it is sufficient to show that∥∥∥ sup
1≤t≤2

∣∣ ∑
k−1≤j≤k+1
(j,k)̸=(1,1)

βj,k

(D
t

)((
1− ρ

(D
t

))α
+
−
(
1− |D′|

t

)α
+

)
f
∣∣∥∥∥

Lp(Rd+1)
≤ C ∥f∥Lp(Rd+1).

As before, this follows by using the decomposition (3.6) and direct summation once we get
the estimate

(3.11)

∥∥∥ sup
1≤t≤2

∣∣β̃(2l(1− |D′|
|Dd+1|

))
ηj,k

(D
t

)
f
∣∣∥∥∥

Lp(Rd+1)

≤ C 2(l−j)λ(p,pB ,pC)2l(α(p)+ϵ) ∥f∥Lp(Rd+1) .

We now proceed to show (3.11).

Lemma 3.2. Let |k − j| ≤ 1, k, j ̸= 1. Assume that the following estimate holds:

(3.12)
∥∥∥ sup
t∈[a,a+2−j ]

∣∣β(2l(1− |D′|
|Dd+1|

))
ηj,k

(D
t

)
f
∣∣∥∥∥

Lp(Rd+1)
≤ B∥f∥Lp(Rd+1)

for some constant B and a ∼ 1. Then for 2 ≤ p ≤ ∞, we have∥∥∥ sup
t∼1

∣∣β(2l(1− |D′|
|Dd+1|

))
ηj,k

(D
t

)
f
∣∣∥∥∥

Lp(Rd+1)
≤ CB∥f∥Lp(Rd+1).

Proof. Let ω ∈ C∞
c be supported in (1/2, 4) so that

∑
ν∈Z ω(· − ν) ≡ 1. Let us define

Pνf = ω(2j(Dd+1 − ν))f

where ν ∈ 2−jZ. For ν ∈ 2−jZ, we denote by Iν the interval of center ν with the length
2−j .

2Actually it is simpler.
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Now we note that supp ηj,k(·/t) is contained in {ξ : ξd+1 ∈ (t−C2−j , t+C2−j)}. So, we
see that

sup
t∼1

∣∣β(2l(1− |D′|
|Dd+1|

))
ηj,k

(D
t

)
f
∣∣

≤ sup
ν

sup
t∈Iν

∣∣β(2l(1− |D′|
|Dd+1|

))
ηj,k

(D
t

)
f
∣∣

≤ sup
ν

sup
t∈Iν

∑
|ν′|≤C2−j

∣∣β(2l(1− |D′|
|Dd+1|

))
ηj,k

(D
t

)
Pν+ν′f

∣∣
≤

∑
|ν′|≤C2−j

(∑
ν

(
sup
t∈Iν

∣∣β(2l(1− |D′|
|Dd+1|

))
ηj,k

(D
t

)
Pν+ν′f

∣∣)p)1/p

.

From this and the assumption (3.12), we have that∥∥∥ sup
t∼1

∣∣β(2l(1− |D′|
|Dd+1|

))
ηj,k

(D
t

)
f
∣∣∥∥∥p

Lp(Rd+1)

≤ C
∑

|ν′|≤C2−j

∑
ν

∥∥∥ sup
t∈Iν

|β(2l
(
1− |D′|

|Dd+1|

))
ηj,k

(D
t

)
Pν+ν′f

∣∣∥∥∥p
Lp(Rd+1)

≤ C
∑

|ν′|≤C2−j

∑
ν

∥∥∥Pν+ν′f
∥∥∥p
Lp(Rd+1)

≤ CB∥f∥p
Lp(Rd+1)

.

For the last inequality we use
(∑∞

ν=−∞ ∥Pνf∥pp
)1/p ≤ C∥f∥p for 2 ≤ p ≤ ∞. It can be

shown similarly as before (for example, see Lemma 6.1 in [21]). □
By Lemma 3.2 we are now reduced to showing (3.12). To control the maximal func-

tion, we recall the following well known simple lemma which is an easy consequence of the
fundamental theorem of calculus and Hölder’s inequality.

Lemma 3.3. Let F be a smooth function defined on (a, b). Then, for 1 ≤ p ≤ ∞,

sup
t∈(a,b)

|F (t)| ≤ C
(
|F (a)|+ |F (b)|+ ∥F∥(p−1)/p

Lp(a,b) ∥∂tF∥
1/p
Lp(a,b)

)
.

Let us denote by Ia = [a, a+ 2−j ] and also set

T t
l,j,kf = β̃

(
2l
(
1− |D′|

|Dd+1|

))
ηj,k

(D
t

)
f.

Using Lemma 3.3 followed by a simple inequality (e.g. Young’s inequality), we see that

sup
t∈Ia

|F (t)| ≤ C
(
|F (a)|+ |F (a+ 2−j)|+ 2j/p∥F∥Lp(Ia) + 2−j+j/p∥∂tF∥Lp(Ia)

)
.

We apply this to supt∈Ia |T
t
l,j,kf |. By a direct differentiation and (2.6), we see that

sup
t∈Ia

∣∣β̃(2l(1− |D′|
|Dd+1|

))
ηj,k

(D
t

)
f | ≤ C|T a

l,j,kf
∣∣+ C|T a+2−j

l,j,k f |

+ C2j/p
d+1∑
i=1

(∫
Ia

∣∣β̃(2l(1− |D′|
|Dd+1|

))
ηij,k

(D
t

)
f i
∣∣pdt)1/p

where f1, . . . , fd+1 satisfying ∥f1∥Lp(Rd+1), . . . , ∥fd+1∥Lp(Rd+1) ≤ C∥f∥Lp(Rd+1) and η
1
j,k, . . . ,

ηd+1
j,k are smooth functions satisfying (2.6). By making use of Proposition 2.6, we see that
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∥T a
l,j,kf∥Lp(Rd+1) and ∥T a+2−j

l,j,k f∥Lp(Rd+1) are bounded by C 2(l−j)λ(p,pB ,pC) 2l(α(p)+ϵ)∥f∥Lp(Rd+1).

Hence it is sufficient to show that for pB ≤ p ≤ pC ,∥∥∥(∫
Ia

∣∣β̃(2l(1− |D′|
|Dd+1|

))
ηij,k

(D
t

)
f
∣∣pdt)1/p∥∥∥

Lp(Rd+1)

≤ C 2−j/p 2(l−j)λ(p,pB ,pC) 2l(α(p)+ϵ)∥f∥Lp(Rd+1).

From Proposition 2.6 and mild rescaling we note that the estimate∥∥∥β̃(2l(1− |D′|
|Dd+1|

))
ηij,k

(D
t

)
f
∥∥∥
Lp(Rd+1)

≤ C 2(l−j)λ(p,pB ,pC) 2l(α(p)+ϵ)∥f∥Lp(Rd+1)

holds uniformly for t ∈ Ia because Ia ⊂ [12 , 2]. Therefore, changing the order of integration
and using the above uniform bound, we get the desired inequality. This completes the proof
of Theorem 1.2. □
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