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Abstract

We obtain endpoint estimates for the Schrödinger operator f → eit∆f in Lq
x(Rn, Lr

t (R)) with
initial data f in the homogeneous Sobolev space Ḣs(Rn). The exponents and regularity index
satisfy n+1

q
+ 1

r
= n

2
and s = n

2
− n

q
− 2

r
. For n = 2 we prove the estimates in the range q > 16/5,

and for n ≥ 3 in the range q > 2 + 4/(n+ 1).
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1. Introduction

The solution to the Schrödinger equation, i∂tu+∆u = 0, in Rn+1, with initial datum f ,
a Schwartz function, can be written as

eit∆f(x) =

∫
Rn

f̂(ξ)e2πi(x·ξ−2πt|ξ|2)dξ. (1)

The space-time integrability of eit∆f has played an important role in the study of
nonlinear Schrödinger equations (see for example [4] or [24]). The integrability is usually
measured with estimates for eit∆f in the mixed norm spaces Lrt (R, Lqx(Rn)). By the work
of Stein [20], Tomas [28], Strichartz [22], Ginibre–Velo [4], and Keel–Tao [7] the following
theorem is now well known. Scaling dictates the regularity of the homogeneous Sobolev
space Ḣs(Rn), and for the endpoint estimates the initial data belong to L2(Rn).
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Theorem 1 [7] Let r ≥ 2 and n
q + 2

r 6 n
2 . Then 2

‖eit∆f‖Lr
t (R,Lq

x(Rn)) 6 C ‖f‖Ḣs(Rn), s =
n

2
− n

q
− 2

r
.

Another way of measuring the integrability is to consider Lqx(Rn, Lrt (R)). As before the
condition r ≥ 2 is necessary, however the second condition changes as is easily verified
by considering a Knapp example that is Fourier supported in {ξ : 1/2 6 |ξ| 6 2}. In this
case the endpoint estimates have data contained in Ḣs(Rn).

Conjecture 1 [13] Let r ≥ 2 and n+1
q + 1

r 6 n
2 . Then 3

‖eit∆f‖Lq
x(Rn, Lr

t (R)) 6 C ‖f‖Ḣs(Rn), s =
n

2
− n

q
− 2

r
. (Sq,r)

In one spatial dimension, the conjecture was proven by Kenig, Ponce and Vega [10].
In higher dimensions, Vega [29] (see also [6], [13], [17]) proved that the conjecture is true

when q ≥ 2(n+2)
n . The bilinear restriction estimate of Tao [23] and arguments of Planchon

[13] (see also [16], [26]) can be combined to yield (Sq,r) when r ∈ [2,∞) and n+1
q + 1

r <
n
2 ,

in the range q > 2(n+3)
n+1 .

In two spatial dimensions, this was further improved by the second author [14] so
that (Sq,r) holds when r ∈ [2,∞) and 3

q + 1
r < 1, in the range q > 16/5. In Planchon’s

article [13], estimates on the sharp line 3
q+ 1

r = 1 were also proven, using real interpolation
techniques, but for the argument it was necessary to sacrifice part of the range in q.

In this article we prove estimates on the sharp line n+1
q + 1

r = n
2 without loss in the

range of q. Indeed, we show that local bilinear estimates yield endpoint linear estimates,
from which we obtain the following theorem.

Theorem 2 Let r ≥ 2 and n+1
q + 1

r = n
2 . Then

(i) (Sq,r) holds when n = 2 and q > 16/5

(ii) (Sq,r) holds when n ≥ 3 and q > 2(n+3)
n+1 .

These kind of estimates have been applied to nonlinear dispersive equations (see for
example [8], [9], [13]). By Sobolev embedding, one can also obtain estimates for the
maximal operator with data in the inhomogeneous Sobolev space Hs(Rn), and such
estimates imply almost everywhere convergence to the initial data as time tends to zero;

lim
t→0

eit∆f(x) = f(x) a.e. x ∈ Rn.

We recover the best known results (see [11], [19], [30]) in two and three spatial dimensions.
The major difference between the estimates in Lrt (R, Lqx(Rn)) and Lqx(Rn, Lrt (R)) is

Galilean invariance, which is enjoyed by the former but not by the latter. That is to say,
when the temporal integral is evaluated before the spatial integral, the estimates are not
invariant under translation on the frequency side. This means that we cannot use the
usual rescaling and translation arguments which simplify matters.

2 occasionally excluding q = ∞
3 occasionally excluding r = ∞
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Imposing a separation condition on the Fourier supports, we first obtain bounds for
the bilinear operator (f, g) → eit∆feit∆g with f, g Fourier supported in a ball of radius
one, and at a large distance from the origin. To get the endpoint linear estimates, we
require bilinear bounds with a precise dependency on this distance from the origin. The
following section will be dedicated to proving globalization lemmas which preserve this
precise dependency. First we globalize estimates restricted to parallelepipeds to estimates
which are global in space using decay properties and Schur’s test. Then we globalize in
time via an ‘epsilon removal’ argument. In the third section, we obtain the linear estimates
from the bilinear ones in the spirit of [27].

In order to prove Theorem 2 (ii), only the third section is required. Combining the
two sections reduces Conjecture 1 to local bilinear estimates, which enables the proof of
Theorem 2 (i).

Throughout, c and C will denote positive constants that may depend on the dimensions
and exponents of the Lebesgue spaces. Their values may change from line to line. The
following are notations that will be used frequently:

Lqx(Rn, Lrt (I)) : the Lebesgue space with norm
(∫

Rn

[∫
I
|f(x, t)|rdt

]q/r
dx
)1/q

An := { ξ ∈ Rn : 1/2 6 |ξ| 6 2 }
B1(Ne1) := { ξ ∈ Rn : |ξ − (N, 0, . . . , 0)| 6 1 }
s := n

2 −
n
q −

2
r

f̂(ξ) :=
∫
f(x)e−2πix·ξdx

Ḣs(Rn) : the homogeneous Sobolev space with norm
(∫

Rn |f̂(ξ)|2|ξ|2sdξ
)1/2

2. Globalization lemmas

We partition Rn into cubes Qj of side R, centred at Rj ∈ RZn, and for N � 1, we
define parallelepipeds Pj by

Pj = {(x, t) ∈ Rn × [0, R] : x− 4πtNe1 ∈ Qj}. (2)

Thus, {Pj}j∈Zn forms a partition of Rn × [0, R].

Definition 1 We say that E1 and E2 are λ-separated if they are measurable sets that
satisfy

inf{ |ξ1 − ξ2| : ξ1 ∈ E1, ξ2 ∈ E2} ≥ λ/2.

By adapting the Wolff–Tao induction on scales argument, the following bilinear estimate
was proven in [14] (see also [11]).

Proposition 2.1 [14] Let n = 2. Then for all ε > 0,

‖eit∆f1 e
it∆f2‖L8/5

x L2
t (P0)

6 CεR
εN1/8‖f1‖2‖f2‖2

whenever R,N � 1, and f̂1, f̂2 are supported on 1-separated subsets of B1(Ne1).

The Schrödinger wave does not have finite speed of propagation, however it behaves
as if it had finite speed when the Fourier support of the initial datum is confined to a
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compact set. This can be made rigorous using the wave packet decomposition (see [11]).
Since the initial data in the above estimates is Fourier supported in B1(Ne1), the waves
roughly propagate at speed N in the direction e1. Hence, decomposing the initial data
properly, the Schrödinger wave can be localized in space-time. This observation allows
us to globalize the above estimate in space first.

Lemma 1 Let r ≥ q, ε > 0, and let R,N � 1. Suppose that

‖eit∆f1 e
it∆f2‖Lq

xL
r
t (P0) 6 CRεN

1
q−

1
r ‖f1‖2‖f2‖2

whenever f̂1, f̂2 are supported on 1-separated subsets of B1(Ne1). Then

‖eit∆f1 e
it∆f2‖Lq

x(Rn,Lr
t [0,R]) 6 CRεN

1
q−

1
r ‖f1‖2‖f2‖2

whenever f̂1, f̂2 are supported on 1-separated subsets of B1(Ne1).

Proof. Let η1 and η2 be smooth functions, that are equal to one on the supports of
f̂1 and f̂2, respectively, and supported on slightly larger 4/5–separated sets. Define the
projection operators Pig = (ηi ĝ)∨, where i = 1, 2, and the extension operators S1 and
S2 by

S1g(x, t) = eit∆P1g(x) and S2h(x, t) = eit∆P2h(x).

As the projection operators are bounded in L2, by scaling the hypothesis mildly, we have

‖S1g S2h‖Lq
xL

r
t (P0) 6 CRεN

1
q−

1
r ‖g‖2‖h‖2, (3)

with no restriction on the Fourier supports of g and h.
As in [3] and [15], we write

gj = gχQj
,

where {Qj}j∈Zn is a partition of Rn in cubes of side R, centred at Rj ∈ RZn. For all
l ∈ Zn, we have the decomposition

g =
∑
j∈Zn

gj =
∑

j : |j−l|650n

gj +
∑

j : |j−l|>50n

gj.

Now by Minkowski’s inequality,

‖S1g S2h‖Lq(Rn,Lr
t [0,R]) 6

∑
l

‖S1g S2h‖Lq
xL

r
t (Pl))

6 I + II + III + IV,

where the parallelepipeds Pl are defined as in (2), and

I =
∑
j, k, l :

|j−l|650n, |k−l|650n

‖S1gj S2hk‖Lq
xL

r
t (Pl),

II =
∑
j, k, l :

|j−l|>50n, |k−l|650n

‖S1gj S2hk‖Lq
xL

r
t (Pl),

III =
∑
j, k, l :

|j−l|650n, |k−l|>50n

‖S1gj S2hk‖Lq
xL

r
t (Pl),

IV =
∑
j, k, l :

|j−l|>50n, |k−l|>50n

‖S1gj S2hk‖Lq
xL

r
t (Pl).

(4)
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First we consider the main term I. By spatial translation invariance and (3),

‖S1gj S2hk‖Lq
xL

r
t (Pl) 6 CRεN

1
q−

1
r ‖gj‖2‖hk‖2,

so that, by three applications of Cauchy-Schwarz,

I 6 CRεN
1
q−

1
r

∑
l

∑
j : |j−l|650n

‖gj‖22

1/2∑
l

∑
k : |k−l|650n

‖hk‖22

1/2

6 CRεN
1
q−

1
r ‖g‖2 ‖h‖2.

Next we consider II. Since we are assuming r ≥ q, by applications of Hölder and
Fubini, we see that

‖S1gj S2hk‖Lq
xL

r
t (Pl)) 6 (RnN)

1
q−

1
r ‖S1gj‖L2r

t L2r
x (Pl)‖S2hk‖L2r

t L2r
x (Pl).

By Young’s inequality followed by the L2–boundedness of eit∆,

‖S2hk( · , t)‖L2r
x

= ‖η∨2 ∗ eit∆hk‖L2r
x

6 C‖hk‖2,

so that
‖S2hk‖L2r

t L2r
x (Pl) 6 CR

1
2r ‖hk‖2. (5)

For gj with |j− l| > 50n we obtain the improved estimate

‖S1gj‖L2r
t L2r

x (Pl) 6 CMR
−M |j− l|−M‖gj‖2, M ∈ N. (6)

To see this, by an affine change of variables,

‖S1gj‖L2r
t L2r

x (Pl) = ‖S̃1g̃j‖L2r
t L2r

x (Ql×[0,R]);

here g̃j(x) = e−2πiNx1gj(x) and S̃1 = eit∆P̃1, where P̃1 is the projection operator associ-

ated to η̃1 = η1( · +N1e1). Writing S̃1g(·, t) = Kt ∗ g, the decay properties of the kernel
Kt are well-known. Indeed, on the support of η̃1, we have

|∇(y · ξ − 2πt|ξ|2)| ≥ c|y|, |y| ≥ 15R, t ∈ [0, R],

so that by integrating by parts,

|Kt(y)| =
∣∣∣∣∫

Rn

η̃1(ξ)e2πi(y·ξ−2πt|ξ|2)dξ

∣∣∣∣ 6 CM |y|−M , |y| ≥ 15R, t ∈ [0, R].

From this we see that

‖S̃1g̃j‖L2r
t L2r

x (Ql×[0,R]) 6 CM

(∫ R

0

∫
Rn

∣∣∣ ∫
|y|≥ 1

2 |j−l|R
|y|−M |gj|(x− y) dy

∣∣∣2rdxdt) 1
2r

6 CM |j− l|n−MRn+1−M‖gj‖2,

where the second inequality is by Young’s inequality. This yields (6).
Substituting (5) and (6) into (4), we see that

II 6 CMR
−MN

1
q−

1
r

∑
j, k, l :

j6=l, |k−l|650n

|j− l|−M‖gj‖2‖hk‖2

6 CMR
−MN

1
q−

1
r

∑
j, l :
j6=l

|j− l|−M‖gj‖2
( ∑

k : |k−l|650n

‖hk‖22
)1/2

.
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Finally, by Schur’s test (see for example [5]), we see that

II 6 CR−MN
1
q−

1
r ‖g‖2 ‖h‖2,

and by symmetry this is also true of III.
Now we consider IV . Substituting (6) into (4), we have

IV 6 CMR
−MN

1
q−

1
r

∑
j,k,l

j6=l, k 6=l

|j− l|−M |k− l|−M‖gj‖2‖hk‖2.

For sufficiently large M , by three applications of Cauchy–Schwarz and orthogonality,

IV 6 CMR
−MN

1
q−

1
r

∑
l

( ∑
j : j6=l

|j− l|−M‖gj‖22
) 1

2
( ∑

k :k6=l

|k− l|−M‖hk‖22
) 1

2

6 CMR
−MN

1
q−

1
r ‖g‖2‖h‖2.

Putting the estimates for I – IV together, we get

‖S1g S2h‖Lq(Rn, Lr
t [0,R]) 6 C RεN

1
q−

1
r ‖g‖2 ‖h‖2.

Finally, taking g = f1, h = f2, we have S1f1 = eit∆f1, S2f2 = eit∆f2, and we are
done. 2

For interpolation purposes, we will use the following elementary lemma which can be
shown by applying Plancherel’s theorem in t and interpolation. For a proof see [14].

Lemma 2 Let r ≥ 1. For N � 1 and f1, f2 Fourier supported in B1(Ne1),

‖eit∆f1 e
it∆f2‖L∞x (Rn,Lr

t (R)) 6 CN−1/r‖f1‖2 ‖f2‖2.

The following lemma is similar to one contained in [12] where the spatial integral
is evaluated before the temporal integral. In [14], a version with the order reversed is
presented, but with a loss in the power of N . In both articles, the hypothesis supposes
an estimate which is local in both space and time. By the previous Lemma 1, we can
suppose an estimate which is global in space, and this enables us to conserve the power
of N .

Lemma 3 Let r0 > q0 and R,N � 1. Suppose that for all ε > 0

‖eit∆f1 e
it∆f2‖Lq0

x (Rn,L
r0
t [0,R]) 6 CεR

εN
1
q0
− 1

r0 ‖f1‖2‖f2‖2

whenever f̂1, f̂2 are supported on 1-separated subsets of B1(Ne1). Then provided that
q > q0 and r > r0,

‖eit∆f1 e
it∆f2‖Lq

xL
r
t (Rn+1) 6 Cq,rN

1
q−

1
r ‖f1‖2‖f2‖2,

whenever f̂1, f̂2 are supported on 1-separated subsets of B1(Ne1).

Proof. One can calculate that the temporal Fourier transform of eit∆f1 is contained in
an interval of length 6 CN . Similarly this is true of eit∆f1 e

it∆f2. Thus, by Bernstein’s
inequality,

‖eit∆f1 e
it∆f2‖Lr1

t (R) 6 CN
1
r2
− 1

r1 ‖eit∆f1 e
it∆f2‖Lr2

t (R), r1 > r2,
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and so, by interpolation with Lemma 2, it will suffice to prove

‖eit∆f1 e
it∆f2‖Lq

xL
r
t (Rn+1) 6 C N

1
q−

1
r ‖f1‖2‖f2‖2.

for some q and r arbitrarily close to q0 and r0.
Define the measure dσ to be the canonical pull-back measure on

S = {(ξ,−2π|ξ|2) ∈ Rn+1 : ξ ∈ B1(Ne1)}.

It is well-known (see [20]) that the Fourier transform decays,

|(dσ)∨(x, t)| 6 Cσ(1 + |x− 4πtNe1|+ |t|)−n/2 (7)

Writing
g1(ξ,−2π|ξ|2) = f̂1(ξ), and g2(ξ,−2π|ξ|2) = f̂2(ξ),

by Plancherel, it will suffice to prove that

‖
2∏
i=1

(gidσ)∨‖Lq
xL

r
t (Rn+1) 6 CN

1
q−

1
r

2∏
i=1

‖gi‖L2(dσ),

for q and r arbitrarily close to q0 and r0. For notational convenience we normalize the
measure so that (7) is satisfied with Cσ = 1/2.

We consider E defined by

E =

{
(x, t) ∈ Rn+1 :

2∏
i=1

|(gidσ)∨(x, t)| > λ

}
,

and for each x, we set Ex = { t : (x, t) ∈ E }. For a fixed ν > 0, we define

E(ν) =
⋃

x : ν6|Ex|<2ν

{ (x, t) : t ∈ Ex }, (8)

and we also set

X(ν) = {x ∈ Rn : ν 6 |Ex| < 2ν }, µ = |X(ν)|,

so that µν 6 |E(ν)| 6 2µν.
First we use the hypothesis to prove that

‖χE(ν)h
∨
1 h
∨
2 ‖1 6 CεR

ε−1N
1
q0
− 1

r0 µ
1
q′0 ν

1
r′0 ‖h1‖L2(SR)‖h2‖L2(SR), R� 1 (9)

whenever h1, h2 are supported in 1-separated subsets of

SR = { (ξ, τ) ∈ Rn+1 : ξ ∈ B1(Ne1), |τ + 2π|ξ|2| 6 R−1 }.

Proof of (9). Let φ̂ be a smooth function supported in (−1, 1) and equal to one on
[−4/5, 4/5] such that ∑

k∈Z
φ4( · − k) = 1.

As φ2(R−1 · ) 6 C
∑
j 2−100jχ[−2jR, 2jR], by the hypothesis and temporal translation

invariance,

‖φ2
k

2∏
i=1

(gi dσ)∨‖Lq0
x L

r0
t

6 CεR
εN

1
q0
− 1

r0

2∏
i=1

‖gi‖L2(dσ), (10)
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where φk(t) = φ(R−1t− k) for k ∈ Z. For hi supported in SR we can write

φkh
∨
i (x, t) =

∫ 2R−1

−2R−1

(Hτi
i dσ)∨(x, t)e2πitτi dτi,

where Hτi
i = φ̂k ∗ hi(ξ, τi − 2π|ξ|2). 4 Thus, by Minkowski’s integral inequality and (10),

‖φ4
kh
∨
1 h
∨
2 ‖Lq0Lr0 6

∫ 2R−1

−2R−1

∫ 2R−1

−2R−1

∥∥∥φ2
k

2∏
i=1

(Hτi
i dσ)∨

∥∥∥
Lq0Lr0

dτ1dτ2

6 CεR
εN

1
q0
− 1

r0

∫ 2R−1

−2R−1

∫ 2R−1

−2R−1

2∏
i=1

‖Hτi
i ‖L2(dσ) dτ1dτ2

whenever h1, h2 are supported in 1-separated subsets of SR. By Cauchy–Schwarz and
Plancherel’s theorem, we get

‖φ4
kh
∨
1 h
∨
2 ‖Lq0Lr0 6 CεR

ε−1N
1
q0
− 1

r0 ‖φkh∨1 ‖2‖φkh∨2 ‖2,

which, by Cauchy–Schwarz, almost orthogonality and Plancherel, yields

‖h∨1 h∨2 ‖Lq0Lr0 6
∑
k

‖φ4
kh
∨
1 h
∨
2 ‖Lq0Lr0 6 CεR

ε−1N
1
q0
− 1

r0 ‖h1‖2‖h2‖2.

Finally, by Hölder’s inequality ‖χE(ν)h
∨
1 h
∨
2 ‖L1 6 µ

1
q′0 ν

1
r′0 ‖h∨1 h∨2 ‖Lq0Lr0 , which completes

the proof of (9).

We now use the decay of the Fourier transform of the measure to remove the epsilon.
We will prove that whenever R� 1,

‖χE(ν)

2∏
i=1

(gidσ)∨‖L1 6

[
C0R

−n
4 (µν)

n+4
2(n+2) +CεR

εN
1
q0
− 1

r0 µ
1
q′0 ν

1
r′0

] 2∏
i=1

‖gi‖L2(dσ). (11)

Proof of (11). (see also [25]) In order to apply some duality arguments we will prove

‖χE(ν)(h1dσ)∨(h2dσ)∨‖1 6 A‖h1‖L2(dσ)‖h2‖L2(dσ), (12)

where

A = C0R
−n

4 (µν)
n+4

2(n+2) + CεR
εN

1
q0
− 1

r0 µ
1
q′0 ν

1
r′0

and h1, h2 are supported 5 on 1-separated subsets of S, and are completely independent
of g1, g2. We will also assume that ‖hi‖L2(dσ) = 1 for i = 1, 2.

Defining the linear operator T by

Th1 = χE(ν)(h1dσ)∨(h2dσ)∨,

it will suffice to prove that
‖Th1‖1 6 A‖h1‖L2(dσ).

By duality, this follows from showing that for ‖F‖∞ 6 1,

‖T ∗F‖L2(dσ) 6 A

4 here the convolution is in the t variable
5 note that sometimes h1 and h2 will be supported on S and at other times on SR.
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where T ∗ is the adjoint operator defined by

T ∗F =
(
χE(ν)(h2dσ)∨F

)∧
.

By squaring and applying Plancherel, it will suffice to prove that

|〈G ∗ (dσ)∨, G〉| 6 A2,

where G = χE(ν)(h2dσ)∨F . Note that by Theorem 1

‖G‖1 6 ‖χE(ν)‖ 2(n+2)
n+4

‖(h2dσ)∨‖ 2(n+2)
n

‖F‖∞ 6 C0(µν)
n+4

2(n+2) .

Now for φ as before we write dσ = dσR + dσR, where

(dσR)∨(x, t) = φ∨(R−1t)(dσ)∨(x, t).

From (7), we have ‖(dσR)∨‖∞ 6 R−
n
2 , so that

|〈G ∗ (dσR)∨, G〉| 6 C2
0R
−n

2 (µν)
n+4

(n+2) .

It remains to prove that
|〈G ∗ (dσR)∨, G〉| 6 A2.

Now
dσR(ξ, τ) = Rφ

(
R(τ + 2π|ξ|2)

)
dξdτ,

so that by Plancherel and decomposing dyadically,

|〈G ∗ (dσR)∨, G〉| 6 C
∑
j≥0

R2−100j‖Ĝ‖2L2(S2−jR),

where for j ≥ 1,

S2−jR = {(ξ, τ) ∈ Rn+1 : ξ ∈ B1(Ne1), 2j−1R−1 6 |τ + 2π|ξ|2| 6 2jR−1}.

We treat the j = 0 case; the others are aided by the 2−100j factor. It suffices to show
that

‖Ĝ‖L2(SR) 6 R−
1
2A.

By the definition of G, this would follow from

‖(χE(ν)(h2dσ)∨F )∧‖L2(SR) 6 R−
1
2A‖F‖∞,

which by duality would follow from

‖χE(ν)h
∨
1 (h2dσ)∨‖1 6 R−

1
2A‖h1‖L2(SR)‖h2‖L2(dσ).

Note that we reduced (12) to the above by fixing (h2dσ)∨. Hence, fixing h∨1 , we can
repeat the argument with (h2dσ)∨ in the place of (h1dσ)∨ so that it will suffice to prove

‖χE(ν)h
∨
1 h
∨
2 ‖1 6 CεR

ε−1N
1
q0
− 1

r0 µ
1
q′0 ν

1
r′0 ‖h1‖L2(SR)‖h2‖L2(SR),

where h1, h2 are supported in SR, which is (9), which completes the proof of (11).

Letting

1

q1
=

1

q0
− 4ε

n+ 4ε

(
1

q0
− n

2(n+ 2)

)
,

1

r1
=

1

r0
− 4ε

n+ 4ε

(
1

r0
− n

2(n+ 2)

)
,

9



we use (9) to obtain

‖χE(ν)‖Lq1
x L

r1
t

6 Cλ−1N
1
q1
− 1

r1

2∏
i=1

‖gi‖L2(dσ). (13)

Proof of (13). We may assume that ‖gi‖L2(dσ) = 1 for i = 1, 2. Now, if

C0(µν)
n+4

2(n+2) > CεN
1
q0
− 1

r0 µ
1
q′0 ν

1
r′0 ,

by choosing R� 1 so that

R−
n
4 (µν)

n+4
2(n+2) = CRεN

1
q0
− 1

r0 µ
1
q′0 ν

1
r′0

is satisfied, from (11) we get∥∥∥χE(ν)

2∏
i=1

(gidσ)∨
∥∥∥
L1

6 CN ( 1
q0
− 1

r0
)(1− 4ε

n+4ε )µ
1
q′1 ν

1
r′1 .

Now (13) follows as

λµν 6 λ|E(ν)| 6
∥∥∥χE(ν)

2∏
i=1

(gidσ)∨
∥∥∥
L1
,

and ‖χE(ν)‖Lq1Lr1 6 2µ
1
q1 ν

1
r1 .

If C0(µν)
n+4

2(n+2) < CεN
1
q0
− 1

r0 µ
1
q′0 ν

1
r′0 , taking a small R > 1 in (11) we get

µ
1
q0 ν

1
r0 6 CN

1
q0
− 1

r0 λ−1.

On the other hand, by the Theorem 1 combined with Chebychev and Cauchy–Schwarz,

(µν)
n

n+2 6 Cλ−1.

Now as
∏2
i=1 |(gidσ)∨| 6 1, we may assume that λ 6 1, so that

µ
1
q1 ν

1
r1 = (µ

1
q0 ν

1
r0 )1− 4ε

n+4ε (µν)
n

2(n+2)
4ε

n+4ε

6 Cλ−1N ( 1
q0
− 1

r0
)(1− 4ε

n+4ε ),

which completes the proof of (13).

For p > q1 we now prove the weak type inequality

λ‖χE‖Lp
xL

r1
t

6 CN
1
p−

1
r1

2∏
i=1

‖gi‖L2(dσ). (14)

Proof of (14). Again, we may assume that ‖gi‖L2(dσ) = 1 for i = 1, 2 and λ 6 1. For

ν = 2k, define E(2k) as in (8) and decompose E =
⋃
k E(2k). For each fixed x, by

Lemma 2,

λ
∣∣∣{ t :

2∏
i=1

∣∣(gidσ)∨(x, t)
∣∣ > λ

}∣∣∣ 6 ∥∥∥ 2∏
i=1

(gidσ)∨(x, ·)
∥∥∥
L1

t

6 cN−1. (15)

10



Therefore, we only need to consider the case 2k 6 c(Nλ)−1. We have,

‖χE‖pLp
xL

r1
t

=

∫
Rn

|Ex|p/r1 dx 6 C
∑

k: 2k6c(Nλ)−1

2kp/r1 |X(2k)|

6 C
∑

k: 2k6c(Nλ)−1

2k(p−q1)/r1 sup
k
|X(2k)|2kq1/r1

6 C
∑

k: 2k6c(Nλ)−1

2k(p−q1)/r1 sup
k
‖χE(2k)‖

q1
L

q1
x L

r1
t

.

We use (13) and sum the geometric series to obtain

‖χE‖pLp
tL

r1
x

6 Cλ−q1(Nλ)−(p−q1)/r1N1− q1
r1

6 Cλ−pλ(p−q1)(1−1/r1)N1− p
r1 .

Since p > q1 and λ 6 1 we get (14).

We now complete the proof by obtaining the strong type estimate. Again, we may
assume that ‖gi‖L2(dσ) = 1 for i = 1, 2, so that

∏2
i=1 |(gidσ)∨| 6 1, and write

2∏
i=1

|(gidσ)∨| 6
∑
k≥0

2−kχEk

where

Ek =
{

(x, t) : 2−k <

2∏
i=1

|(gidσ)∨(x, t)| 6 2−k+1
}
.

Since r0 > q0, we can choose ε sufficiently small so that q1 < r1, and fix q such that
q1 < p < q < r1. Then,∥∥∥ 2∏

i=1

(gidσ)∨
∥∥∥
LqLr1

6 C
(∫ (∑

k≥0

2−kr1 |(Ek)x|
)q/r1

dx
)1/q

.

By concavity we bound this by∥∥∥ 2∏
i=1

(gidσ)∨
∥∥∥
LqLr1

6 C
(∑
k≥0

∫
2−kq|(Ek)x|q/r1 dx

)1/q

.

By (15), we have |(Ek)x| 6 cN−12k, so that∥∥∥ 2∏
i=1

(gidσ)∨
∥∥∥q
LqLr1

6 C
∑
k≥0

2−kq(N−12k)
q
r1
− p

r1 ‖χEk
‖pLpLr1 ,

and by (14), the right hand side of the above is bounded by

C
∑
k≥0

2−k(q−p)(1−1/r1)N−
q
r1

+ p
r1N ( 1

p−
1
r1

)p
2∏
i=1

‖gi‖qL2(dσ).

Thus, by summing the geometric series, we obtain∥∥∥ 2∏
i=1

(gidσ)∨
∥∥∥
LqLr1

6 CN
1
q−

1
r1

2∏
i=1

‖gi‖L2(dσ),

11



and we are done. 2

Combining Lemmas 1 and 3, we see that global bilinear estimates follow from esti-
mates restricted to parallelepipeds, with no loss in the power of N . Combining with
Proposition 2.1, we obtain the following corollary.

Corollary 1 Let q > 8/5 and r > 2. Then

‖eit∆f1 e
it∆f2‖Lq

x(R2, Lr
t (R)) 6 CN

1
q−

1
r ‖f1‖2‖f2‖2

whenever N � 1, and f̂1, f̂2 are supported on 1-separated subsets of B1(Ne1).

3. Bilinear estimates imply linear estimates

By scaling and rotational invariance, the estimates of the previous section yield esti-
mates of the form:

Definition 2 We denote by R∗(2× 2→ (q, r)) the estimate

‖eit∆f1 e
it∆f2‖Lq

xL
r
t
6 C2j(

n+1
q + 1

r−n)‖f1‖2‖f2‖2

whenever f̂1, f̂2 are supported in 2−j-separated subsets of B2−j (ξ0) ⊂ An.

Indeed, by an application of Cauchy–Schwarz and interpolation with Lemma 2, the
estimates in [6, 13, 17, 29] yield R∗(2 × 2 → (q, 1)) when q ≥ n+1

n−1 . Similarly, using the
localization of the temporal Fourier support as in the proof of Lemma 3, by Bernstein’s
inequality, Tao’s estimate [23] yields R∗(2× 2→ (q, r)) when r ≥ q > n+3

n+1 . Interpolating
the two we see that R∗(2× 2→ (q, r)) holds when

q >
n+ 3

n+ 1
, and

n+ 1

q
+

2

r
< n+ 1.

In two spatial dimensions, this is improved by interpolation with Corollary 1, so that
R∗(2× 2→ (q, r)) holds when

q > 8/5,
3

q
+

2

r
< 3, and

4

q
+

1

r
< 3.

In particular,

R∗
(
2× 2→

(q
2
,
r

2

))
holds when q > 16/5, r ≥ 4, n = 2, (16)

and

R∗
(
2× 2→

(q
2
,
r

2

))
holds when q >

2(n+ 3)

n+ 1
, r >

2(n+ 3)

n+ 1
. (17)

Definition 3 We denote by R∗(2→ (q, r)) the estimate

‖eit∆f‖Lq
xL

r
t
6 C‖f‖2

whenever f̂ is supported in An.

12



Let q ∈ [2,∞] and r ∈ [2,∞). Let ψ be a smooth and positive function, supported in
(1/2, 2), that satisfies

∞∑
k=−∞

ψ(2−k| · |) = 1,

and set f̂k = ψ(2−k| · |)f̂ . Since the temporal Fourier transform of eit∆fk is contained
in the set {τ : |τ | ∼ 22k}, by the Littlewood–Paley inequality∥∥∥∑

k

eit∆fk(x)
∥∥∥
Lr

t

6 C
∥∥∥(∑

k

|eit∆fk(x)|2
) 1

2
∥∥∥
Lr

t

Using Minkowski’s inequality in L
r/2
t then L

q/2
x , we have

‖eit∆f‖2Lq
xL

r
t
6 C

∞∑
k=−∞

‖eit∆fk‖2Lq
xL

r
t
.

Assuming R∗(2→ (q, r)) and scaling, we get ‖eit∆fk‖Lq
xL

r
t
6 C2k( n

2−
n
q−

2
r )‖fk‖2, so that

‖eit∆f‖2Lq
xL

r
t
6 C

∞∑
k=−∞

22k( n
2−

n
q−

2
r )‖fk‖22.

By Plancherel’s theorem, we get the desired estimate (Sq,r) of Conjecture 1. Hence in
order to prove (Sq,r) it is enough to prove R∗(2→ (q, r)).

Recalling that the estimates (Sq,r) for q ≥ 2(n+2)
n were already proven in [6,13,17,29],

Theorem 2 is a consequence of (16) and (17) combined with the following proposition.

Proposition 3.1 Let q0, r0 ∈ (2,∞) and n+1
q0

+ 1
r0

= n
2 . If R∗(2× 2→ ( q2 ,

r
2 )) holds for

(q, r) in a neighbourhood of (q0, r0), then R∗(2→ (q0, r0)) holds.

Proof. By Plancherel, it is enough to prove

‖eit∆f̂ ‖Lq0
x L

r0
t

6 C‖f‖2
where f is supported in An. In order to apply the bilinear estimate, we square the integral
as in [3], so that

‖eit∆f̂ ‖2
L

q0
x L

r0
t

= ‖eit∆f̂ eit∆f̂ ‖
L

q0/2
x L

r0/2
t

.

For each k ∈ Z we partition Rn into dyadic cubes τkj of side 2−k. We write τkj ∼ τkj′ if

τkj and τkj′ have adjacent parents, but are not adjacent. As in [1], [18] and [27], we use a
Whitney type decomposition of Rn×Rn away from its diagonal D, so that (Rn×Rn\D) =
∪k ∪τk

j
∼τk

j′
τkj × τkj′ . Writing f =

∑
j f

k
j , where fkj (−ξ) = f(−ξ)χτk

j
(ξ) we have

eit∆f̂(x) eit∆f̂(x) =

∫ ∫
f(−ξ)f(−y)e2πi(x·(ξ+y)−2πt(|ξ|2+|y|2))dξdy

=
∑

k,j,j′: τk
j
∼ τk

j′

∫ ∫
fkj (−ξ)fkj′(−y)e2πi(x·(ξ+y)−2πt(|ξ|2+|y|2))dξdy

=
∑
k

∑
j,j′: τk

j
∼ τk

j′

eit∆f̂kj (x) eit∆f̂kj′(x).

13



For k ∈ Z, we define the bilinear operators Tk by

Tk(f, g) =
∑

j,j′: τk
j
∼ τk

j′

eit∆f̂kj e
it∆ĝkj′ ,

so that
eit∆f̂ eit∆f̂ =

∑
k

Tk(f, f).

We will prove that there exists an ε > 0 such that

‖Tk(f, g)‖
L

q/2
x L

r0/2
t

6 C2
2k
(

(n+1)( 1
q−

1
q0

)−n( 1
2−

1
p )
)
‖f‖p‖g‖p (18)

for q ∈ (q0 − ε, q0 + ε) and p ∈ (2− ε, 2 + ε).
To see this we interpolate the hypothesis which is equivalent to

‖eit∆f̂kj eit∆ĝkj′‖Lq/2
x L

r/2
t

6 C22k(n+1
q + 1

r−
n
2 )‖fkj ‖2‖gkj ‖2

with the trivial estimate ‖eit∆f̂kj eit∆ĝkj′‖L∞x L∞t
6 ‖fkj ‖1‖gkj ‖1, to obtain

‖eit∆f̂kj eit∆ĝkj′‖Lq/2
x L

r0/2
t

6 C2
2k
(

n+1
q + 1

r0
−n(1− 1

p0
)
)
‖fkj ‖p0‖gkj ‖p0

for some p0 < 2 and q in a neighborhood of q0. Since fkj and gkj′ are supported in sets

of measure ∼ 2−nk, applying Hölder’s inequality, we get for (q, p) in a neighbourhood
of (q0, 2),

‖eit∆f̂kj eit∆ĝkj′‖Lq/2
x L

r0/2
t

6 C2
2k
(

n+1
q + 1

r0
−n(1− 1

p )
)
‖fkj ‖p‖gkj ‖p.

Using the relation n+1
q0

+ 1
r0

= n
2 , this is the same as

‖eit∆f̂kj eit∆ĝkj′‖Lq/2
x L

r0/2
t

6 C2
2k
(

(n+1)( 1
q−

1
q0

)−n( 1
2−

1
p )
)
‖fkj ‖p‖gkj ‖p. (19)

By concavity when p < 2 and Lemma 4 when p > 2 (choosing ε sufficiently small), we
have

∥∥∥ ∑
j,j′:τk

j
∼ τk

j′

eit∆f̂kj e
it∆ĝkj′

∥∥∥
L

q/2
x L

r0/2
t

6 C

 ∑
j,j′:τk

j
∼ τk

j′

‖eit∆f̂kj eit∆ĝkj′‖
p/2

L
q/2
x L

r0/2
t


2/p

.

Combining this with (19) and applying Cauchy–Schwarz inequality gives

‖Tk(f, g)‖
L

q/2
x L

r0/2
t

6 C2
2k
(

(n+1)( 1
q−

1
q0

)−n( 1
2−

1
p )
) ∑

j

‖fkj ‖pp

1/p∑
j

‖gkj ‖pp

1/p

6 C2
2k
(

(n+1)( 1
q−

1
q0

)−n( 1
2−

1
p )
)
‖f‖p ‖g‖p

for all q ∈ (q0 − ε, q0 + ε) and p ∈ (2− ε, 2 + ε), which is (18).

Note that Proposition 3.1 would follow from

‖eit∆f̂ ‖Lq,∞
x L

r0
t

6 C ‖f‖Lp,1 , (n+ 1)
(1

q
− 1

q0

)
= n

(1

2
− 1

p

)
14



for q in a small neighbourhood of q0, where Lp,q denotes the Lorentz space. In fact, by
real interpolation (see for example [21]) this gives ‖eit∆f‖

L
q0,2
x L

r0
t

6 C‖f‖L2,2 , and since

q0 ≥ 2 and Lq0 = Lq0,q0 ⊃ Lq0,2, we get the desired inequality. We can rewrite the above
estimate as

‖eit∆f̂ eit∆f̂ ‖
L

q/2,∞
x L

r0/2
t

6 C ‖f‖2Lp,1 ,

so that it will suffice to prove

|{x ∈ Rn : TχE > λ}| 6 Cλ−q/2|E|q/p, (n+ 1)(
1

q
− 1

q0
) = n(

1

2
− 1

p
) (20)

for measurable sets E and q in a neighbourhood of q0, where

Tf :=
∑
k

‖Tk(f, f)‖
L

r0/2
t

≥ ‖eit∆f̂ eit∆f̂ ‖
L

r0/2
t

.

By (18), we have ∥∥ ‖Tk(χE , χE)‖
L

r0/2
t

∥∥
L

q1/2
x

6 C22δ1k|E|2/p1 ,∥∥ ‖Tk(χE , χE)‖
L

r0/2
t

∥∥
L

q2/2
x

6 C2−2δ2k|E|2/p2 ,

for p1 ∈ (2− ε, 2), q1 ∈ (q0 − ε, q0) and p2 ∈ (2, 2 + ε), q2 ∈ (q0, q0 + ε), where

δ1 :=
(

(n+ 1)
( 1

q1
− 1

q0

)
− n

(1

2
− 1

p1

))
> 0,

δ2 := −
(

(n+ 1)
( 1

q2
− 1

q0

)
− n

(1

2
− 1

p2

))
> 0.

Decomposing T = TK + TK , where

TKf =
∑
k6K

‖Tk(f, f)‖
L

r0/2
t

and TK =
∑
k>K

‖Tk(f, f)‖
L

r0/2
t

,

by Minkowski’s inequality and summing the geometric series’, we see that

‖TKχE‖Lq1/2
x

6 C22δ1K |E|2/p1 , ‖TKχE‖Lq2/2
x

6 C2−2δ2K |E|2/p2 .

Now

|{x : TχE > λ}| 6 |{x : TKχE > λ/2}|+ |{x : TKχE > λ/2}|,

so that by Tchebyshev’s inequality,

|{x : TχE > λ}| 6 C
(
λ−q1/22q1δ1K |E|q1/p1 + λ−q2/22−q2δ2K |E|q2/p2

)
.

Optimizing in K, yields (20) for p and q defined by

1

p
=

δ2
(δ1 + δ2)p1

+
δ1

(δ1 + δ2)p2
,

1

q
=

δ2
(δ1 + δ2)q1

+
δ1

(δ1 + δ2)q2
.

The condition (n + 1)( 1
q −

1
q0

) = n( 1
2 −

1
p ) is satisfied, and by varying p1, p2, q1, q2 we

obtain (20) for q in a neighbourhood of q0. This completes the proof. 2
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4. Appendix

Lemma 4 Suppose that the spatial Fourier transforms of Fk : Rn×R→ C are supported
in a sequence Bk of finitely overlapping balls of the same radius. Then for all ε > 0, there
exists α > 1 such that∥∥∥∑

k

Fk

∥∥∥
Lq

xL
r
t

6 C

(∑
k

‖Fk‖αLq
xL

r
t

)1/α

when 1/q, 1/r ∈ (ε, 1− ε).

Proof. By finitely many applications of the Minkowski’s inequality, we may suppose
that the sequence of balls 2Bk, with double the radius, are disjoint. Let φ̂ be a Schwartz
function equal to one on {|ξ| 6 1} and supported in {|ξ| 6 2}, and let φ̂k be translates

and dilations of φ̂ such that φ̂k is equal to one on Bk and supported on 2Bk. Defining
the operators Pk by PkGk = φk ∗x Gk, it will suffice to show that∥∥∥∑

k

PkGk

∥∥∥
Lq

xL
r
t

6 C

(∑
k

‖Gk‖αLq
xL

r
t

)1/α

, (21)

for general functions Gk, as then we can take Gk = Fk and PkGk = Fk. Note that when
q = r = 2, we can take α = 2 in (21) by Fubini and Plancherel.

Thus, it remains to prove that∥∥∥∑
k

PkGk

∥∥∥
Lq

xL
r
t

6 C
∑
k

‖Gk‖Lq
xL

r
t
,

as then we may interpolate with the case q = r = 2 to get the result. Now (21) follows
from Minkowski’s inequality and the fact that

‖φk ∗x Gk‖Lq
xL

r
t
6
∥∥ |φk| ∗x ‖Gk‖Lr

t

∥∥
Lq

x
6 ‖φ‖L1

∥∥‖Gk‖Lr
t

∥∥
Lq

x
,

which is a consequence of Minkowski’s integral inequality followed by Young’s inequality
and scaling, and so we are done. 2
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