MIXED NORM ESTIMATES OF SCHRODINGER WAVES AND
THEIR APPLICATIONS
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ABSTRACT. In this paper we establish mixed norm estimates of interactive Schrédinger
waves and apply them to study smoothing properties and global well-posedness of

the nonlinear Schrodinger equations with mass critical nonlinearity.

1. INTRODUCTION

The Strichartz estimate shows the dispersive nature of Schrodinger waves, which
can be formulated via mixed norms ([21, 14]). More precisely, for admissible (g, 7)
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Here a pair (q,r) is said to be admissible if it satisfies % =n(s—-1), ¢r > 2
with exception (q,7) = (2,00) when n = 2 and e"® denotes the free propagator of
Schrédinger equation.

Due to scaling, the frequency localization via Littewood-Paley decomposition does
not give any improvement to the aforementioned Strichartz estimates. However, it
was observed by Bourgain [1] that by considering low and high frequency interac-
tions of two Schrodinger waves, namely bilinear control of €2 fe? g, it is possible
to obtain a refinement of Strichartz estimate in L7 ,(R x R?) (note that (4,4) is an
admissible pair when n = 2). In [16] Keraani and Vargas recently extended Bour-
gain’s results to higher dimensions by showing that a sharp LE"; MR xRY),n > 1
estimate holds for the interactive Schrodinger waves.

Our first result is that such refinement of Strichartz estimate is also valid in the

mixed norm setting for n > 3. It is stated as follows:

Theorem 1.1. Let n > 2. Let (q,r) satisfy that 2/q = n(1/2 —1/r), 2 < r < 4,
and q > 2. Then for |s| <1—2/r,

(1.1) le"2 e gl are e SIS

Compared with non-mixed norm estimates ([1, 16]), the estimate (1.1) actually

all,_.-

gives a stronger interactive estimate in that spatial derivatives of higher order can
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be traded between two waves when n > 3 and ¢ < r. By Plancherel’s theorem (1.1)
trivially holds for (r,s) = (2,0) and when n = 2 it was obtained in [16] including
(q,7) = (4,4). This estimate obviously has a scaling structure in L? space so that the
estimate is invariant along the admissible (g,r). Making use of (1.1) it is possible
to move a certain amount of derivative on one to the other function. So (1.1) is
useful when one studies the smoothing property of nonlinear Schrodinger equations
of power type. The range on s is sharp, since (1.1) fails for |s| > 1 — 2/r (see the
discussion below Proposition 2.1).

The estimate (1.1) is strongly connected to the bilinear restriction estimates for
the paraboloid (see [16, 18, 22]). In fact, for the proof of Theorem 1.1 we establish
estimates for bilinear interactions between waves at different frequencies. They rely
on the argument used to prove the bilinear restriction estimate for the paraboloid
[18, 22], which makes use of wave packet decomposition and induction on scales (see
Proposition 2.1 and Corollary 2.4 below). It is also possible to obtain generalization
of (1.1) which can be compared with null form estimates for wave equations (see
[13, 18]). Some of such estimates can be directly deduced from (2.1) via simple
rescaling argument. However, we do not pursue it here since we are mainly concerned
with applications to mass critical problems in which the natural scaling structure is

important.

Aside from the power type, one of the most typical nonlinearity is that of Hartree
in the study of nonlinear Schrédinger equations (see (1.4) below). To handle the
Hartree type nonlinearity, we consider the trilinear operator H which is given by

H(f, g,h) = |V|> (e fe' g)e .

|>~™ which is the con-

Here |V|?>~" is the pseudo-differential operator with symbol |¢
volution with ¢,|z|™2. To make the operator defined properly, we assume n > 3
throughout the paper when we use the notation |V[*™". As it is turned out (see
Theorem 1.3 and Theorem 1.4), the trilinear estimate enables us to control the in-
teraction of waves arising in Hartree type nonlinearity more effectively. It is stated

as follows:

Theorem 1.2. Let n > 3 and let (4,7) be admissible. Suppose that si,S2,s3 are
positive numbers satisfying > s; = 1. Then, if s3 > %

4 <
(12) 1HCF.0. VR g S IAI, Noll, IR,
If s1 > %, then

” <
(13) IH(Vf.9.0) g S 1A, Noll, IR,
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It should be noticed that the estimates (1.2), (1.3) are invariant under scaling for
all admissible (G, 7) (cf. Lemma 2.5). For the proof we first show frequency localized
estimates (Proposition 2.6 below) which also rely on the bilinear interaction esti-
mates and the scaling structure of H. Compared with (1.1), a stronger interaction

|27n

estimate is possible thanks to the operator |V which gives additional decay in

frequency space.

Now we consider applications of Theorem 1.1 and 1.2 to nonlinear Schrédinger
equations. We are concerned with the Cauchy problem of L? critical nonlinear
Schrédinger equation in R™, n > 3, of which nonlinear part is given by the nonlinear

potential V' (u) of Hartree or power type:

iug + Au=V(uwu, (t,z)€[0,T]xR", T >0,

(1.4)
u(0,x) = ug(x) € H*(R™).

That is to say, V(u) = slz|2 % [u> or V(u) = klu| with x = +1. Here u :
[0,7] x R™ — C is a complex valued function. If u is a solution to (1.4), the scaled
function A2 u(A%t, Az), A > 0 is also a solution. Hence (1.4) is invariant under the
scaling in L? space (i.e. L?* critical). By the Duhamel’s principle the problem (1.4)
is equivalent to solving the integral equation for ¢ € [0, T7;

(1.5) u(t) = etdyg — i /0 =D (Y () () dt.

It is well known that the problem (1.4) is locally wellposed for every s > 0 (see
[2, 23]). The lifespan of solution u depends on the H* norm of ug if ug € H®, s > 0,
and the profile of g if ug € L?, respectively. The solution u € C([0,T]; H*) to (1.4)
satisfies some conservation laws, namely, mass and energy; for any ¢ € [0,77], if s > 0

[u()]|72 = lJuoll72,
and if s > 1

E(u(t)) = S [IVu()|z: +w/V(U(t))IU(t)!2dfc = E(uo),

N | —

where w = 1/4 if V(u) = slz|™ * [u]* and w = 5 if V(u) = klulw. If the data
is sufficiently smooth (s > 1), various results were established by using the classical
energy argument. However, it does not work any longer when 0 < s < 1 and there
have been a lot of works devoted to extending those results to lower regularity initial

data (for instance see [1, 6, 9]).

We firstly apply Theorem 1.1, 1.2 to study the smoothing properties of solutions
to the Cauchy problem (1.4). We consider a strong global (in z-space) smoothing
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effect such that the Duhamel’s part
(1.6) D(t) = u(t) — " uy € C([0,T); H)

for all T" within the lifespan when the initial data ug is in H*, 0 < s < 1. The
smoothing actually stems from the interaction of Schrodinger waves arising in the
nonlinear term. It was first observed by Bourgain [1] for V (u) = k|u*,n = 2,5 > 2/3
and later extended by Keraani and Vargas [16] for V(u) = slulv,n > 1,5 > sy,
where s; = 3/4,s, =n/(n+2) for 2 <n <4, s, = (n*>+2n—238)/n(n+2). To
utilize the interaction, they established refined bilinear Strichartz estimates in LZT::
as mentioned above. In the following, we get better smoothing effects that (1.6)
holds for a rougher ug, using the Theorems 1.1 and 1.2 together with the duality
arguments based on the Bourgain space ([1, 16]).

Theorem 1.3. Let n > 3. (1) If ug € H*(R™) and 1/2 < s < 1, then there
is a maximal existence time T* > 0 such that a unique solution u to (1.4) with
V(u) = klz|™2 % |u|? exists in C([0,T*); H*) and D satisfies (1.6) for all T < T*.
(2) Let s, = 5 forn =34 and s, =1— 3% forn >5. If ug € H*(R%), s, <s <1,
then there is a maximal existence time T such that there exists a unique solution u
in C([0,T%); H®) to (1.4) with V(u) = k|u|~ and D satisfies (1.6) for all T < T*.

In part (2) we do not have any improvement on 2-d result which was obtained in [16]
(s9 = %) The above result shows that the Hartree type interaction is more effective
than the power type when n > 5, which may be interpreted as weaker (of lower
power) nonlinearity causes a lower interaction between the waves. The smoothing
effect can be used to show an H' mechanism for the blowup phenomenon of the
Cauchy problem (1.4) (see Remark 1.3 of [16]). In [16], it was shown that if T* is
finite, then
VD)l 2 (T 1)~

for power type NLS provided that (1.6) holds for all 7" < T*. Hence, part (2) of
Theorem 1.3 extends the possible range of s. Similarly, using part (1) of Theorem
1.3 and the argument in [16] together with well-known scaling argument, one can

also get the same blowup rate of D(t) for the finite time blowup solution of Hartree
type NLS as long as vy € H*(R") and 1/2 < s < 1.

We now consider the global well-posedness of defocusing L? critical Hartree equa-
tion, (1.4) with k = +1, for rough initial data in H°,0 < s < 1. Recently Chae
and Kwon [3] considered the same problem (1.4) and they got global well-posedness
for up € H*®, 2(n—2)/(3n —4) < s < 1. Their result is based on the so-called
I-method. (For details and recent development of I-method, we refer readers to
[4, 5,6, 7,9, 10, 11, 12].) We here make further improvement. By exploiting the
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interaction of Schrédinger waves systematically (Proposition 2.6), we obtain better
decay estimates for almost energy conservation and interaction Morawetz inequal-
ity (see Proposition 4.1, 4.3) which are the major estimates for I-method. As a
consequence we get the following global well-posedness theorem.

Theorem 1.4. Let n > 3 and V(u) = |x|~2 % |u|>. Then the initial value problem

of (1.4) is globally well-posed for data uy € H*(R™) when 4§Z:§) <s<l1.

The global well-posedness for the spherically symmetric data in L? was shown by
Miao, Xu and Zhao [19]. They adopted the method due to Killip, Tao and Visan
[15]. For the 2-d cubic NLS, Colliander and Roy [9] recently combined the improved
estimate in [7] with a Mowawetz error estimate by using the double layer bootstrap
in time, and established the global well-posedness for the L? critical NLS on R? with
data in H®, s > 1/3. It seems highly possible that such approach also makes further
progress for the Hartree equations if it is combined with the results of this paper.
We hope to address such issues somewhere else. Compared to the previous works,
the use of mixed norm estimates makes our proof of almost energy conservation and
interaction Morawetz inequality more systematic and flexible (see Section 4). We
believe that it may be useful in studies of various related problems.

This paper is organized as follows: In Section 2 we will obtain the bilinear in-
teraction estimate, trilinear Hartree type interaction estimate, and prove Theorem
1.1, 1.2. In Section 3 we will show the local well-posedness and smoothing effect
of Duhamel’s part of solutions to (1.4). The Section 4 is devoted to showing the
global well-posedness of defocusing Hartree equation. Lastly we append a brief in-
troduction to wave packet decomposition of Schrodinger wave, which will be used
in Section 2.

We finally list the notations which are frequently used in the paper:

e A < B means that A < CB for some constant C' > 0 which may vary from lines
to lines. We also write A ~ B when A < B and B S A.

e The symbol V denotes the gradient (0/0y,--- ,0/0,) and A the Laplacian V-V =
>, 0%/07. We also denote (=A)z by |V].

e Let Jr be the time interval [0,7]. For a measurable function F' the mixed norm
q 1

is defined by [|F|lLopr spxrny = (fJT (fRn |F(t,z)|" dx) > - We use [|F||s, to
denote || F'[| a.rmxrn). L7 is the usual Lebesgue space L7 (IR™).

e The Fourier transform of f is defined by F(f)(¢) = f(¢) = [ e f(x) dx and its
inverse by F~(g)(z) = (2m)™" [ e®€g(€) d€. Hence e f(x) = F ' (e " F(f))(x)
= (27)™" fRn ei(zf—t\SIQ)f(f)df_
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e Let N denote dyadic number and let Py be the Littlewood-Paley projection oper-
ator with symbol x(§/N) € C§° such that y is supported in the set {1/2 < |¢] < 2}
and > n. gyadic X(§/N) =1, § # 0. We also define P, =id — ., Py.

e The inhomogeneous Sobolev space H*(= H*(R"),s € R) denotes the space {f €
8" |Ifllme < oo}, where ||l = (Xyor N* I Pu Sl + IPLFI3)2 ~ IKV)*fllze =

<f<§)28|f(§)|2 d§>2. Here (A) = /1+[A]2. We will also use the homogeneous
Sobolev space H* = {f € 8'/P : || f|l ;- < 0o}, where P is the totality of polynomials
and the seminorm || f{| ;7. = (3 y-0 N23||PNf||%2)% ~ |IVI*fllz2. We note here that
if |s| < n/2, the definition of H* makes sense in S’" and C° is dense in H® (cf. [20]).

2. MIXED NORM INTERACTION ESTIMATES FOR THE SCHRODINGER WAVES

In this section we first prove bilinear interaction estimates for the Schrédinger
waves. Considering the mixed norm space, it is possible to get a better interaction
estimate than the one obtained in [16]. We denote by B(¢, p) the ball centered at £
with radius p.

Proposition 2.1. Let n > 2. Suppose that supp ]/C\ C B(&,p1) and supp g C
B(no, p2) for some |&l, |mol < 1. If |€o — no| ~ 1 and 0 < p1, p2 < 1, then for e >0
and (q,7) satisfying that r < 4,2 < q and1—2 < % <(n+1)(G -1

€2 e ™2 gll yarzpr2 S min(or, p2) 07 2l gl 22,
where a(q,r) = (n+1)(1 —2/r) —4/q.
It can be shown that the bounds in the above estimates are sharp up to €. Indeed,
assuming p; < po, let us consider the functions f and g given by f = x4 and g = x

with A = {€: & —1] < p2 & < pr,i = 2,...,n}and B = {£: &4 +1] <
P2, & < p1,i=2,...,n}. Then it is easy to see that |e?® f(x)], [e*2g(x)| > cpi™

if |z1], [t| < epy? and |a| < cpyt, i =2,...,n for some ¢ > 0. Hence
pn+1—@—§ < HeimfeitAgHLg/?L;/?
' ~ e lgle
Letting p; — 0 we can see that this implies a(q,r) — e < n+1— M — ‘é for

any € > 0. It also shows the failure of the estimates when % > (n+1)(3 — %). The
example above is actually the squashed cap function which was used to show the

sharpness of the bilinear restriction estimate [24].

Remark 2.2. When n > 2, using (2.2) below and Plancherel’s theorem, we can show
that for (q,r) satisfying 1 — 2/r > 2/q and r < 4,

. . . _2y_2
HeltAfeltAg”Lf/QLg/z SJ Hlln(pljpz)n(l ) q ||f”L2HgHL2
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It is also sharp as it can be shown by using the functions f and g given by J/"\: XA
and g = xp with A={{:[{ —ei| <pri}and B={¢: [{+er| < pu}

For the proof of Proposition 2.1 we will use the wave packet decomposition for
the Schrédinger operator (see the appendix). Such decomposition was used to study
Fourier restriction estimates [18, 22, 26].

Proof of Proposition 2.1. By symmetry we may assume p; < ps. We start with

recalling the estimates
(2.1) €2 fe*2gll a2 sz S N fllz2lglle

for % < (n+1)(3—12), 2 <qr <4. See Theorem 2.3 of [18]. Also we make use of
the estimate™

(2.2) e fe ™ gllare < py” el

which already appeared in the previous literature (for instance see [1] and [16]). For
the convenience of reader we give a simple proof based on Plancherel’s theorem.

Using an affine transformation we may assume & = 0. By decomposing the
Fourier support of ¢ into finite number of sets, rotation and dilation, it is enough
to show (2.2) whenever f and g are Fourier-supported in B(0, p;) and B(ey,0) for
some 0 < § < 1, respectively. We write

-~

61 F () g ) = / =) F ()5 dedy,

Freezing & = (&,,...,&,), we consider a bilinear operator

B(f.g) = / 1 ER US40 F e, E)5(n)ded.

We make the change of variables ( = (Cl,{’g, v Cor1) = (E+ 1,162 + n]?). Then

by direct computation one can see that ‘ ) = 2|& — m1| ~ 1 on the supports of

9(&1,m)
f and g. Hence making the change of variables (£1,17) — (, applying Plancherel’s

theorem and reversing the change variables (( — (&1,7)), we have

|Be(f. 9)llzez S (0 E)F) iz,

Since e f(z)e"g(x) = [ Bg(f(~, £),4(+))d€, by Minkowski’s inequality we get
e e g zas 5 [ 15690l .
This gives the desired estimate (2.2) by Cauchy-Schwarz inequality because |£| < p;.

*Tt actually reads as ||e® fe'*4

p2-

gllzzzz S min(pr, p2) "7 (11 z2llgl o2 since we are assuming py <
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When n = 2,3 we only need to interpolate (2.1), (2.2) and [|¢"2 fe ™2 g||foopr S

| fllz2]lgll 2 for the proof of Proposition 2.1. It gives all the desired estimates. Hence,
similarly when n > 4, it is sufficient to show that for ¢ > 0

. . n=3_
(2.3) "2 fe" gl paerzprere S p1” 1 fllz2llgl 2.

Here (g, r.) converges to (2,4) as € — 0. A similar estimate already appeared in
[18] for the wave operator and its proof is based on the induction on scale argument.
We also follow the same lines of argument.

Let A be a large number so that A > p;? and let us set Q(\) = Q(\) x (=, \),
where Q(A) is the cube centered at the origin with side length 2\. We make an
assumption that

. , n—3
(2‘4) ||€ZtAf€ZtAg||Lt1L§(Q(,\)) S p1’ )\a||f||L2||9HL2-

Due to (2.2) and Holder’s inequality the above is valid with o = 1/2. Now we
attempt to suppress a as small as possible.

Let 0 < 0 < 1 and let {b} be the collection of the A\!~-cubes b partitioning Q(\).
We make use of the wave packet decomposition and Lemma 4.8 which had crucial
role in the proof of the sharp bilinear restriction estimates for the paraboloids [22].
We provide some basic properties of wave packets in the appendix. To proceed we
make use of the notations in the appendix.

Using the wave packet decomposition at scale A and triangle inequality, we have

"2 fe 2 gllyrzienn < D11 e fre" or iz,
b 7T

Using the relation ~, we break the mixed integration over b so that
||€imf€itA9||Lng(Q(,\)) <I+1,

where

I=Y1I > e gnlluze,
b

T~b and T'~b

T=>"01 3 e gpllizn)-

b Tob or T'%b
For the first we use the induction assumption (2.4) to get
n—3
ITSp 2 AN 1Y frlleel Y grllee
b Twb T~b

because b is a cube of size ~ A\17%. Hence by (4.17) and Schwarz’s inequality

—3

IS XX fllz2llg .



MIXED NORM ESTIMATES AND THEIR APPLICATIONS 9
Holder’s inequality and (4.18) give

I Y @B e grlag S ANl zllgl e
Tob or T'%b

Since there are only A\“-cubes b and p? > A\~1, it follows that
115 0% AN fllgll o

Combining two estimates for I and II, we get

. . n=3
(2.5) 12 fe* 2 gl Lirzion S o7 XD+ XD f 2 gl 2.

Therefore we see that the assumption (2.4) implies the above estimate (2.5). Since
€,0 > 0 can be chosen to be arbitrarily small, we get for any a > 0

||eitAf€itAgHL%L2 o) S P1 )\aHf”L?HgHL?

by iterating the implication (2.4) — (2.5) finitely many times'. To upgrade this to
the global one, we need the following globalization lemma in [18].

Lemma 2.3. Let S; = {(,¢:(§)) : € € Ui}, i =

boundary and the induced Lebesgue measures do;(§) = d&, which satisfy ||do;|| < C;,
0i(B(z,p)) < Cp™t for any z,p > 0 and |ci(;,(x,t)| < Ci(1+ |z + |t])~7 for some

C; > 1 and o > 0. Suppose that for some 2+2 >qo, 0> 1 and 0 < e K o,

1,2 be compact surfaces with

2
| va:daz'HLgOL;O(Q(A)) < CA [ [ I1fill 2oy
i=1 i=1

11 26(i_ o )L—i_ 2e<1
Let - Yr1 1o 2¢+o \r

2(0+1 ) Then, for q > q

||Hfzdoz||w<c 7 (max(Cy, Cp))" 0 n)HHszwm

with some a > 0 depending on o.

Let us define two extension operators by
h/da — ei(z-é—tlﬁlz)ﬁ(ﬂm(g)d& % - /ez‘(xf—tlfﬁ)ﬁ(ﬂ)h(g)dg
P1 P2

for smooth 5 supported in B(0,2) and § =1 on B(0,1). Since supp fC B(&, p1)
and supp g C B(no, p2), by Plancherel’s theorem it is sufficient to show that the

estimate
2 2
— n=3
ITT Padoill i 200 < P27 A T IRl
i=1 i=1

"For this one should note that the constant ¢ in (2.5) is independent of €, \.
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implies the global estimate

2 — n—3 ( ) 2
— €l
] hidai|| a2 prrre S oy [T 115012
i=1 =1

with g(a) = 1, r(a) — 2 and €(a) — 0 as o — 0. Hence in view of Lemma 2.3, we
only need to check that

do(, )] S (1+ || + [¢) 7.

This is easy to see by using stationary phase method because py, po < 1. It completes
the proof of Proposition 2.1.

2.1. Proof of Theorem 1.1: Bilinear interaction estimates. We note that
the bilinear estimate in Proposition 2.1 is invariant under rescaling when 2/q =
n(1/2—1/r). Hence, by Proposition 2.1 and rescaling one can easily see the following
Corollary 2.4, which shows that there is an interactive compensation when one
considers the Schrodinger waves of different frequency levels. Throughout the paper
we denote by A(p) the set {£ : [£| ~ p}.

Corollary 2.4. Let n > 2. Let (q,r) satisfy that 2/q = n(1/2 — 1/r), 2 < r < 4,
q > 2. If supp f C A(Ny) and supp g C A(Nz) for 0 < Ny < Ns, then for any
e >0,

| 4 Nl 1-2/r—e
62 e g S (R2) Wlielles
2

We now give the proof of the Theorem 1.1. The assertion for s = 0 follows from
the Holder’s inequality and Strichartz estimate. By symmetry we may assume that
s > 0. Let Py be the Littlewood-Paley projection as stated in the introduction. For
simplicity we set fy = Pyf and break e®® fe*®g so that

itA p itA itA itA
e fe" g = E " fn e gn, -
N1, Na: dyadic

for any f € H® and g € H™®. Since |V| ~ N, on the Fourier support of gy,, it is
enough to show that

1 1
) ) 2 2
DI A O3 A T A N O I T A
N1, N2 Ny Ny

Let us set N15 = N1 N,. By the triangle inequality

|| Z eitAleeitAgNQHL?/zL;m S I+ I],
N1, N2
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where

I = H Z ZeitAmeeitAgNzHL;I/QL;/Q? I = H Z ZeitAlezeitAg]\b“Lg/?L;/?‘

lel N2 JV1<1 N2

Since I <> x>0 N NZrhte >N, vz llz2llgns, || 22 by the triangle inequality and Corol-
lary 2.4, we see that

15 30 M Nl

Ni1>1
ZN””“ZWWMB%ZNM%M%
Ni1>1
1 1
5 (Z N128||fN1||%2) 2 (Z N2_25||9N2||%2) 27
N1 N2

provided 2/r — 1 — s+ ¢ < 0. We now turn to II. By the triangle inequality
and Corollary 2.4, IT <37y N[ 2re >on, 1Nl g, || 2 Hence, by Schwarz’s

inequality

1-2/r—e—s s % S %
ms 'y N wamm ZNWmM

Ni<1

§(ZN125||fN1IIL2 ZN g 122)*

Ny

as long as 1 —2/r — e — s > 0. This completes the proof of Theorem 1.1.

2.2. Proof of Theorem 1.2: Trilinear interaction of Hartree type nonlin-
earity. First we recall the following which is a consequence of Strichartz estimate
and Hardy-Littlewood-Sobolev inequality.

Lemma 2.5. For any admissible (¢,T),
19 W) e S W F 12 llgllzz 1]l 2

and the estimates are invariant under the rescaling (f, g, h) — (fr, gx, ha) = (A2 f(A-),
Az g(A), A2h(X)) for any A > 0.

To show this, observe that for any admissible (G, ) there is an admissible (g, )
such that (1/¢,1/7") + (0,(n—2)/n) = 3(1/q,1/r). Then, using Holder’s and
Hardy-Littlewood-Sobolev inequalities one can get the desired estimate.

Via frequency localization on annulus we first obtain the following trilinear inter-

action estimate.
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Prop051t10n 2.6. Let n > 3 and Ny, Ny, N3 be positive numbers. Suppose that
suppf suppg, supph are contained in A(Ny), A(N3y), A(N3), respectively. Then
for any admissible pair (q,7),

(2.6) IH (S g, W) e S C (N1 Noy N[ fll 2l gl 22 172l 2,

where

min(Nl,Ng,N3) 1/2
max(Nl, Nz, Ng)
For the proof of Proposition 2.6 it is enough to consider two endpoints (¢',7") =

(1,2), (2,;2%)
we may assume that Ny > Ny. On account of scaling structure (Lemma 2.5) we

G(N15N27N3> - (

because interpolation gives the remaining estimates. By symmetry

may also assume that
1 = max(Ny, N3).
Hence we can further assume that 1 >> min(/Vy, No, V3) since the desired estimates
are already contained in Lemma 2.5 when Ny ~ Ny ~ Nj.
We now prove Proposition 2.6 by considering the cases Ny > N, and Ny ~ Ns,
separately. To begin with, we recall the following simple lemma which can be easily
shown by using the Strichartz estimates and rescaling.

Lemma 2.7. If supp ]?C A(N), for q,r > 2 satisfying n/r +2/q < n/2

1€ Fllgry < NB7774 | f]lo.
Case N; > N,. In this case the spatial Fourier support of e

in A(2N;) because N; > N,. Hence, |[V|*™™ ~ N7 on the Fourier support of
eitAfez‘tA

UA feitA g is contained

g. Using Hormander-Mikhlin multiplier theorem we see that
(27) HH<f7 g, h)HquLF’ S./ le_nHeitAfeitAgeitAhHLglL;’ .
We now have three subcases (i) 1 = N3 > Ny > Ny, (i) 1 = Ny > N3y > No,
(i) 1 = Ny > Ny > Nj.

We consider the case () first. Taking (¢',7") = (2
inequality, it follows that

(£, 9. W, 2y S NET 29" SRl 1 1alle™ fll ey

n
z

) ,HQ) mn (2 7) and using Holder’s

Since 1 > Ny, using (2.2) and Bernstein’s inequality (or Lemma 2.7), we get

L (N,
(0 55 () 7 1ol

This gives the desired estimate for (¢',7") = (2 Similarly, taking (¢',7) = (1, 2)

) n+2)
in (2.7) and using Holder’s inequality, we have

IH(f, 9, W)z S NP1 fllnzrelle™ g™ Al 2z
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By (2.2) and Lemma 2.7, we get

-2
Ny

1 =
7.0 0lgsz < 85 (32) W lelgliolale

Hence we get the desired bound for (¢',7) = (2, 1) because Ny < Nj.
The remaining two cases (ii), (¢4i) can be handled similarly. In fact, for the case
(i7), repeating the same argument with (2.7), (2.2) and Lemma 2.7 we see that

. . . n—1 n—2
179N, 2y S Ml e g luzialle™ hllizery S No® No® ([ fllezllglnallFll 2
T

t

and

n—z
2

. . . n—1 2
1H(f, 9. )iz S e Fe™@ gl pzralle™ Rl pzree S No® Ny || Fll2llgllzz (172 2

because 1 > N,. So we get the desired estimates for (¢, 7) = (1, 2), (2, Tf—];)

Finally, for the case (iii), by repeating the same argument one can show that for
~1\ 2n
(q,7) = (1,2), (2,55),

n=l n-2
(g W)l S N3 ™ No® ([ flle2llgllzz ([ l] -

This completes the proof for the case N; > Ny. Now we turn to the remaining case
Ny ~ Ns.

Case N; ~ N,. In this case |V[* ™ can not be handled simply as before. So we
need an additional argument to handle this. We begin with decomposing |V[*~" so
that
V= NER(IVI/N)
N:dyadic
with a cut-off 1) supported in A(1) T. Here m(|V|) is the multiplier operator defined
by m(|V])f = F*(m(|-|)f) for a measurable function m. Then we have

(2.8) H(fog.h) = Y N>"(|V|/N)(e" fe2g)e'* h.

N:dyadic
We first try to obtain estimates for ¢(|V|/N )(eitA feitA 9) ¢tA], We claim that for
(a,’?,) = (17 2)’ (27 n2__:_12>7

le(IVI/N) ("2 fe" S g)e | g

(2.9) L L
SNZ (min(N, N3)) 2 || fllzzllgll g2 z2-

TActually the sum is taken over N < max(Ny, N2) because of the supports of ]?7 qg.
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To show this we break f and ¢ into functions having Fourier supports in cubes
of side length 272N. Let {Q} be a collection of (essentially) disjoint cubes of side
length 272N covering A(N;) and we set

fo=x0)f, o =xe&)7.
Then we have f =3, fq and g = >~ 9o, and we may assume that @ C A(Ny)
because N; ~ Ny. Then it follows that

LHS of (2.9) $ Y [ (IVI/N) (€™ foe™ g0)e™ hll 7,
Qe
S > IRAVINE foe™ g )e ™ Rl g

dist (Q,~Q')<4N

(2.10)

because Y(|V|/N) (e foe®ggr) = 0 if dist (Q, —Q’) > 4N. Hence it is enough to

show that for (¢,7) = (1,2), (2, n2f2)

o1 [(IVI/N)(e" fae " g )e Al 7
2.11 . .
S N= (min(N, Ns)) 7 [ follzzllgerllz2 1 2.

Indeed, from (2.10) and (2.11) we get

n=2, . ol
LHS of (2.9) < N“z (min(N, N3)) 2 > I follzllgorllz2 | ) 22
dist (Q,—Q’)<4N

n—2

1
N3 (min(N, Ny)) = ZHfQHL? 23 lgarllza)2 1Al
Ql

N

n=2, . n-i
< N'F (min(N, Ny)) £ lzeligl ez I e

For the second and third inequalities we used Cauchy-Schwarz inequality and or-
thogonality, respectively. We are reduced to showing (2.11).
Now observe that

BTN foegq) = [ [ emtem-itei)
X G(E/N — EU((€ +m)/N)S(n/N — o) o)y (m)

for some &, m9 € R™ and ¢ supported in B(0,1). Expanding ¥(¢,n) = ¢(& —
£0)Y (€ +n)p(n—mno) into Fourier series on the cube of side length 27 which contains
the support of ¥, we have

A& — &)Y(E+n)o(n —no) Z Ch.p B EHED)

k,lezn
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with >, ;|Cy,| < C, independent of &, 7. Plugging this in the above we get
@/’(|V|/N>(@itAerim9Q’) = Z Ck,1 €itAf¢]3€itAgéy
k,leZn
with || 512 = [ follz2 and [|ghllz2 = |lgerll 2 for all k1. To show (2.11) it suffices

_ 2n
to show that for (7,7") = (1,2), (2,;35),

n—1
» SN (min(N,N?))) 2\ fll2llgllz2 | 2| 22

€2 e ge ]| g

whenever ]?, g are supported in cubes @, Q" C A(N;) of side length N and B is sup-
ported in A(N3). Note that dist (supp ]?, supp ﬁ) ~ 1 and dist (supp g, supp ﬁ) ~ 1
because there are only two possible cases 1 = Ny ~ Ny > N3, 1 = N3 > N; ~ Ns.
By Holder’s inequality, (2.2) and Lemma 2.7, we get

le"2 fe*2ge™ Rl | S 1€ fllgrylle™ g™ hl zrz

L2012
S N5 (min(N, Na)) T 1 gl -
and
e fe"2ge Rz S e Fe™ gl prz €™ bl
< N5 (min(N, N3)) 7 || fllzz gl 2 12l

Therefore we get (2.11).
We now consider two cases 1 = Ny ~ Ny > N3, 1 = N3 > N; ~ N, separately.
When 1 = Ny ~ Ny > N3, from (2.8), triangle inequality and (2.9) we get

|H(f, g,h HLq < ZN2 "l (|V|/N) (e ztAfeztA Je itAhHLf'Lg’

N<4
<D N (min(N,N)) 7 [ fllellglzellRl| ze-
N<4

Summation in N gives

1 (fs 9. ) e S N3 F 22 llg 21 2

This proves the case (i) 1 = Ny ~ Ny > N3. When 1 = N3 > N; ~ N, note that
the summation is taken over N < Nj. By (2.8), triangle inequality and (2.9) we get
IR 9. W)l g S D N2\ £l g2 gl 2 1l -

N<N
The desired estimate follows from summation in N. This completes the proof of

Proposition 2.6.

Before closing this subsection we state a slightly strengthened version of Proposi-
tion 2.6 which is to be used in Section 4.
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Corollary 2.8. Let i = 1,2,3. If N; ~ min(Ny, Ny, N3), then Proposition 2.6 re-
mains valid with A(N;) replaced by B(0, N;) in the assumption.

Proof. When all of Ny, Ny, N3 ~ min(Ny, Ny, N3), (2.6) trivially holds by Lemma
2.5. If only one N; of Ny, No, N3 ~ min(Ny, Ny, N3), then by decomposition of
B(0, NN;) into dyadic shells, applying Proposition 2.6 to each dyadic shell and direct
summation of geometric series one can easily see that (2.6) holds. The other pos-
sibility is that two of Ny, No, N3 ~ min(Nj, Ny, N3). In this case we only need to
consider two cases Ny ~ N3 < Ny and N; ~ Ny < N3 by symmetry between N;
and N,. For both cases one can see without difficulty that the argument for the
proof of Proposition 2.6 works for either supp g C B(0, N;) and supp hC B(0, N3)
or supp fC B(0, Ny) and supp g C B(0, N). O

We now prove Theorem 1.2 by showing (1.2), (1.3), separately.

2.3. Proof of (1.2). For simplicity we denote by fn,(j = 1,2,3) the Littlewood-
Paley projection Py, f of f. Then we decompose

H(f797Vh) = Z H(fN17gN27VhN3)

N1,N2,N3
= Z ZH(fN179szVhN3)+ Z ZH(fN17gN27VhN3)'
Ni<Ny N3 Ni>Ny N3

By symmetry it is enough to handle the first one because the second can be handled
similarly. Then we have three possible cases; N3 < N3 < Ny, Ny < N3 < N, and
N; < Ny < N3. We separately treat the summation of each case.

Case N3 < N; < N,. This case is the easiest. It can be handled by using the
Strichartz estimates only. We claim that for any positive sy, $o, s3 with > s; = 1,

Y HUwawe Vi)l gy < 71 Nl 21

N3<N;i<N3

By setting Ny = N3Ny = N34 we write

Z H(prgNzthN:;) = Z Z Z H(fN1agN34vvhN3)'

N3<N1<N2 N4>1 N3=—00 N3<N1<N3zy

Using Lemma 2.5 we get

(SN 9Nsas V) | o o S Nall v 221 gsall 2 | s 22

So, the norm || 7. o v <, H(fNy s VhNg)HLg/L;/ is bounded by

CY N 3T NaNTINGE NG (N e ) (N v 2 ) (NS iy )

N4>1 N3 N3<N;<N3y
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It is also bounded again by

o 2 N D (N g2 (N3 s 2)
i 2

Ny2>1 N3

Cllfl

Then Cauchy-Schwarz inequality yields the desired bound.

Case N; < N3 < N,. In this case we set Ny = N1 N, = Ny and write

> H(wgne Vi) = 3D > Hfne v Vi)

N1<N3<Ng N4>1 N1 N1<N3<Nig

Using triangle inequality and Proposition 2.6 we see

_1
H%<fN179N147 VhN?’)“Lf/L;" 5 N3Ny * ||fN1||L2HQN14||L2||hN3HL2~

Hence the norm || >y <y, <n, H(fNs 9 Vth)“Lf’L;’ is bounded by
-3 —S —S —S S S
”h”[;m Z N, * Z Z Nsl SN NG (NTH| v e2) (VTR (| gl 22)-
Ny>1 N1 N1<N3<Ni4

Taking summation in N3 and using Schwarz’s inequality in Ny, we bound this by

1
51—5
st g| FIs2 h” I3 Z N4 .

Ny>1

Cllfl

Note that s; < % because s3 > % Hence we get the desired estimate.

Case N; < Ny < N3. We set N3 = N; Ny = Nyy and write

> H( N Vi) = D) > Hfx gne, Vi)

N1<N2<N3 N4>1 N1 N1<N2<Ni4

Using triangle inequality and Proposition 2.6 we have

” Z H(wagszVhNa)”Lg"Li’

N1<N3<N3
_1
SO D NNz llgws Nz v -

Ny>1 N1 N1<N2<Ni4

The left hand side of the above is

-3 —S —S —S S S
gso Z Ny ? Z Z Ny N, 2]\7114 SNTH| v 2 ) (NTE 1oy [ 22)-

Ny>1 N1 N1<N2<Niy

S llgl

Taking summation in Ny and using Schwarz’s inequality in Ny, the above is bounded
Csatl ) : .
by C’||fHHS1 Hg”[ém HhHHS3 >on>1 Ny 7. Since s3 > 5, we get the desired estimate.
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2.4. Proof of (1.3). We decompose

H(Vf,g,h) = Z H(VleagNzahN?,)'

N1,N2,N3
There is no obvious symmetry. We should consider the following six cases:
(i) N1 > Ny > N3, (i) Ny > N3 > N, (iii) N3 > N; > No,
(iv) Na > Ny > N3, (v) Ny > N3 > Ny, (vi) N3 > Ny > Nj.
As expected, the cases (i) and (i7) are the major parts. The others are sort of minor
terms which is easier to handle. Each of the cases can be handled by the same
argument as before.

Case (1) Ny > Ny > N3: To begin with, we set N; = N3y(= N3N,). By the triangle
inequality and rearrangement of the summation we get

|| Z H(VleﬁgN27hN3)||L‘t?'L£/

N3<N2<N;
5 Z Z Z ||H(va34agN27hNg)HL‘t?'L;"
Ny>1 Ny N3s>N2>Nj3
Applying Proposition 2.6 we bound the left hand side of the above by
-1 —S1 —S82 —S S1 S
lgll ., DSONSEY DT NGNS NG (NG| fvgallz2) (N52 P, | 22).-

Ny>1 N3 N3s>N2>Ns

Taking summ in Ny and using Schwarz’s inequality in N, we see that

syl
I O g i) S I Nl Bl S N

N3<N2<N; Ny>1

Since s; > %, we get the desired estimate.

Case (i1) N7 > N3 > No: We set N1 = Noy and rearrange the summation such that

2. =2 D

N1>N3>Na N1 Nz N24>N3>No

While applying triangle inequality and Proposition 2.6, the only difference to the
previous case (7) is that N3 is replaced by Ny. Hence by the same argument we get

—s1+1
IS Ollrsy SUAL gl bl 37 N7,

N12>N3>N2 Ny>1

Since s; > %, we get the desired estimate.
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The remaining cases (i7i) — (vi) can be handled by the same way. Repeating the

argument one can show

I Ol o SN,

N3>N1>Na Ny>1

| Z ()HL«I 1o . Z NZ%*‘S&

N2>N1>N3 Ny>1

Since s; > %, S9,83 < %, we get the desired bound. One can also show

1,
I Y Ol S, oSN

N3>N>>N1 Ny>1

I Ol < D SPEa

No>N3>N; N4>1

Therefore this completes the proof of Theorem 1.2.

3. SMOOTHING PROPERTIES

In this section we prove Theorem 1.3. The proof relies on the arguments using
the Bourgain space X*° for s,b € R. It consists of the functions u such that

pb_(// £ K|%WU®FW%)<«m

where @(7, €) is the time-space Fourier transform of u. We also use the norm X*°(.Jr)
for time interval Jp = [0, T] defined as

[[ul

HUHXW(JT) = inf{||¢||xs.0 : ©|s = u}.

We give proof by considering Hartree type V(u) = k|x|™2 * |u|* and power type
V(u) = k|u|" nonlinearities, separately.

3.1. Hartree type nonlinearity. In this subsection V(u) denotes s|z|™2 * |ul?.
Let us invoke V (u) = ¢|V[*™"(|u|?) for some constant c. Using the X** spaces and
Theorem 1.2, one can derive the following.

Proposition 3.1. Let n > 3. Then for any s,b > % there exists 0 < € < 1 such
that

(3.1) IV (| 1.y e S Ml

Xs,b-

Proof. We first show that for sg > 2 + 7

(3.2) IH(VE, g, h)||Leoree + [1H(f, 9, V)|l Lseree S || £l 250 ||l 2250 [| 2] 250 -
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Here we do not intend to obtain sharp sy but we here are content with some crude
estimate which is enough for our purpose. From the Sobolev embedding we note
that [|e"*(V) fll oz < 1]

IV (V) fe" 2 g)l ez S 1 Fllzwollgl oo

But this follows easily from the observation that

V"Gl < ( /Ig Lt /|€ >1)\§|2—”|é<5>|ds <NIG: + Gl

mso. Hence it is enough to show that

together with Leibniz rule and Schwarz’s inequality.

Now interpolating (3.2) with the estimate (1.2) of Theorem 1.2, we see that if
(q,7) is any admissible pair, s3 > % and Z?:1 s; > 1, then there exist 0 < 1,65 < 1
such that

(33) ”H(f?g7 Vh>HL§,+€1L§,+€2 5 Hf‘

Similarly, using (3.2) and (1.3), for any admissible pair (g,7) and the exponents

hl

Hs1 9’ Hs2 H$3 -

$1, S9, S3 with s1 > %, Z?:1 s; > 1, we can find ¢; and ey such that

(3.4) IH(V [, 9, h)HLg’+e1Lj+62 S I

One may write u(t, ) = ¢, [ €' [, /@& UENG(r — |¢]2, €)dédr by inversion and
translation in frequency variables. Hence, we get

(VP @) Vu)e,t) = [ [ Hieigo Vi) @) drarar.

where f-(§) = U(r — [¢[%,€), §-(€) = B(r — [€%,€), hr(€) = B(r — [¢[%,€). From (3.3)
and Minkowski’s inequality it follows that

h|

gl

Hs1 Hs2 Hs3 -

VP () Yl g ves / / / 1 Follagos g s Voo | ges cirddr'd”
Plancherel’s theorem and Schwarz’s inequality yield
(3.5) VP (wo) Vel gse e S lltllxensl[ollxszollwlxeso
Litarr

for any b > % and for any (q,7), s1,S2,53 as in (3.3). By repeating the same

argument, we also get

(3.6) IIVE (Vuo)wll e e S llul

xo10 [Vl x5z || W] x5s.6

for any b > 3 and for any (,7), s1, 52,53 as in (3.4).
We now fix s,b > 1/2. To show (3.1), we need to show that

IV (w)ull IVIV ()l o3 S llullxes-

XO,—%+€7
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By duality it suffices to show that

(&, )] S 190l o3

for U = |V*"(|ul*)u, |V* ™ (Vut)u, |V]* " (uVa)u and |V|*7"(Jul?)Vu. We first
handle the case U = |V|* " (Vuu)u. By Holder’s inequality we have

[, [V (Vu)u)| S 1]l IV (Vui)u]

By (3.6) we can choose (1/¢,1/7) close enough to the Strichartz line 2/g+n/r = n/2
so that 2/G+n/7 > n/2 and |||V|2*”(Vuﬂ)u||Lg/Lg, < ul
and Lemma 3.2 below, we see \WHL;;L; S ¥l 40,1« for some € > 0. Hence we get
VP @V, [V (jul) Ve,

IVI>"(Ju|?*)u can be similarly shown using (3.6), (3.5) and Lemma 3.2. This com-

3
Xs,b

ul

a'
q e
LIrL;

Ss0- By the choice of (g, )

the desired estimate. The remaining cases U =

pletes the proof of Proposition 3.1. O

Lemma 3.2. Let q,r > 2 with exception q # 2 when n = 2. ]f% + 2 < 5, then

||U||L;1Lg S luflxse
fors=s(gr)=5—-2—-"andanyb>4 If24+2>7%,
HUHL;’L; S luf|xob+e

forb:b(q,r):”T”—%—gL—r and any € > 0.

The first follows from the estimates [|e"® f|| oz, < | f Hgs(q ,, and the standard argu-
ment (for instance see [23]). Interpolation between the first estimate and the trivial
[ullpzz2 < [[ullxo0 gives the second.

By using the Proposition 3.1 and standard fixed point argument in X132t for
0 < e < 1, we prove the first part of Theorem 1.3. Here we note that Xl’%“(JT) —
C ([0, T); H' (R™)).

Proof of (1) of Theorem 1.3. We first show the local well-posedness. For this pur-
pose we define a nonlinear functional N by

N (u) = ¢(t)e"Sug — i (t/T) /0 OBV (u(t))u(t)] dt’

where ¢ is a fixed smooth cut-off function such that ¢(¢) = 1if |[t| < 1 and ¢(t) =0
if |t| > 2, and 0 < T < 1 is fixed. Then we use the well-known properties of X*?
(for instance see Proposition 2.2 of [16]);

(3.7) lo(t)e" 2ol

for any s, b, and

t
(3.8) I / AR 1) dt|
0

Xs,b § H'U,(]‘ Hs

xest(p) S TV P

Xt (Jr)
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forsGRand—%<b’§0,0§b§b’+1.
Let us define a complete metric space Br, by

8l €
= {u e X*F () ¢ Nullg gy, < P}

with metric d such that d(u,v) = |ju — UHXS’%‘”(J . From (3.7) and (3.8) with
T
b= % +eb = —% + €, e < € it follows that for any v € By,

IV (w))]

X5 +e ~ S llwollms + T HV(U)U”XL*%M-
If ¢ is sufficiently small, then we deduce from Proposition 3.1 that

IV (w)] S lluollm= +T¢6".

ok S Nuollar + TNl

Choosing p and T such that p > 2C||ug||zs and CT<~p* < p/2 for some constant

C, we see that the functional N is a map from Br, to itself. One can now easily

observe that A is a contraction. In fact, using Proposition 3.1 again, one can easily
see that for any u,v € By, and for sufficiently small T’

AN (u), N'(v)) S TV (w)u = V(v)o]
ST (Il

1
X573 ()

*d(u, )

+ vl

> SEANEAY xed+<(sp)

< T p?d(u, v).

Hence a choice of small 7" makes A be a contraction map. Therefore there is a
unique u € X*2+¢(J7) such that u(t) = e®ug + D(t), where

t
D(t) = —i/ OV (w)u(t')] dt’.
0
In view of Proposition 3.1 and the estimate (3.8), we have for s > 1/2

1] ) SV ()l ) S

< oQ.

1
Xl §+e Xl §+€( Xs,§+6(JT)

Hence the smoothing effect is obtained. Il

3.2. Power type nonlinearity. Adopting the argument in the proof of Proposition
3.1 and using Theorem 1.1, one can easily get the following.

Corollary 3.3. Let (q,r) be a admissible pair satisfying that 2 < r < 4 when n =3
and q,r > 2 when n > 4. Thenforb>% and 0 < s <1—2/r,

[Vl gz e S Nullxeslloll oo

The local well-posedness of the Cauchy problem (1.4) with V(u) = |u|+ is well-
known in H® space and also in X*° space [16]. Hence using Corollary 3.3 and

following the lines of argument in [16] we get the proposition.
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Proposition 3.4. Letn >3, s, =3 ifn=3, and s, =1 — (2)(2) if n > 4. Then
for b > % and every s > s, there is an € > 0 such that
IVl )| o,y v S < Jullg.

Once this is established, the proof of the second part of Theorem 1.3 is almost same
as the case of Hartree type nonlinearity, part (1). Hence we omit the details.

Proof of Proposition 3.4. Using duality it is enough to show that

[, V(Julu))] S 14
By direct differentiation the left hand side is bounded by a constant multiple of

ool Tl = [Val) < 371, ul [ Vuy]).

N>1

Here uny = Pyu for dyadic N > 1 and uy = }leu for the projection operator ]31 (recall
the notation in introduction). Using Hoélder’s inequality, we see that for n = 3

1 1
(L lul= [Vun ) S 10l o pon luNVun | oz el oe e
where (1/q1,1/r1) 4+ (2/¢,2/r) + (1/3)(1/q2,1/r9) = (1,1), and for n > 4
4
(], Jul | Vun]) S ||¢||LQ1L’“1HUVUN||Lq/2 T/2HVU’NHL‘12L’“27

where (1/q1,1/r1) +(4/n)(2/q,2/r)+ (1 —4/n)(1/q2, 1/r2) = 1. We want to choose
admissible (¢, ) which is (§,4) for n = 3 and arbitrarily close to (2, 2%) for n > 4,
respectively, and non-admissible pairs (q1,71) and (g2, 72) such that (1 / ¢1,1/r1) and
(1/ga2,1/13) are slightly above and below the Strichartz line, respectively. More
precisely, €, > 2/q1 +n/ry —n/2 > 0and 0 > 2/gs + n/ry —n/2 > —ey for small
€1, €3 > 0. With the choices of (¢1,71) and (gq, 72), using Lemma 3.2 and Proposition
3.3, we have for |s;] <1—2 and € > 0

4
(T, Tl * [ Vunl) S 6l oy
< Ny

U| X1 bHUN“Xl*Sl bHU| )5(60 b

sl e

Xsb Xs,b

when n = 3, and

4

(9], ul = [Vun]) S [l
< N(175731-4/n+60(174/n))||w” ol
~Y X y5 —€

n
Xe€0:b

u’ X1, bHu| X, b

when n > 4. Therefore, for s > max(sy,1 — s1) we get

o, ful )| € 3 N o

N>1

u‘ Xsb
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when n = 3, and

4 —s5—s1-4/n+eg(1—-4/n
(0, lulru)| S Y NOTsmsmt/mreal=t/mljp)| o,
N>1

4
ntl
Xs,b

ul

when n > 4. So we get the desired bound provided s > 1 — s; when n = 3 and
s > 1—s2 when n > 4. We now choose admissible pair (¢,) to be (,4) when
n = 3 and arbitrarily close to (2, %) when n > 4. Then we get the desired bound
for s > % when n = 3, and for s > 1— % when n > 4 because we can choose s; to be
arbitrarily close to 3+ when n =3 and to 2 when n >4, and 1 — 5 > max(2,1— 2).

This completes the proof of Proposition 3.4. U

4. GLOBAL WELL-POSEDESS OF HARTREE EQUATIONS.

In this section we give the proof of Theorem 1.4 which improves the global well-
posedness result in [3]. Based on I-method, the two main ingredients are the almost
energy conservation and almost interaction Morawetz inequality. Our improvement
results from the better decay control of these crucial estimates (Proposition 4.1, 4.3),
which are obtained by exploiting the trilinear interaction estimate (Proposition 2.6).
Since we basically follow the usual steps of I-method ([3, 4, 11]), we do not intend
to give all the details of the proof. Instead, we are devoted to proving Proposition
4.1, 4.3 after giving a brief explanation about the overall argument.

The I-method, introduced by Colliander et al. [5] to handle low regularity initial
data, makes use of a smoothing operator I which regularizes a rough solution up to
the regularity level of a conservation law by damping the high frequency part. For
0 < s < 1 the operator I : H* — H' (depending on a parameter N > 1) is defined
by

~

If(€) = m(©)f(€),

where the multiplier m(&) is smooth, radially symmetric, nonincreasing in |£| and
satisfies
1 I < N,
1-s
(&) le=2w

When the solution u of (1.4) is in H®, 0 < s < 1, E(u) may not be finite, but E(/u)
is finite. Since [u is not a solution to (1.4), E(Iu) is not expected to be conserved.

m(§) =

However, it is almost conserved and the deviation can be controlled by O(N~7),
o > 0, since the operator I gets close to the identity as N increases. In Proposition
4.1 we show that for p = 3/2

(4.1) E(Iu)(T) = E(Iug) + N"P*T(Z,(T)),
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where I'(r) = >~ ., O(r™) for some k,my,...,my > 1 and Z;(T) is the iteration
space norm defined by

Z,(T) = sup ||I<V>U||L§L;(JTan)-

(g,r) : admissible

After the Morawetz interaction potential for 3-d NLS was introduced by Colliander
et al. [6], it was extended to other dimensions [4, 11, 25]. To make use of such
estimates (e.g. local in time Morawetz inequality in [11]), the restriction s > 1/2 is
inevitable. However, this restriction can be removed by using an inequality for Iu
([4]). In fact, it is almost valid in the sense that for some p > 0

(| 1] 4(n—=1) 2(n=1)
L, ™ L," % (JrxR")

n—2 2n—6
(4.2) < T30 (HIuHLNL2 e xE) ||IuH" 1 + || Tu| 2 )

2(JTx R™) L°°H2(JT><IR”)
+ T NP D(Z,(T)).

The iteration norm Z;(T) is controlled initially provided that the critical Strichartz
norm of Ju is small (Lemma 3.1 in [3]). More precisely, there is a § > 0 such that if
Hull sw 20-n <0, then Z/(T) < [I{V) Tuol| 2 (R™).

L, ™ Lg% (JrxR7)
Therefore, once (4.1), (4.2) are obtained, the global well-posedness follows from the
usual accounting argument (see Section 5 in [3] or [4] for details). The threshold
regularity s is determined by the decay rate N~P*. Going over the argument in [3],

one gets the global well-posedness for ug € H® as long as N > 1 can be chosen such
that

1— 52(71 2)

KN " ~ NPT

for any arbitrarily large K. This is possible if s > (224(r7;;n23 ;- By Proposition 4.1

and Proposition 4.3 with (4.4) we get (4.1) and (4.2) with p = 3/2. Therefore we
conclude Theorem 1.4.

The rest of this section is devoted to the proofs of the almost energy conservation
and almost interaction Morawetz inequality; Proposition 4.1, 4.3.

Proposition 4.1. Let 0 < s <1 and N > 1. Suppose that uy € C3°(R") and u is
the solution to (1.4). Then for any ¢ >0 and T > 0

[E(Iu)(T) = E(Lug)| S N7 (Zi(T)* + Zi(T)° + Z(T)"° + Zi(T)").
Now let us consider the /-Hartree equation by

i(lu) + A(Tu) = V(Iu)lu + [I(V(u)u) — V(Iu)]u] = Nyood + Noads



26 MYEONGJU CHAE, YONGGEUN CHO, AND SANGHYUK LEE

where V(u) = |z]72 % |u|?>. We first recall higher dimensional interaction Morawetz

inequality for a general nonlinearity.

Lemma 4.2. Let u solve

i0u+ Au=N

on Jr x R™. Then, we have

_(n—1)/0T//HXRTLA(|yix|)|u(x,t)|2\u(y,t)|2dxdydt

T y—a
+ 2/ // |u(x,7f)|2 AN uy, t)dzdydt
Rn xR® \y - 35‘

< HU’HLO"L2 (JrxR™) H HiOOHQ Jp xRn)

N /0 / /R MmNt )ult. )Vt ) dedyt,

where {f, g} = Re(fVg— gV f).

The above is a slight modification of Proposition 5.5 in [25] which can be similarly

shown by making use of a Morawetz inequality

20 Y —
!Im/ Ju(t.z)|? Vult, y)ult,y) dydz] < Jlut)||7allu®)]]
R” xR™ ly — | Hz2

By applying the inequality in Lemma 4.2 to /-Hartree equation, we have that

T
—(n—l)/ // A(— N Tu(e, )P Tuly, t) Pdedydt
R7 xR™ ly — x|
+2/ // |Tu(z,t) |2|y | ANjood; Tu}(y, t)dxdydt

(4.3) + 2/ // |Tu(z,t)|? v- ANpag, Tu} (y, t)dzxdydt
R™ xR™

ly — \
< ||]u||L°°L2 (JxR™) ”] ||i°°H2 JpxRn)

+ /0 / /R . ITm (NpaaLu(t, y))V (Tu(t, z)) Tu(t, z)|dzdydt.

Since —A(|z|™!) = 476 for n = 3 and —A(|z|™!) = cu|z[~™) for n > 4, the first
integral of (4.3) is just

cn(n—l)/OT/n

. 2
V|2 | Tu(t, z) 2| dadt.
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We will estimate the error term which is given by

Error = |Tu(z,t)|? v

R xR™ | |

N ———

{Mada [U}(y, )dxdydt

Since the second term of (4.3) is positive, it follows from interpolation between the
. 1 _n=3 _n=3 3
estimates [|[V[2 fllzerz S A1 3 and (V75 fllzs, S NIVIT =[P, (for

HE
details see Proposition 4.1 in [3] or Lemma 5.6 in [25]) and Young’s inequality that

T

||]U|| 2(n—1)
L VL, (JpxRr)

S (ITullf el Tull? _y + Brror) | Tul/'~? 0=2/(n-1)

Lt H LOOH2
1_7 4(1-6)

N I\IUHLooLz!\IUH ot =4 Eror.
t Hac Hz

Now Holder’s inequality in time gives

[Tull s 2o
L, ™ Ly" % (JrxRn)

< m e
S T30 || Tul| P S

(4.4)
< T6D <]|IuHLOOL2HIuH" b y Tt HIUHQ" %1 + Error) :
2o 1 2 o1 2
Then (4.2) with p = 3/2 is the consequence of the following.

Proposition 4.3. Let 0 < s <1 and N > 1. Suppose that uy € C3°(R") and u is
the solution to (1.4). Then for any ¢ >0 and T > 0

Error < N™2t(Z,(T)° + Z,(T)™?).

In the whole argument N is assumed to be sufficiently large. So the small fre-
quency part of the solution does not play any significant role. Hence we do not need
dyadic decomposition for such portion. Here, we recall that P, = id — ., P,
For simplicity, abusing notation, we denote P; by P;. Throughout this section
Ny, ..., Ny are dyadic numbers > 1 and ZN]zl Py, =id for j=1,... 4.

4.1. Preliminary estimates. We first show the following inhomogeneous estimate
(cf. [8]) for the solutions with localized frequency.

Lemma 4.4. Let Ny, Ny, N3 be dyadic numbers > 1 and let u be a smooth solution
of iug + Au = F on Jr x R™ with the initial data ug. Then for (uy,us,uz) =
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(Pnyu, Pyyu, Pyyu) it holds that for any admissible pair (G, T)

sup V"l = )i — ) = 16) g e
(n1,m2,m3) ER3" Lo

< C(Ny, Ny, Ns)([|uoll3 + ||F||3itng(JTan))7
where C(Ny, Ny, N3) is same as in Proposition 2.6.

We show this by using Proposition 2.6 which works when all N; > 1. However,
due to P(= P;) which has symbol supported in B(0,2), we need to use Corollary
2.8 when one of N; is 1. By Proposition 2.6 and Corollary 2.8 we get

(45) (AP [, Prog, Prgh)|| e S C(N1y Noy No) [Py [ 22| Py 9| 2| P Bl 2

for Ny, Ny, N3 dyadic numbers > 1 and any admissible pair (g, 7).

Proof. By taking Py, to the equation and using Duhamel’s formula, we have
(t) = "oy + Fy(t)), j = 1,2,3,

where tg; = Py, (uo(-—n;)), F,(t,x) = —iPy, (f Ej(t)dt') and Fj(t') = e "A(F(t,—
n;)). Then we obtain

8
| !VIZ’"(ﬁlﬂz)ﬁsHLg/U JoxE™) <> Ly
k=1
where

Ly = [H 17a0277~$03)HLg’L2/(JTan); Ly = |[H U027U03)\|Lq'L2/(JTan)7

(a
Ly = [H(a
Ls = |[[H(F1,Fs,i3)]|,
L; = ||[H(Fy, i, Fs)

(F,

1’FQ’Q’ZOS)HLé,LFI(JTXR”)’ L4 = ||H( 1’aOQ’F?’)HL?/L;/(JTX]R")’

L = ||[H(io1, Fa,F3)]|
(F1,

Lg - ||H F

LT LF (JpxRn) LY LF (Jr xR

HLQ L¥ (JpxRn)’ F 3)HL;§/LQI(JT><]R7L)‘

The first term is easily handled by using (4.5). We only consider Lg. The remaining
terms can be treated similarly. By Minkowski’s inequality we have

1

Ls < (/JT (/Ot/;/ot |H(Fy(t), Fa(ts), Fs(ts))|| dtldtzdtg)q, dt) ?.

The right hand side is again bounded by

/ ||H(ﬁ1 (tl), ﬁg(tz), ﬁg(tg)) HLQ/LF’(JTXR”) dtldtgdtg
JTX]TXJT t

Applying (4.5) again, we get Lg < C'(Ny, ]\@,]\/;;)HFHUL2 (xR O
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Let o(€) be an infinitely differentiable function satisfying that for all € N3" and
£ = (&1,&,&3) € R3 there is a constant c(a) such that

(4.6) 080 (€)] < ca)(1+ [g) .

Let us define a multilinear operator A by

4.7) [A(f,9.h)](x) = / =0 (61, &, &3)|E2 + &3] 7D F(£1)F(E2)(Es) dErdEades,

where Z = $2% & We notice that A(f, g,h) = cf|V["(gh) if o(&1, 60 €5) = 1.
We now have the following.

Lemma 4.5. Let A be defined as above and let u be a smooth solution of iuy+Au = F
on Jp x R™ with the initial data ug. Then for (uy,us,us) = (Pn,u, Pyyu, Pyyu) it
holds that for any admissible pair (G, T)

1A Curs wz, ws) || oo gy S (N No, Na)([luoll7z + 1F 117112 g )
where C'(Ny, Na, N3) is same as in Proposition 2.6.

Proof. We choose another Littlewood-Paley projections Pg ,i = 1,2,3, such that
P§ Py, = Py, and the corresponding smooth cut-off multiplier o(N; 1) is sup-
ported in A(N;) if N; > 1 and B(0,2) if N; = 1. Then using Fourier inversion for o

(see below) the multilinear operator A can be rewritten as
[Au, ug, us)](x)

= [ Eaaltn 0. &) + IR TE) T () derdads
= C/( )3/1,2\,3(77)[%(- — )|V [P (ua (- — ma)us(- — n3))](z) dn,

where 7193(61,62,&3) = Yo N7 &)1o(Ny &) 1o(N3 '&3)0 (61,6, &3). By the condi-
tion (4.6), support condition of ), and routine integration by parts, we readily get

a uniform bound |6y 23/ 11 @s») < C(a) with respect to Ny, Ny, N3 for sufficiently
large |«|. By Minkowski’s inequality and Lemma 4.4 we get

| A(ur, ug, us3) HLg’L;’(JTan)

S_, ”51,273||L1(R3n) S%E ||U1( - n1)|v|2_n(u2(' - 772)”3(' - 773))||Lg/LFI(JT><]R”)
neR3™ ¢

S C(Na, N, N1)(Jluoll72 + (1 F W71 12 (g emy)-

Since C(Ng, N3, N1) = C'(Ny, N3, N3), we obtain the desired estimate. O
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The operator (V) behaves like N'=*|¢|* for |£] 2 N. An application of Littlewood-
Paley theory shows that the Leibniz rule holds for 7(V)(fg). Thus taking (V) to
the equation (1.4), we have

V)V (w)ulll iz (g xmen)

S N L T

L3L (Jr xR") L3LZ" % (JpxRn)
] IV n < Z(T)>.
s ey ) S 200T)

Combining this and Lemma 4.5, we obtain the following.

Lemma 4.6. Let u solve iuy + Au = V(u)u with the initial data uy € C§°. Then
for (uy,ug,uz) = (Pn,u, Pyyu, Pyyu) it holds that for any 0 < s < 1, T > 0 and
admissible pair (q,T)

ALV )u, IV )ug, I{(V)us)| S O (N1, No, N3)(Zi(T)* + Zi(T)°),

LI L7 (JpxRr) ~

where C'(Ny, Na, N3) is same as in Proposition 2.6.

Now we are ready to prove the propositions. We first give the proof of Proposition
4.1.

4.2. Proof of Proposition 4.1. Differentiating the energy FE(Iu)(t) of Iu with

, LE(Iu)(t) = Re [, O JulV (ITu)lu — I(V (u)u)]dz. Thus we get

respect to time
E(Iu(T)) — E(Iu(0)) = Re / ' Odu [V (ITu)Iu — I(V(u)u)] dzdt'.

We apply the Parseval formula to the right hand side and use the equation (1.4) to
get

|[E(u(T)) = E(Iu(0))| S Ea + Eb,

where

( m(&s + &+ &)
] 1§=0 (52) (53) (54)

x ATu(Ey) Tu(6) Tu(Es) Tu(€) dé; dé, dés dy dt’ |,

‘//4@ (1~ ety o+l

—

X [(V( Ju) (&) Tu(€) Tu(&s) Tu(&s) dé dgs dés déadt’ |,

) &2 + §3|_(n_2)
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For both E, and Ej,, we break u into w; = Py,u (i = 1,2,3,4) and exploit the
interactions among Schrodinger waves of different frequency levels using Proposition
2.6.

For E, we show that for all "> 0 and € > 0
(4.8) E, < N“2H(Z0(T)* + Z,(T)™).

It was shown in [3] with N~!'*. The improvement is actually due to the interaction
gain of (Nj/Nk)% in Lemma 4.6. Let us set

m(&a 4 &3 + &a)
m(&a)m(Es)m(&q) |

By dyadic decomposition and factoring out B(Na, N3, Ny) from the integral in E,,

B = B(Ny, N3, Ny) = sup
|€2|~Na2,|€3]~N3,|E4|~ Ny

1—

we get
Ea § f A[Ul,]_’ug, [Ug)](f4)f([U4)<€4)d§4dt/‘
N1, N2 N3, Ny R
= ). A(ATuy, Tug, Tug)] () Tuy(z) dzdt’|
N1,N2,N3,N4 "

where A is the multiplier operator as defined by (4.7) with the symbol

B 1 B m(& + 53 + 64)
0(&1,6,8) = B(Ny, Ny, Na) <1 m(ig)M(fs)m(&)) '

Note that o satisfies the condition (4.6). Then for (4.8) we need to show

2: N o L
B &y, Uy, Us, Ug) S N™2T(Z(T)* + Z1(T)'Y),
N1,N2, N3, Ns (N2)(N3)(Nyg) (U, U, Us, Ua) S (Z:1(T) (1))

where 4, = Ny 'A(V)tuy and @; = Nj(V)~lu,, 5 = 2,3, 4, and

Eau(wr, wo, w3, wy) = V)wy, I{NV yws, I{(V)ws)](x) [(V)ws(z) dzdt’| .

We now note that &, (ul, Uy, Us, Uy) = E,(TUy, Us, Us, Uy ). Hence by Hélder’s inequal-
ity
ga(ﬂla z527 ﬂ37 ﬂ4) < HA<I<V>:J47 I<V>a27 I<V>ag) ||LglL§/(JT><Rn) “I<V>ﬂ_1||LfL£(JTX]R")'
Taking admissible (g, 7), we apply Lemma 4.6 together with Sobolev imbedding (or

Bernstein’s inequality) and Hérmander-Mikhlin theorem to get
Ea(ty, Uy, U3, g) S C(Ny, Naoy N3)(Z(T)* + Z(T)"°).

For simplicity we also set
B(N27 N37N4)N1
(N2)(N3) (Ny)

a/(N17N2aN37N4>E XC(N4aN27N3>'



32 MYEONGJU CHAE, YONGGEUN CHO, AND SANGHYUK LEE

Then for (4.8) it is sufficient to show that for all ¢t € Jr and € > 0

(4.9) S a(Ni, Ny, N3, Ny) S N7t
N1,N2,N3,N4>1

Proof of (4.9). Since B and C(Ns, N3, N,) are symmetric on the permutation of
Ny, N3, Ny, we may assume
Ny > N3 > Ny.
Then for the proof we consider the sums of the three cases N > Ny, Ny =2 N >
N3 > Ny, N3 2 N, separately.
Case 1. N > Ny. We have m(&;) =1, 1 = 2,3,4, and m(&;) = 1 since Zj‘:lfi = 0.
o mE&) oy
So, the symbol (1 m(&)m(gg)m(&)) = (. Hence
B(Ns, N3, Ny) = 0.
Case 2. Ny 2 N > N3 > N,. Since Z?Zl & = 0, we have N7 ~ N,. By the mean
value theorem,

1 — m(&1) _ ‘m(@) —m(& + &+ &)
m(§2)m(&3)m (&) m(&2)

Since C'(Na, N3, Ny) = (N4/N»)2, we thus have

1 /N2
a< — ] .
~ NoNy \ N,

Taking sum in the order of Ny, N3, N4, we get
Z a < N~2InN.

N1~N22>N>N3>Ny

~ m(&z) ~ Ny

Case 3. N3 2 N. For this we need only to consider two subcases N; ~ Ny and
Ny > Nj since the case Ny > N, cannot happen by the condition ) . & = 0.

Case 3-1. N3 2 N, N; ~ N,. In this case, we have the bound
_ m(&1) Ny < 1
m(&2)m(&s)m(a) | NaNsNy ™ Nam(&3) Nam (&)
since 0 < m(&;) < 1. Then we consider two possible cases Ny ~ Ny > N3 > Ny, 2 N,
Ny ~ Ny > N3 > N > Ny, separately. When Ny ~ Ny > N3 > Ny 2> N, we have

1

< 1 (N4> : 1 (N4) 3
a Su — - _- .
~ |€3|~N37\15)4|~N4 NSm(fB)N4m(€4) No ~ N2*25N§Nj Ny

Hence, summation in the order of Ny, N3, Ny gives

Z a < N2

N1~N2>N3>Ns2ZN
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For the case Ny ~ Ny > N3 > N > Ny, it follows from the fact m(&,) = 1 that

as sup () S (o
(&5~ Ns sl oy N3m(§3) Ny \ No N=sNsN; \ N,
Summing Ns, N3, Ny, successively, we have acceptable bound

Z afJN_%.

N1~N2>N3>Ny2Z N
Case 3-2. N3 =2 N, Ny > N;. We have Ny ~ N3 from Zle & = 0. Since
m(&) > m(&a), we get

m(& + & + 54 ’ m(&1) Ny
m(&)m(&)m N2N3N4 m(&2)*m (&) N3Ny
We handle the cases N; 2 N and N1 < N, separately.
If N; 2 N, we have three possible cases; Ny ~ N3 > Ny > Ny > N, Ny ~ N3 >

~Y

N12N42N,N2NN3 >N12N2N4 WhenN2~N32N42N12N, smg

(4.10) we get
N; AL
S NTENENG \ N,

Summing in the order of Na, Ny, N1, we have Yy nvosnisnsn @ S N2, which is
acceptable. Similarly, when Ny ~ N3 > N; > N4 > N, it follows that

AP (%) :
~ NEZBNEN; \ N,

Then we get ZN2~N32N12N42NCZ < N~2 by summing in N, N, Ny, successively.
Finally, when Ny ~ N3 > N; 2> N > N4, we have

1
W< Ny Nyg\2
~ N'=sNZ*N, N,

So summation gives > n. nvos vy, @S N—2

(4.10) 1—

Now we turn to the case Ny < N. We again have three possible cases; Ny ~ N3 >
N4ZNZN1, NQNN32N2N4ZN1,N2NN32NZN1ZN4. Firstly,when
N2~N32N42N2N1,Wehave

_ N, (N4>5
CLN —3s S S
N33 N2 NG \ N,

which gives acceptable bound ZN2~N32N42N2N1 a < N72. For the case Ny ~ Ny >
N > N, > N it follows that

1
. Ny \ >
~ NZ2NZN, \ N,
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So, we have } v nonsnsn @S N72. Finally when Ny ~ N3 > N > N; > Ny,
we have

N N\ 2
“S e v )
N2 23N25N4 N2
Summation gives the bound NoNssNsNen, @ S N =3, Thus we conclude the
proof of (4.9). O

Now we turn to Ej and claim
(4.11) By S N7 (Z,(T)° + Zi(T)"2).

Decomposing the integral for E, dyadically, factoring out B(Ny, N3, N;) and using
Plancherel’s formula as before, we see that

EbSZB

N1,N2,N3,Ny

:ZB

N1,N2,N3,Ny

/0 | F A Tus, Tua)(€) F (P L (V () () dadt/‘

/O / AT, Tus, )| () P, T(V ()7 1) ddl

Hence, we get

B
4.12 Ey S %X &(u, U, U3, Uy),
N b Nlaszl:Vg,M (N2) (N3)(Ny) b(u, U, U, Uy)

where &, is defined by
Ep(u, wy, w3, wy) =

/0 / AV YT, (9w, 1(9)w3)) ()P, 1V () () dc|

Here @; are defined by the same way as for £,. We need the following lemma to get

a control of &,.

Lemma 4.7. Let u be a smooth solution of iuy + Au = V(u)u with initial data ug
on Jp x R™. Then, it holds that

E < C(Ny, N3, No)N(Z(T) + Z1(T)*).
Proof. For any admissible pair (¢, r), the Holder’s inequality yields
& < IV, (i, LV )its) Lt 1o 1PN LV ) 15
Applying Lemma 4.6 and Hormander-Mikhlin theorem we have
& S C(Nay N3, N)(Z((T)? + Zi(T)°) | Py I(V (W) @) || L9157 -
Then Lemma 4.7 is the consequence of the estimate
(4.13) 1P LV (@) @) || 1 (g ey S N1(Z0(T))°

for admissible (¢,7) with2 <¢<4ifn=3and 2<¢g< o0 ifn >4,
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In fact, using Bernstein’s inequality and Hormander-Mikhlin theorem, we see that
forr>r

n_j

(4.14) || Py V(@)@ S N7 Pi IV (@)@ p S N7 VYV ()| s

From Leibniz rule for the operator 1(V) and Holder’s inequality with 1/7 = 1/r +
1/ry we bound || I(V)(V (u)a)||.: by

= s (LD ul) el gz + el ™ o g [Vl -

It follows from the fractional integration that ||I(V)(V(u)u)|/r: S ||I(V>u||i;2 for
1/ri = 2/rs — (n— 2)/n and - < ry < 2. Since 7 > 1, the equation 1/7 =
3/r2 — 1+ 2/n also implies ro > 3n/(2n — 2). Combining this with (4.14) we get
1PV gz S N2 LTl
1 T L2L2 (Jp xR
If (¢,7) and (3¢, ) are admissible, then n(% —1—-1+42)—1=1. The admissibility
and range of ry ensure that 2 < ¢ <4ifn =3 and 2 < ¢ < oo if n > 4. This proves
(4.13). O

Using (4.12), Lemma 4.7 and the Hormander-Mikhlin theorem, we have

Ey <

~Y

P <N2>2%3<N4> C(Na, Ny, Ni)(Z1(T)° + Z1(T)"2)

N
Then from (4.9) we see > x n, v n, BWC < N7zt Therefore we get the

desired estimate (4.11). This completes the proof of Proposition 4.1.

4.3. Proof of Proposition 4.3. We recall that Ny = I(V(u)u) — V(Iu)ITu. Then
by Holder’s inequality we get

Error =

- (Noaa VTt = TuVNyeq) (y, t)dadydt

|Tu(z,t)|
R™xR™ | |

* /0 / /R o T (Noaalu(t, y))V (Tu(t, 2)) Tu(t, )| dvdydt

T
< ([ Wl (9014 (9Nl L) ) W3
+ ”-/V’badHLg'L;’(JTXRn)||Iu||LfL§||<V>Iu||%§°L§(JT><R”)
< IV Nl 1 e 107D Tl 3 ) T e
< WY [V () = V) I] g (20T
Hence the proof of Proposition 4.3 is reduced to showing that

KV [V (w)u) = V(Iu) || 2 S NT2HZU(T) + Z/(T)°).

LI L (JpxRr) ~
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For any fixed ¢ € LIL"(J; x R™) we set

wyu) — V(Tu)Iu] ¢ dzdt| .

n

Then by duality it suffices to show that for e > 0
3.
(4.15) E. < N72H(Z,(T)° + ZI(T)9)||¢||L,§L;(JTxR”)'

We now follow the similar lines of argument as in the proof of the Proposition
4.1. By Plancherel’s theorem we have

// 5(&2, 65, &0)|& + &7 2”“(52)]“(53)]“(54)@(51)dfdt :

i, 6=0

where

0(£2,83,64) = (§a + &3+ &4) (1 - m&+ &+ 6) ) .

m(&)m(&)m(€a)
We decompose u1, ug, uz and ¢ into the sum of dyadic pieces u; = Py, u(j = 1,2,3,4)
and ¢; = Py,1. Let us define the maximum of || on each dyadic piece by

B = B(Ny, N5, N;) = sup 0(£2,63,64)].

|€2|~N2,|§3]|~N3,[§4|~Na

We now set o(&s,&3,&4) = §*15(§2,§3, ¢,) and define the multilinear operator A to
be as in (4.7) with the symbol o. Then

E. <

// (Tuy, Tug, Tuy)|(2)y () dadt|

N1 N2 N3,N4

Hence, as before we see

B
4.16 B, < X E.(u, iy, iy, dly),
( ) N17N227]:V3,N4 <N2><N3><N4> ( 2, U3 4)

where u; = (Nj>(V>_1uj,j =2,3,4 and &, is defined by

Vg, I{V)ws, [{V)w,)](z), (z) dzdt’| .

(wla Wz, W3, U)4

n

Using Holder’s inequality and Lemma 4.6 as before, we get

Ee 51 C(N27 N3, N4>(ZI(T)3 + ZI(T)Q)HwHLng(JTan)'

Then by this and (4.16) the proof of (4.15) is reduced to showing that for € > 0

B(Ny, N3, Ny)
2 (Na) (Ns)(Ny)

N

+€

X O(NQ,N3,N4) SJ N~

N1,N2,N3,Ny
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Finally notice that B ~ BN, where B is the same upper bound appearing in the
estimates of F, and Ej,. Then we get the desired bound from (4.9). This completes
the proof of Proposition 4.3.

APPENDIX; WAVE PACKET DECOMPOSITION

For a fixed A > 1, let us define the spatial and frequency grids Y, V, by
Y =\272" v =X"122"nQ?2),
respectively. For each (y,v) € Y x V, we associate a tube T}, given by
Tyo = {(2,t) €R" x R: |t| <4\, |z — (y+ 2tv)| < A2}

Obviously T}, , meets (y, 0) and its major direction is parallel to (2v, 1). Let us denote
by T (A) the collection of these cubes. Conversely for a given T'= T, , € T (), we
set

Yr =Y, vr = .

Let n be the function satisfying supp 7 C Q(2) and >, ,.n(- — k) = 1. Let
Y e C5°(B(0,1)) with Y, .y (- — k) = 1. For T € T()) we also set

T —=yYr

fr(a) = n(=g0) F PO = vr)]

Then it is obvious that

eitAf — Z eitAfT

TeT(N)

provided fis supported in Q(1). Then by routine integration by parts one can see
that €2 fr is essentially supported in 7. More precisely, for any § > 0 there is a

C = C(M,0) such that
€2 F ()] < OXNM|fl 2 if (z,t) & NT.

For the details of the wave packet decomposition see [22] (also see [17]). For the
proof of Proposition 2.1, we use the following estimates due to Tao [22].

Lemma 4.8 (Relation ~ between wave packets and b). Let 1 < A\, 0 < < 1 and
{b} be the collection of the cubes b of side length ~ \'=° partitioning Q(\) x (=), \).
Suppose that f,g € L? with f,g supported in Q(3/2) and they are decomposed at

scale A such that
f: Z fT7 g = Z gr.
) )

TET(A TeT (A
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Then if dist(supp J?, supp g) ~ 1, there is a relation ~ between tubes T € T (\) and
cubes b € {b} such that for any € > 0,

(4.17) DD frllze < OXNIflG2s Do 1D grllze < OXlgllZ,
b

T~b b T~b

and for any b and € > 0,

(4.18) || Z eitAfTeitAgT’HL?(b) < C)\e/\cd—(n—l)/4||f||L2||g||L2

Tb or T'A£b

with ¢ independent of 6, €.
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