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Abstract

We obtain endpoint estimates for the Schrédinger operator f — ™2 f in LL(R™ L (R)) with

initial data f in the homogeneous Sobolev space H® (R™). The exponents and regularity index
satisfy "T‘H + % =Zands= g — % - % For n = 2 we prove the estimates in the range ¢ > 16/5,

and for n > 3 in the range ¢ > 2 +4/(n + 1).
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1. Introduction

The solution to the Schrodinger equation, i0,u+Au = 0, in R**!, with initial datum f,
a Schwartz function, can be written as

eimf(x) _ s f(é-)eQﬂi(x»£727rt|§|2)d§. (1)

The space-time integrability of e**2f has played an important role in the study of
nonlinear Schrédinger equations (see for example [4] or [24]). The integrability is usually
measured with estimates for ™2 f in the mixed norm spaces L} (R, L%(R™)). By the work
of Stein [20], Tomas [28], Strichartz [22], Ginibre—Velo [4], and Keel-Tao [7] the following
theorem is now well known. Scaling dictates the regularity of the homogeneous Sobolev
space H*(R™), and for the endpoint estimates the initial data belong to L2(R™).
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Theorem 1 [7] Let r > 2 and % + % <3 Then?

||€itAf||L;(R,Lg(Rn)) SClflgegny, s=5--—= :

Another way of measuring the integrability is to consider L4(R"™ L} (R)). As before the
condition r > 2 is necessary, however the second condition changes as is easily verified
by considering a Knapp example that is Fourier supported in {€ : 1/2 < [£| < 2}. In this
case the endpoint estimates have data contained in H*®(R™).

Conjecture 1 [13] Let r > 2 and "TH +1g 5 Then?

r

||€itAf||Lg(1R<w, @) S Clfllgegny, s=5—--—- . (Sq,r)

In one spatial dimension, the conjecture was proven by Kenig, Ponce and Vega [10].
In higher dimensions, Vega [29] (see also [6], [13], [17]) proved that the conjecture is true
when ¢ > W The bilinear restriction estimate of Tao [23] and arguments of Planchon
[13] (see also [16], [26]) can be combined to yield (S, ) when r € [2,00) and "TH +1<z,

. 2(n+3)
in the range ¢ > = 75-.

In two spatial dimensions, this was further improved by the second author [14] so
that (S,,) holds when r € [2,00) and % + 1 <1, in the range ¢ > 16/5. In Planchon’s
article [13], estimates on the sharp line %—i—% = 1 were also proven, using real interpolation
techniques, but for the argument it was necessary to sacrifice part of the range in g.

In this article we prove estimates on the sharp line 2+L 4 % = 5 without loss in the
range of ¢. Indeed, we show that local bilinear estimates yield endpoint linear estimates,

from which we obtain the following theorem.
Theorem 2 Letr > 2 and "T“ + % = 5. Then
(i) (Sq,r) holds when n =2 and ¢ > 16/5

(i1) (Sq.r) holds when n > 3 and g > 2?j13).

These kind of estimates have been applied to nonlinear dispersive equations (see for
example [8], [9], [13]). By Sobolev embedding, one can also obtain estimates for the
maximal operator with data in the inhomogeneous Sobolev space H*(R™), and such
estimates imply almost everywhere convergence to the initial data as time tends to zero;

: itA _ n
th_r}(l)e f(z)=f(z) ae xzeR"

We recover the best known results (see [11], [19], [30]) in two and three spatial dimensions.

The major difference between the estimates in L} (R, LZ(R™)) and LZ(R™ L} (R)) is
Galilean invariance, which is enjoyed by the former but not by the latter. That is to say,
when the temporal integral is evaluated before the spatial integral, the estimates are not
invariant under translation on the frequency side. This means that we cannot use the
usual rescaling and translation arguments which simplify matters.

2 occasionally excluding ¢ = co
3 occasionally excluding r = oo



Imposing a separation condition on the Fourier supports, we first obtain bounds for
the bilinear operator (f,g) — ™2 fe'*®g with f, g Fourier supported in a ball of radius
one, and at a large distance from the origin. To get the endpoint linear estimates, we
require bilinear bounds with a precise dependency on this distance from the origin. The
following section will be dedicated to proving globalization lemmas which preserve this
precise dependency. First we globalize estimates restricted to parallelepipeds to estimates
which are global in space using decay properties and Schur’s test. Then we globalize in
time via an ‘epsilon removal’ argument. In the third section, we obtain the linear estimates
from the bilinear ones in the spirit of [27].

In order to prove Theorem 2 (ii), only the third section is required. Combining the
two sections reduces Conjecture 1 to local bilinear estimates, which enables the proof of
Theorem 2 (i).

Throughout, ¢ and C will denote positive constants that may depend on the dimensions
and exponents of the Lebesgue spaces. Their values may change from line to line. The
following are notations that will be used frequently:

Li(R™, Ly (I)) : the Lebesgue space with norm (fRn [f; | f (2, t)|"dt] ar dac) H
At :={&ecR"”: 1/2 < |§| <2}

Bi(Ney) == {€ €R™ : £ — (N,0,...,0)| <1}

S 2 Z E

F(&) = [ f(a)e2mimtde

H*(R™) : the homogeneous Sobolev space with norm (fRn |f(§)|2|§\25d§) i

2. Globalization lemmas

We partition R™ into cubes Qj of side R, centred at Rj € RZ", and for N > 1, we
define parallelepipeds P} by

P, ={(x,t) e R" x [0, R] :  — 4wtNe; € Q;}. (2)
Thus, {P;}jez» forms a partition of R™ x [0, R].

Definition 1 We say that Ey and Eo are A-separated if they are measurable sets that
satisfy

inf{ |§1_§2| : 51 € Fq, szEQ}Z/\/Q.

By adapting the Wolff-Tao induction on scales argument, the following bilinear estimate
was proven in [14] (see also [11]).

Proposition 2.1 [14] Let n = 2. Then for all e > 0,
€211 €2 fall 2y < CRENY 2] o2

whenever R, N > 1, and ﬁ, ]?2 are supported on 1-separated subsets of By(Neq).

The Schrédinger wave does not have finite speed of propagation, however it behaves
as if it had finite speed when the Fourier support of the initial datum is confined to a
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compact set. This can be made rigorous using the wave packet decomposition (see [11]).
Since the initial data in the above estimates is Fourier supported in B;(Nej), the waves
roughly propagate at speed IV in the direction e;. Hence, decomposing the initial data
properly, the Schrodinger wave can be localized in space-time. This observation allows
us to globalize the above estimate in space first.

Lemma 1 Letr > q, e >0, and let R, N > 1. Suppose that
[ f1 "2 fallsny o) < CRENTF |l foll2
whenever fl, J/"\g are supported on 1-separated subsets of By(Ney). Then
1€ f1 € fol| Ly e Ly po.R)) < CRENG 7| ful2] foll2

whenever ]?1, fg are supported on 1-separated subsets of By(Neq).

Proof. Let 11 and 72 be smooth functions, that are equal to one on the supports of
f1 and fo, respectively, and supported on slightly larger 4/5-separated sets. Define the
projection operators P;g = (1;9)", where ¢ = 1,2, and the extension operators S; and
Sg by
Sig(xz,t) = ™™ Prg(x) and  Soh(z,t) = "> Pyh(z).

As the projection operators are bounded in L?, by scaling the hypothesis mildly, we have

1519 Sahllzsy(rey < CRENTF |gllalIAl . (3)
with no restriction on the Fourier supports of g and h.

As in [3] and [15], we write
gJ = gXQj7

where {Qj}jez» is a partition of R™ in cubes of side R, centred at Rj € RZ". For all
1€ Z", we have the decomposition

9= 9= >, Gt > g

jezr 3:li—1<50n jtli=1>50n

Now by Minkowski’s inequality,
1519 Salil| Lo Lyio.m) < Y 1819 Sahll oy (my)
1

SI+IT+IIT+1V,
where the parallelepipeds P are defined as in (2), and

I= > 15195 Sahacll s vy ()
|371\<sgh1,('|11<;1\<50n

IT= > 15195 Sl La Ly (my,

|j—1\>sg;1,lf]11<;—l\<5071 (4)

T = Z 15195 SQhk”LiL{(Pl)v
|j71\gsghl,('ul<;1\>son

IV = Z 15195 Sth”LgL;‘(PI)-

j Kk, 1:

li—1>50m, [k—1|>50n
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First we consider the main term I. By spatial translation invariance and (3),
11
19195 Sahullparr(my < CREN ™7 |gjll2] hucll2,

so that, by three applications of Cauchy-Schwarz,
1/2 1/2

I<CRN Y 3 g3 o> I3

1 j:|j—1/<50n 1 k:|k—1<50n
1_1
SCR*Na"7|gll2 IRl

Next we consider II. Since we are assuming r > ¢, by applications of Holder and
Fubini, we see that

1_1
15195 S2hcllpapr(py) < (R'N)a ™7

S19jll Lz L2r (192l L2r L2 (1) -

By Young’s inequality followed by the L?-boundedness of e**?,

[S2huc( -, t) [ p2r = |1y * € hac|lr2r < Clhucl )2,

so that )
| S2hul[2r 2r(py < CR?" |2 (5)
For g; with |j —1| > 50n we obtain the improved estimate
||519J'HL3TL§T(P1) < CMR_MU - 1|_M||9j||2, M € N. (6)

To see this, by an affine change of variables,
15195l 2r L2r(py = (1515l 2 L2r(Qu x [0, RY):

here gj(x) = e~ 2™ N®1g:(z) and Sy = e“Aﬁl, where Py is the projection operator associ-
ated to 71 = n1 (- + Nyey). Writing S1g(+,t) = K; * g, the decay properties of the kernel
K are well-known. Indeed, on the support of 771, we have

V(y-&=2mt|¢*)| > clyl, |yl >15R, €0, R],
so that by integrating by parts,

1K (y)| =

/ ﬁ1<5>e2’"‘<y'<‘2”'5'2>d5\<cMy|M, y| > 15R, 1€ [0,R).

From this we see that
S~ f -M 2 o
1595l 22 L2 (@i x[0,71) < CM(/ / / y|~g;l(z — y) dy‘ d:cdt)
0 n Sy >3 li-1R

< Cplj ="M R g1,

where the second inequality is by Young’s inequality. This yields (6).
Substituting (5) and (6) into (4), we see that

1_1 . —
IT<CyRMNT 3 i =1"M||gs 2] el

ik, 1:
J#1, [k—1]<50n

11 1/2
SOMRMNTEN -0 Mgla( D I3)

i, 1: Ck—
3l k: [k—1|<50n



Finally, by Schur’s test (see for example [5]), we see that
IT< RN lgll2 |All2.

and by symmetry this is also true of I71.
Now we consider I'V. Substituting (6) into (4), we have

IV <CuR™MNTS S =17 [k = 17 g ol -

J.k,1
31, k#l

For sufficiently large M, by three applications of Cauchy—Schwarz and orthogonality,

1

1
IV <O RMNTTEST (S = 1M lgll) (X0 k=1 )

1 il k: k£l
gll2llR]l2-
Putting the estimates for I —IV together, we get
11
1519 SahllLagen, Lj0,m) < CREN ™7 |2 [|A]]2-

Finally, taking ¢ = fi, h = fo, we have S1f1 = e®®f1, Safs = € f,, and we are
done. O

1 1

<CyR MNa—*

For interpolation purposes, we will use the following elementary lemma which can be
shown by applying Plancherel’s theorem in ¢ and interpolation. For a proof see [14].

Lemma 2 Letr > 1. For N > 1 and f1, fo Fourier supported in Bi(Ney),

€72 f1 €2 foll oo e, Ly Ry < CN V7| fill2 [ fll2-

The following lemma is similar to one contained in [12] where the spatial integral
is evaluated before the temporal integral. In [14], a version with the order reversed is
presented, but with a loss in the power of N. In both articles, the hypothesis supposes
an estimate which is local in both space and time. By the previous Lemma 1, we can
suppose an estimate which is global in space, and this enables us to conserve the power
of N.

Lemma 3 Let rg > qo and R, N > 1. Suppose that for all € > 0
. . 11
e f1 enAfZHLgO(R”,L:O 0,r) S CeREN w070 [ fi]|2]| f2|2

whenever ]?17]?2 are supported on 1-separated subsets of Bi(Ney). Then provided that
q>qo and r > rg,

. . 1_1
€2 fr €2 fall Lappntry < N7 || full2]l f2l2,

whenever fl, fz are supported on 1-separated subsets of By(Ney).

Proof. One can calculate that the temporal Fourier transform of eits f1 is contained in
an interval of length < C'N. Similarly this is true of e®2 f; €2 f,. Thus, by Bernstein’s
inequality,

1

. . 1
€2 f1 €2 fall iy < ONT2 77

2 f1 e follpra gy, 1> 1o,



and so, by interpolation with Lemma 2, it will suffice to prove

. . 1_1
€2 fr €2 foll o prnsry < CNa 7| frl2ll foll2-

for some ¢ and r arbitrarily close to g9 and rg.
Define the measure do to be the canonical pull-back measure on

S ={(&—2nl¢’) e R**! ¢ £ € Bi(Ney)}
It is well-known (see [20]) that the Fourier transform decays,
(do)¥ (2,t)] < Co(1+ |z — 4mtNey| + [¢]) /2 (7)
Writing R
g1(&,=27l¢*) = fu(€), and  gs(¢,—27|¢]) = fa(©),

by Plancherel, it will suffice to prove that
2

2
1_1
| H(gida)v\|LgL;(Rn+1) <CONa™7 H 9:ll22(do)

i=1
for ¢ and r arbitrarily close to gg and rg. For notational convenience we normalize the

measure so that (7) is satisfied with C, = 1/2.
We consider F defined by

E:{(mt eR™ . H|gzdo xt|>)\}

and for each x, we set E, = {t : (z,t) € E'}. For a fixed v > 0, we define

E(v) = U {@v:teE}, (8)
z:v<|Ey|<2v
and we also set
X(v)={zeR":v<|E|<2v}, u=I|X{W),
so that uv < |E(v)| < 2uv.
First we use the hypothesis to prove that

DOTHIEEY FIES CsRsle%_%u%V%IIhll\m(sR)||h2||L2<sR>v R>1 (9

whenever hq, ho are supported in 1-separated subsets of
Sp={(&71)eR" : €€ Bi(Ney), |7+27|€*| <R}

Proof of (9). Let (E be a smooth function supported in (—1,1) and equal to one on
[—4/5,4/5] such that
S ¢t —k) =1

kEZ

As ¢*(R71) < Cy 27199y 9k, 2ik), by the hypothesis and temporal translation
invariance,

2 2
1 1
6% [ [(9: do) V[l oo pro < CoREN 70 [T llgill 22 ao) (10)

i=1 i=1



where ¢ (t) = (Rt — k) for k € Z. For h; supported in Sk we can write

2R
orhy (x,t) = / (H'do)Y (z,t)e*™ ™ dr;,
72R—1

where H" = a% * hi (&, — 27r|£\2). 4 Thus7 by Minkowski’s integral inequality and (10),

| oxhY By || Lao Lro < / /
2R-1 2R-1

2R~ p2R7Y 2
< C.REN / / H||H 220y drydry

2R-1 2R-1

2

H Hido)Y dridrs
=1

Lo Lm0

whenever hi, ho are supported in 1-separated subsets of Si. By Cauchy-Schwarz and
Plancherel’s theorem, we get

I kY h3 llLaozro < C-RTTINa0 70 || gphy [l2]lnhy |2,
which, by Cauchy-Schwarz, almost orthogonality and Plancherel, yields

1By by l|LaoLro <> lgkhy by || oo Lro < CoRE™ IN 076 | |2
k

ER
Finally, by Holder’s inequality ||x g(yhy Ry || 2 < p v 7o ||hY hy|| Lao £ro , which completes
the proof of (9).

We now use the decay of the Fourier transform of the measure to remove the epsilon.
We will prove that whenever R > 1,

c~"“

2 1
||XE(V) H(gidO')VHL1 < |:C()R (,uu) 2(n+2) —|—C k* Nqo_To T’)

=1

} H lgill 2oy (1)

Proof of (11). (see also [25]) In order to apply some duality arguments we will prove

IXE(w) (hido)” (hedo)” |1 < Allhal 2 (o) |72l 22 a0y, (12)
where
A=CyR™% (,uy)2<"+2> +C. REN 7o if)Vi
and hy, hy are supported® on l-separated subsets of S, and are completely independent

of g1, g2. We will also assume that ||h;[|12(qe) = 1 for i = 1,2.
Defining the linear operator T by

Thy = XE(V)(hldO')v(hng')v,

it will suffice to prove that
[Thallx < AllhallL2(do)-

By duality, this follows from showing that for ||F||s < 1,
[T Fllr2(a0) < A

4 here the convolution is in the ¢ variable
5 note that sometimes h1 and ho will be supported on S and at other times on Sg.
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where T* is the adjoint operator defined by
T*F = (Xg()(hedo) ' F)"
By squaring and applying Plancherel, it will suffice to prove that
(G * (do)”, G)| < A2,
where G = xg(,)(hado)” F. Note that by Theorem 1

n+4
Gl < Izl 2t N(hado)” s | F e < Cofpur) 2557

n

Now for ¢ as before we write do = do* + do g, where
(dog)Y(x,t) = ¢" (R t)(do)Y (x,1).
From (7), we have |(do®)V ||« < R™%, so that
(G (do™)". G)] < CRR™H () 755,
It remains to prove that
(G * (dog)”,G)| < A°.
Now
dog(€,7) = R (R(r + 2m(¢]*)) dédr,
so that by Plancherel and decomposing dyadically,
(G * (dor)", G} < C Y R2||Gl7(s

J=0

2—ir)’

where for j > 1,
Syip={(&7) R : ¢ € By(Ney), 2 'R < |r+27€} < 2R
We treat the j = 0 case; the others are aided by the 27190 factor. It suffices to show
that ~ .
1Gl[L2(s) < RT2A.
By the definition of G, this would follow from
1
(X E() (hodo) " F)" | 2(sp) < B2 A F|lco,

which by duality would follow from

1

IXE@w) i (h2do)Y[[1 < B2 Allhallz2(s) 172l 22 (d0) -

Note that we reduced (12) to the above by fixing (hedo)Y. Hence, fixing hY, we can
repeat the argument with (hedo)Y in the place of (hido)Y so that it will suffice to prove

1_1 L L
IxE@)R Ry 1 < CeRTTI N 70 % v76 ||hy || L2 (50 1h2 | L2 (85)

where h1, hy are supported in Sg, which is (9), which completes the proof of (11).

Letting

1 1 4e 1 n 1 1 4e 1 n
@ g n+de\qg 2n+2)) 1 rg n+de\rg 2(n+2))’



we use (9) to obtain

2
41
IxXmw) gy < OATNGT T 9ill 2 (ao)- (13)
i=1

Proof of (13). We may assume that ||g;||12(40) = 1 for i = 1,2. Now, if

n+4 1 1 L L

Colpw) 55 > CN# % jh s,
by choosing R > 1 so that

is satisfied, from (11) we get

1 1y(]__4e L 1
gC’N(qo TU)(l n+4€)/u,q/1yﬁ,
Ll

2
H XE(v) H(gidg)v‘

=1

Now (13) follows as

v’

2
N S NEW)] < || xow) [J(9:d0) |
=1

and [[xp()llLan < 20707
If Co(ul/)% < C’ENi_%uiui, taking a small R > 1in (11) we get
piy7e < CNwo 7oA~
On the other hand, by the Theorem 1 combined with Chebychev and Cauchy—Schwarz,
(uv)72 < CATL
Now as Hle [(gido)V| < 1, we may assume that A < 1, so that

L yT11 = (MQOZ/ 0)1_ﬁ(uy)ﬁﬁ

1 1 45)

< CATINGay g U

which completes the proof of (13).

For p > ¢; we now prove the weak type inequality

2
1_1
Mixellzzzy < CNZ7 [T 19ill 2 (ao)- (14)

i=1
Proof of (14). Again, we may assume that |g;||z2(40) = 1 for i = 1,2 and A < 1. For

v = 2k define E(2%) as in (8) and decompose E = |J, E(2%). For each fixed z, by
Lemma 2,

2 2

)\Ht 1 (gedo) (@ 1) > /\H < H H(Qida)v(gc,-)HL% <eN-L (15)

i=1 i=1

10



Therefore, we only need to consider the case 2¥ < ¢(NX)~!. We have,
”XEHigL:l = / |E, |;D/T1 de < C Z 2kp/7'1|X(2k)‘
k: 28 <e(NA)—1

<C Z ok(p=a0)/m1 gup | X (2F) |2k /™
k: 2kLc(NX)—1L k

<C Z okP=a1)/m1 gyp ||XE(2’C)Hqug1 .
k: 2kLc(NX)—1L k

We use (13) and sum the geometric series to obtain
—q1 1)/7T1 1**
||XE||§$L;1 SCOXNTT(NA)™ (p=a)/m
< ONPA\P—a) (- 1/r) Nl=77
Since p > ¢; and A < 1 we get (14).

We now complete the proof by obtaining the strong type estimate. Again, we may
assume that ||g;|| 124y = 1 for i = 1,2, so that 12, [(gido)¥| < 1, and write

2

[T l(gido)1 <D 27 xm,

i=1 k>0

where
Ek—{ <H|gldo mt|<2k+1}

Since g > ¢g, we can choose ¢ sufﬁc1ently small so that ¢; < rq, and fix ¢ such that

q1 <p<q<ry. Then,
2
q/m1 1/q
do)Y go(/( 2*’”’1E1) d) .
HH@ 2M . 2 (Be)])” ds

By concavity we bound this by
—kq q/r1 /a
HH gido) ’LQL” < C’ Z/ [(Ek) dx) .
k>0
By (15), we have |(FEy).| < eN~12% so that
k —loky—2
LaLm < 022 “( 2%) o ”XEkH]ZpLTU

||
k>0

and by (14), the right hand side of the above is bounded by

CZz—k(q—p)(l_un)N* NG H 190122 (-
k>0

Thus, by summing the geometric series, we obtain

2
H H(Qz‘dU)v
=1

2
1_ 1
Lapm S CN= = [ l9ill 22 o
i=1

11



and we are done. O

Combining Lemmas 1 and 3, we see that global bilinear estimates follow from esti-
mates restricted to parallelepipeds, with no loss in the power of N. Combining with
Proposition 2.1, we obtain the following corollary.

Corollary 1 Let g > 8/5 and r > 2. Then
, . 1_1
e fy eltAf2||L§(R2,L§(]R)) S ON 7| fill2ll f2ll2

whenever N > 1, and ]?1, ]?2 are supported on 1-separated subsets of By(Ney).
3. Bilinear estimates imply linear estimates

By scaling and rotational invariance, the estimates of the previous section yield esti-
mates of the form:

Definition 2 We denote by R*(2 x 2 — (q,7)) the estimate
; i j(ndly 1
e fr e foll oy < C2CTH TV fi ol fal
whenever fl, fg are supported in 277 -separated subsets of Bo—; () C A™.

Indeed, by an application of Cauchy—Schwarz and interpolation with Lemma 2, the
estimates in [6,13,17,29] yield R*(2 x 2 — (¢,1)) when ¢ > £l Similarly, using the
localization of the temporal Fourier support as in the proof of Lemma 3, by Bernstein’s
inequality, Tao’s estimate [23] yields R*(2x 2 — (¢,r)) when r > ¢ > Zi‘f Interpolating
the two we see that R*(2 x 2 — (g, r)) holds when

n+3 n+1
——, and
n+1

2
q> +-<n+1
r

In two spatial dimensions, this is improved by interpolation with Corollary 1, so that
R*(2 x 2 — (q,7)) holds when
3 2 4 1
g>8/5, —+-<3, and -4 -<3.
q T q T
In particular,

R*(2x2—>(g,g)) holds when ¢ > 16/5, >4, n=2, (16)
and
2n + 3 2n +3
(+3) _2n+d)

* qr
R (2><2—>( )) holds when ¢ > 1

23
Definition 3 We denote by R*(2 — (q,7)) the estimate

€2 Fllary < Clfll2
whenever f is supported in A",
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Let g € [2,00] and r € [2,00). Let 9 be a smooth and positive function, supported in
(1/2,2), that satisfies

Yoo =1,

k=—o00

and set fj, = P27k - \)f Since the temporal Fourier transform of e f;, is contained
in the set {7 : |7| ~ 22¥}, by the Littlewood-Paley inequality

[, <o (S wener)
k t k

Using Minkowski’s inequality in L:/ % then Lg/ 2, we have

1
2

Ly

o
€2 IEan; <O 32 e fullysy
k=—o00

n_n__ 2

Assuming R*(2 — (q,r)) and scaling, we get ||eitAfk;||LZL;‘ < C2FGE =379 f4]l2, so that

k=—o0

By Plancherel’s theorem, we get the desired estimate (S,,) of Conjecture 1. Hence in

)

order to prove (Sy.,) it is enough to prove R*(2 — (g¢,7)).

Recalling that the estimates (S ) for ¢ > 2nt2) were already proven in [6,13,17,29],

Theorem 2 is a consequence of (16) and (17) combined with the following proposition.
Proposition 3.1 Let g, 70 € (2,00) and "q—tl + % =5. IfR*(2x2 — (£,5)) holds for
(g,7) in a neighbourhood of (qo,70), then R*(2 — (qo,r0)) holds.

Proof. By Plancherel, it is enough to prove
12 fll o pro < Ol fl2

where f is supported in A”. In order to apply the bilinear estimate, we square the integral
as in [3], so that

”eitAf HiZOL:O — HeitAfeitAf ‘|L20/2L:0/2'

For each k € Z we partition R™ into dyadic cubes 7';-C of side 27%. We write Tf ~ Tjk, if

T]k and T]k/ have adjacent parents, but are not adjacent. As in [1], [18] and [27], we use a

Whitney type decomposition of R” xR™ away from its diagonal D, so that (R" xR™\ D) =

Uk Uphorh T]k X Tj’-“,. Writing f =3, fj’?’ where ff(—f) = f(=&)x,x (&) we have
€itAfA($) eitAfA(m) _ //f(_g)f(_y)€2ﬂi(m~(§+y)72wt(|5‘2+|y|2))d£dy

= > / / FE (=€) £ (—y)e2mite- ) =2mt(E 4101 ge gy
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For k € Z, we define the bilinear operators T} by

T (f, g) _ Z ez‘tAJﬂjc eitAgéc/,

Y. 5} k
BT TS

so that A
etA A F = ST, f).
k

We will prove that there exists an € > 0 such that
1_1y_p,ci_1
I T%(f, g)HLZ/2L:0/2 < C22k((n+1)(q ) (3 p)) £ lgll (18)

forg € (qo—e,90+¢)andpe (2—¢,2+¢).
To see this we interpolate the hypothesis which is equivalent to

ntl 1 _n
< C2PR AT 15 12 g 2
itAJ/Hc itAk

HeitAf% itA/g\j/HL;ﬁL:/z <
TGN e e < |IfFI1llgf |1, to obtain

je

with the trivial estimate ||e

||eitAJ/c\k itA/g\;c/

ok(2tly L _p(1—L k k
3G e < C2F TR £4) g8

for some pg < 2 and ¢ in a neighborhood of ¢y. Since fj’.C and g;?, are supported in sets

of measure ~ 27"% applying Holder’s inequality, we get for (¢,p) in a neighbourhood
of (QO7 2)7

itA jc‘lc eitAﬁk
j ’

k(4 L_pa-1
e Bl ars s < C2HCETHRTOD) ) b gk

Using the relation 2L 4 L — 5, this is the same as
90 70
. . e 2k (- Ly_pri_1
€47 € Agh oo < C2P(DGTIED) kg, (1)

By concavity when p < 2 and Lemma 4 when p > 2 (choosing e sufficiently small), we
have

2/p
itA Tk itA~k itA Tk itA—~k (1p/2
‘ Z e fj e 95| parzpror S Z le** 5 " gj'HiZ/QL:O/Q
Gl o Gt
Combining this with (19) and applying Cauchy—Schwarz inequality gives
1/p 1/p
2k 1) (2L )y—n(i-1
1T (.9l a/2 rore < C2 (D) (3 - F)-n(3-1)) AL S gk
J J

< oG D) g gl
for all ¢ € (g0 —e,q0 +¢) and p € (2 — €,2 + ¢), which is (18).

Note that Proposition 3.1 would follow from
A 1 1
€2 Fllzgoszo < Clflns, (=) =n(5 1)

14



for ¢ in a small neighbourhood of g9, where LP>? denotes the Lorentz space. In fact, by
real interpolation (see for example [21]) this gives [|e"® f|| a2, 0 < C| f||22, and since
x t

go > 2 and L9 = [40:9% > [9:2 e get the desired inequality. We can rewrite the above
estimate as

HeitAfeitAf ”Lg/z’OOL:O/Z <C Hf”%p,l,
so that it will suffice to prove

1 1 1
[ €R" : Tp > M| < OB, (ne1)( - o) =n(;
0

for measurable sets F¥ and ¢ in a neighbourhood of ¢g, where

Tf =Y |ITu(f f)
k

Lo > ||eitAJ/c\eitAf||L:o/2,

By (18), we have

|| HTk(XEvXE)HL:o/?HLgl/Q < 02261k|E|2/P1’
| ||Tk(XE7XE)HLfTo/2Hngﬂ < 02720k g2/p2

for pr € (2—¢,2), ¢1 € (g0 — &,q0) and p2 € (2,2 +¢€), g2 € (go,qo + €), where
1

61 = ((n+ 1)((%1 - =)= ( —)) >0

do b1
1 1 1
—\n+1)(——— - )
(( )(Q2 qO) 2
Decomposing T' = Tk + TX, where
Tcf = 3 WTlfs Dl o and T = > Tl Pl ore,

k<K E>K

62:

by Minkowski’s inequality and summing the geometric series’, we see that
HTKXEHLZ}/Z < C2261K|E|2/p17 HTKXE”LEIDQ/2 < C27262K|E|2/P2.

Now
Ha @ Txe > M < {z : Texe > N2} + {z : T8xp > \/2},
so that by Tchebyshev’s inequality,

|{93 : Txe > )‘}| <C </\—q1/22m51K|E‘q1/p1 + )\—qz/22—qz52K|E|Q2/P2) )

Optimizing in K, yields (20) for p and ¢ defined by

1 02 n o 1 02 . 01
p (61 +68)p1 (G1+80)p’ g (B14+8)a (61 +062)¢

The condition (n + 1)(7 - q%) =n(3 - %) is satisfied, and by varying pi1,p2, q1, g2 we

obtain (20) for ¢ in a nelghbourhood of go. This completes the proof. O
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4. Appendix

Lemma 4 Suppose that the spatial Fourier transforms of Fy, : R xR — C are supported
in a sequence By of finitely overlapping balls of the same radius. Then for all € > 0, there
exists a > 1 such that

325
k

1/«
LiLy e Xk: HFkH(sz; when 1/q, 1/r € (e,1 —¢).

Proof. By finitely many applications of the Minkowski’s inequality, we may suppose
that the sequence of balls 2By, with double the radius, are disjoint. Let ¢ be a Schwartz
function equal to one on {|¢] < 1} and supported in {|¢| < 2}, and let ¢, be translates

and dilations of ¢ such that ¢y is equal to one on By and supported on 2Bj. Defining
the operators Py, by PpGi = ¢y *, Gy, it will suffice to show that

1/
|22 P
k

Lap SC D Gk, : (21)
x g k
for general functions Gy, as then we can take Gy = F), and PrGj = F). Note that when
g =1 =2, we can take a = 2 in (21) by Fubini and Plancherel.
Thus, it remains to prove that

> pa| , <CY G
k = k
as then we may interpolate with the case ¢ = r = 2 to get the result. Now (21) follows
from Minkowski’s inequality and the fact that
6% %o Grllzary < |16kl %o 1Gklzy || Lo <@l [1Gellzy]l 1 »

which is a consequence of Minkowski’s integral inequality followed by Young’s inequality
and scaling, and so we are done. O
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