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Abstract. In this paper we consider several variants of the pointwise convergence prob-
lem for the Schrödinger equation, which generalize the previously known results.

1. Introduction

Let us consider the free Schrödinger equation in Rd × R, d ⩾ 1,

i∂tu+∆xu = 0,

with initial datum f . Then the solution can be formally written as

u(x, t) = eit∆f(x) = (2π)−d

∫
Rd

ei(x·ξ−t|ξ|2)f̂(ξ)dξ

where f̂(ξ) =
∫
Rd e

−ix·ξf(x)dx. The problem which was first considered by Carleson [7] is
to determine the minimal regularity s for which

lim
t→0

eit∆f(x) = f(x) a.e.

whenever f ∈ Hs(Rd). Here Hs is the L2 Sobolev space of order s which is defined by

∥f∥2Hs =
∫
|f̂(ξ)|2(1 + |ξ|)2sdξ.

For one spatial dimension (d = 1) Carleson showed a.e. convergence for f ∈ Hs when
s ⩾ 1/4 and the sharpness was later proven by Dahlberg and Kenig [10] who showed that
the condition s ⩾ 1/4 is necessary (also see [28]). In higher dimensions, d ⩾ 2, Sjölin [23]
and Vega [28] independently showed convergence for f ∈ Hs, s > 1/2 (also see [6, 9] for
earlier results). Results under weaker regularity assumptions (s < 1/2) had been known for
d = 2, which were improved along with the progress of Fourier restriction estimates for the
paraboloid or the sphere (see [2, 14, 18, 26, 27]). The best known result is convergence for
s > 3/8 ([14]). For d ⩾ 3, progress was very recently achieved by Bourgain [3]. By making
use of multilinear estimates for Fourier extension operators [1,4] he showed convergence for
s > 1

2 −
1
4d . Surprisingly, he also showed that the condition s ⩾ 1

2 −
1
d is necessary. So this

gives a new lower bound for d ⩾ 5.
In this note we consider several variants of the pointwise convergence problem. Notwith-

standing recent progresses the problem is still open in higher dimensions d ⩾ 2. It might
be premature to consider its variants in higher dimensions. So, we mainly work with such
variants in R1 (see also [17] for a related problem in the periodic case).

A natural generalization of the pointwise convergence problem is to ask a.e. convergence
along a wider approach region instead of vertical lines. One of such problems may be the
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nontangential convergence to the initial data (boundary values). It is natural to expect
that more regularity on the initial data is necessary to guarantee a.e. existence of the
nontangential limit. Since supt,x |eit∆f(x)| ⩽ ∥f∥Hs if s > d

2 by Sobolev imbedding, the

nontangential convergence follows by the standard argument if s > d
2 . However it was

shown by Sjölin and Sjog̈ren [21] that non-tangential convergence fails for s ⩽ d
2 . They

showed that there is an f ∈ Hd/2 such that

lim sup
(y,t)→(x,0)

|x−y|<γ(t), t>0

|eit∆f(y)| = ∞

for all x ∈ Rd. Here γ is a strictly increasing function with γ(0) = 0. This raises a question
about how the size (or dimension) of the approach region and the regularity which implies
pointwise convergence are related. One may also ask a similar question about the relation
between the degree of tangency and regularity when (x, t) approaches to x tangentially. To
investigate these questions we consider some model problems.

Convergence along restricted directions in R×R. Let Θ be a compact set in R. To measure
the dimension of Θ, we use a simple notion of dimension. Let N(Θ, δ) be the minimal
number of δ-intervals which cover Θ and set

β(Θ) = lim sup
δ→0

logN(Θ, δ)

− log δ
,

which is called upper box counting dimension (for example see [12]). It is useful for the
study of some maximal operators of which boundedness depends on the size of parameter
set (see [11,20] for related works).

We consider convergence of eit∆f(y) to f(x) as (y, t) → (x, 0) while y − x ∈ tΘ. More
precisely, we intend to find the optimal regularity s which guarantees

(1.1) lim
(y,t)→(x,0)
y−x∈tΘ

eit∆f(y) = f(x) a.e.

whenever f ∈ Hs. Following the usual argument, we consider the associated maximal
operator which is given by

MΘf(x) = sup
(t,θ)∈[0,1]×Θ

|eit∆f(x+ θt)|, x ∈ R.

Theorem 1.1. Let Θ be a compact subset of R. If s > β(Θ)+1
4 , then

(1.2) ∥MΘf∥L2([−1,1]) ⩽ C∥f∥Hs .

Obviously, by translation and dilation the above estimate holds for any finite interval.
Once it is established, we have the following result which can be proved by the usual
argument (see [22] for example).

Corollary 1.2. Let Θ be a compact subset of R. Then (1.1) holds whenever f ∈ Hs with

s > β(Θ)+1
4 .

This seems sharp because so is it when β(Θ) = 1 ([21]) and β(Θ) = 0 ([10]) but we don’t
know whether it is sharp or not when 0 < β(Θ) < 1.
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Convergence along variable curves Rd × R. Let γ be a continuous function such that

γ : Rd × [−1, 1] → Rd, γ(x, 0) = x.

Now we consider the pointwise convergence problem along the curve (γ(x, t), t). That is to
say, we want to find the optimal regularity s for which the convergence

(1.3) lim
t→0

eit∆f(γ(x, t)) = f(x) a.e.

holds whenever f ∈ Hs. When the curve γ is smooth, precisely, a C1 function, it was shown
in [15] that the boundedness of related maximal operator is essentially equivalent to that
of the free Schrödinger operator. However such smoothness condition excludes the curves
which approach (x, 0) tangentially to the hyperplane {(x, t) : t = 0}.

Here, we consider a curve which satisfies Hölder condition of order α, 0 < α ⩽ 1, in t;

(1.4) |γ(x, t)− γ(x, t′)| ⩽ C|t− t′|α

and is bilipschitz in x,

(1.5) C1|x− y| ⩽ |γ(x, t)− γ(y, t)| ⩽ C2|x− y|.
A simple example of such curve is γ(x, t) = x − vtα, v ∈ Rd with v ̸= 0. When d = 1, we
can prove the optimal results except for the endpoint cases (see Proposition 1.5).

Let us denote by BR(x) ⊂ Rd the ball (possibly interval) which has center at x with
radius r and by IT (t) the interval which has center at t and length 2T .

Theorem 1.3. Let d = 1 and 0 < α ⩽ 1. Suppose that (1.4) and (1.5) hold for x, y ∈
BR(x0) and t, t

′ ∈ IT (t0). Then

∥ sup
t∈IT (t0)

|eit∆f(γ(x, t))∥BR(x0) ⩽ C∥f∥Hs(1.6)

holds if s > max(12 − α, 14).

Obviously, (1.6) holds for any continuous function γ if s > 1
2 since the maximal inequality

is true by Sobolev imbedding. With γ(x, t) = x + 1/log(1/t) and the interval (0, 1), one
can show that this inequality fails if s < 1/2. See Proposition 1.5 below. The following is
an immediate consequence of Theorem 1.3.

Corollary 1.4. Let d = 1 and 0 < α ⩽ 1. Suppose that for every x0 ∈ R, there is a
neighborhood V of (x0, 0) such that (1.4) holds for (x, t), (x, t′) ∈ V and (1.5) holds for all
(x, t), (y, t) ∈ V . Then (1.3) holds whenever f ∈ Hs and s > max(12 − α, 14).

Now we discuss on the necessity of the condition on s in Theorem 1.3. It is sharp in
the sense that there are curves γ satisfying both (1.4) and (1.5) but (1.6) fails if s <
max(12 − α, 14). In fact, we will show this with γ(x, t) = x− tα (see Proposition 1.5 below).

Furthermore, with this particular curves, it also can be shown that for s < max(12 − α, 14),
there is an f ∈ Hs for which (1.3) fails. This can be done by making use of Stein’s maximal
theorem [24].

In order to show the sharpness of Theorem 1.3, we begin by proving the following propo-
sition.

Proposition 1.5. Let I be an interval and ν : I → Rd be a continuous function. Suppose
that γ(x, t) = x − ν(t) and that there is a point t0 ∈ I and ϵ > 0 such that (t0, t0 + ϵ) ⊂ I
and

diam {ν(τ) : τ ∈ [t0, t]} ≳ |t− t0|α

for all t ∈ (t0, t0 + ϵ). Then (1.6) holds only if s ⩾ max(12 − α, 0).
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Obviously the above assumption is satisfied with ν(t) = (tα, 0, . . . , 0) and s = 0.

Proof of Proposition 1.5. Fix λ≫ ϵ−1. Let us consider f which is given by

f̂(ξ) = eit0|ξ|
2
ψ(λ−

1
2 ξ)

where ψ ∈ C∞
0 (B(0, 1)). Then by rescaling

eit∆f(γ(x, t)) = (2π)−dλ
d
2

∫
eiλ(t0−t)|ξ|2eiλ

1
2 γ(x,t)·ξψ(ξ)dξ.

So, it follows that

|eit∆f(γ(x, t))| ∼ λ
d
2

if |t− t0| ⩽ λ−1 and |λ
1
2 γ(x, t)| ⩽ c for some sufficiently small c > 0. So,

sup
0⩽t⩽1

|eit∆f(γ(x, t))| ∼ λ
d
2

if x is contained in O(λ−
1
2 )-neighborhood of the set {ν(τ) : τ ∈ [t0, t0 + λ−1]} (of length

≳ λ−α) which has measure ≳ λ−
d
2 if α ⩾ 1

2 and λ−
d−1
2 λ−α if α < 1

2 . Hence the maximal
inequality (1.6) implies

λ
d
2λ−

d−1
4 max(λ−

1
4 , λ−

α
2 ) ⩽ Cλ

s
2λ

d
4 .

Now letting λ→ ∞ we get the desired condition. □

To see the necessity of s ⩾ 1
4 for (1.6) let us consider γ(x, t) = x− (tα, 0, . . . , 0) and the

function f which is given by

f̂(ξ) = ψ(λ−
1
2 (ξ − λe1)).

Here ψ is a smooth bump function compactly supported in a small neighborhood of the
origin and λ≫ 1. Then by translation and rescaling it is easy to see that

|eit∆f(γ(x, t))| ∼ λ
d
2

provided that |t| ⩽ λ−1 and |λ
1
2 (x1 − tα + 2λt, x̄))| ⩽ c for some small c > 0. Here

x = (x1, x̄) ∈ R×Rd−1. Hence sup0⩽t⩽1 |eit∆f(γ(x, t))| ∼ λ
d
2 if 0 ⩽ x1 ⩽ c/100 and

|x̄| ⩽ cλ−
1
2 /100. So, the maximal inequality (1.6) implies

λ
d
2λ−

d−1
4 ⩽ Cλsλ

d
4 .

Now letting λ→ ∞ we get the condition 1
4 ⩽ s.

Schrödinger equation with quadratic potentials. Let ω = (ω1, . . . , ωd) ∈ C1
loc(R) and set

Hω =
1

2

(
∆−

d∑
j=1

ωj(t)x
2
j

)
, x = (x1, x2, . . . , xd).

We now consider the Schrödinger equation with time dependent potential of the form

i∂tu+Hωu = 0, u(x, 0) = f(x),(1.7)

with f ∈ Hs(Rd). We denote by eitHωf the solution of (1.7). Then similarly as before we
are interested in the problem of finding the optimal s for which

(1.8) lim
t→0

eitHωf(x) = f(x) a.e.
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whenever f ∈ Hs(Rd). When the potential is time independent, namely, ω1 = ω2 = · · · =
ωd = 1 (this gives the Hermite Schrödinger operator), it was shown in [15] that the problem
is equivalent to that of the free Schrödinger operator except the endpoint cases. In what
follows we show that such equivalence is also valid for eitHωf . In fact, it is a consequence of
a more general result that local estimates for eitHωf and eit∆f are essentially equivalent in
the mixed norm space Lq

xLr
t . Both operators can be related to each other via generalized

Mehler’s formula [5, 25], which is also called lens transform (see Lemma 4.1).
Let c(t) = (c1(t), c2(t), · · · , cd(t)) defined on the interval IT (t0) such that,

(1.9) c′j(t) > 0

for all j = 1, . . . , d, and t ∈ IT (t0). We define an auxiliary operator

U c
γf(x, t) =

1

(2π)d

∫
ei(γ(x,t)·ξ−

∑d
j=1 cj(t)|ξj |2)f̂(ξ)dξ.

If c1(t) = c2(t) = · · · = cd(t), by a simple change of variables U c
γ can be transformed

eit∆f(γ̃(x, t)) for some γ̃. But it does not seem that such transformation is available in
general. The following is concerned about equivalence between local estimates for U c

γf and

eit∆f .

Theorem 1.6. Let q, r ⩾ 2, s0 ∈ R, and (x0, t0) ∈ Rd×R. Suppose that γ ∈ Lip(BR(x0)×
IT (t0)) satisfies (1.5) for x, y ∈ BR(x0), t ∈ IT (t0), and c ∈ C2(IT (t0)) satisfies (1.9).
Then

∥eit∆f∥Lq
x(B1(0),Lr

t [0,1])
⩽ C∥f∥Hs(Rd)(1.10)

holds for s > s0 if and only if

∥U c
γf∥Lq

x(BR(x0),Lr
t (IT (t0))) ⩽ C∥f∥Hs(Rd)(1.11)

holds for s > s0. If we additionally assume that γ ∈ C∞(BR(x0) × IT (t0)) and c ∈
C∞(IT (t0)), then (1.10) and (1.11) are equivalent except for r = ∞.

When γ is smooth, (1.5) can be replaced by detDxγ(x, t) ̸= 0 for all (x, t) ∈ BR(x0) ×
IT (t0). Such equivalence is also valid for the local estimates in Lq

tL
r
x. If the signa-

tures of c′1(t), c
′
2(t), · · · , c′d(t) are different, then the equivalence between (1.10) and (1.11)

fails. For example, when d ⩾ 2 ∥eit□f∥L2
xL

∞
t (B1×I) ⩽ ∥f∥Hs fails if s < 1

2 ([19]) but

∥eit∆f∥L2
xL

∞
t (B×I) ⩽ ∥f∥Hs is known to be valid for s > 1

2 −
1
4d ([3,14]). However, from the

proof of Theorem 1.6 it is obvious that the same equivalence remains valid if we replace ∆
by ∂2x1

+ · · ·+∂2xm
−∂2xm+1

−· · ·−∂2xd
where m is the number of positive c′i(t) and c

′
i(t) ̸= 0.

If we combine Theorem 1.6 and Lemma 4.1, various estimates ([14, 15]) which hold
for eit∆f remain valid for eitHωf . In particular, from the equivalence between maximal
estimates (see [3, 14]) we have the following.

Corollary 1.7. Suppose ω ∈ C1(−1, 1). Then, then (1.8) holds whenever f ∈ Hs(Rd) and
s ⩾ 1

4 when d = 1, s > 1
2 − 1

4d when d ⩾ 2.

The equivalence of local estimates is related to the fact that the propagation speed of
Schrödinger waves is not finite. For the wave equation there is no such equivalence as it
can be seen by a simple example. In fact, let ψ ∈ C∞

0 (1, 2) and let us consider

f̂(ξ) = λ−dei|ξ|ψ(|ξ|/λ), γ(x, t) = (t+ 1)x,
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and λ ≫ 1. Then by making use of asymptotic expansion for Bessel function it is easy to

see that ∥eit
√
−∆f(γ(·, t))∥Lr

xL
q
t (B1(2e1)×[0,1]) ∼ λ−

d−1
2

− 1
r and ∥eit

√
−∆f∥Lr

xL
q
t (B1(2e1)×[0,1]) ∼

λ
− d−1

2
− 1

q . Hence this shows that the equivalence fails unless q = r. On the contrary when
the order of propagation speed increases one can further relax the Lipschitz condition on γ
to Hölder conditions. ( See Proposition 4.3.)

The paper is organized as follows. In Section 2 we show a few preliminary lemmas
including a temporal localization lemma and in Section 3 the proofs of Theorems 1.1 and
1.3 are given. Finally, in Section 4 we prove Theorem 1.6 and Corollary 1.7. Throughout
the paper C denotes constants which may be different from line to line.

2. Preliminaries; a temporal localization Lemma

Let m ⩾ 2 and Q(·, t) be a real valued smooth function satisfying that for |ξ| ≫ 1

|∇ξQ(ξ, t)−∇ξQ(ξ, t′)| ∼ |t− t′∥ξ|m−1, t, t′ ∈ IT (t0),(2.1)

|∂βξQ(ξ, t)− ∂βξQ(ξ, t′)| ⩽ C|t− t′∥ξ|m−|β|, t, t′ ∈ IT (t0).(2.2)

For a continuous function γ which is defined on BR(x0)× IT (t0) let us set

TQ
γ f(x, t) =

1

(2π)d

∫
ei(γ(x,t)·ξ−Q(ξ,t))f̂(ξ)dξ.

The following version of temporal localization is very useful for the proof of the theorems.
This was first observed in [14] for eit∆f . A sharp version without ϵ-loss of bounds was
obtained [15] by making use of wave-packet decomposition (for example see [13]). Here we
provide a simpler proof based on TT ∗ method.

Lemma 2.1. Let λ ⩾ 1 and α ∈ R. And let q, r ⩾ 2 and J = {J} be a collection of
intervals of length λ1−m such that J ⊂ IT (t0) and

∑
J∈J χJ ⩽ 4. Suppose that (2.1) and

(2.2) hold for |β| ⩽ max(2, d− 2α+ 3). Also suppose that

(2.3) ∥TQ
γ f∥Lq

x

(
BR(x0), Lr

t (J)
) ⩽ Cλα∥f∥2

with C uniform in J ∈ J provided that f̂ is supported in {ξ : |ξ| ∼ λ}. Then, there exists
C = C(B, ∥γ∥L∞(BR(x0)×IT (t0))) such that

(2.4) ∥TQ
γ f∥Lq

x

(
BR(x0), Lr

t (
∪

J∈J J)
) ⩽ Cλα∥f∥2

whenever f̂ is supported in {ξ : |ξ| ∼ λ}.

Proof. For simplicity let us set T = TQ
γ . Obviously we may assume that the intervals J are

disjoint. Since f̂ is supported in the set {ξ : |ξ| ∼ λ}, with appropriate ψ ∈ C∞
0 (R \ {0}),

we may write

Tf(x, t) =
1

(2π)d

∫
ei(γ(x,t)·ξ−Q(ξ,t))f̂(ξ)ψ(|ξ|/λ)dξ.

Let T ∗ denote the adjoint operator of T and set

FJ(x, t) = χJ(t)F (x, t).

Then by duality it is enough to show that if

(2.5) ∥T ∗FJ∥2 ⩽ Cλα∥F∥q′,r′
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for J ∈ J, then

(2.6) ∥
∑
J∈J

T ∗FJ∥2 ⩽ Cλα∥F∥q′,r′

Here ∥·∥q,r denotes ∥·∥Lq
x(BR(x0),Lr

t (IT (t0))). To show (2.6), we may assume that the intervals

{J} are disjoint. Then (2.6) follows from

(2.7)
∣∣ ∑
J,J ′∈J

⟨T ∗FJ , T
∗FJ ′⟩

∣∣ ⩽ Cλ2α∥F∥2q′,r′ .

We note that

TT ∗F =

∫ ∫
K(x, y, t, t′)F (y, t′)dydt′,

where

K(x, y, t, t′) =

∫
ei
(
(γ(x,t)−γ(y,t′))·ξ−(Q(ξ,t)−Q(ξ,t′))

)
ψ2(|ξ|/λ)dξ

= λd
∫
eiλ

m(t−t′)φ(ξ)ψ2(|ξ|)dξ.

Here we set

φ(ξ) =
1

λm(t− t′)

(
λ(γ(x, t)− γ(y, t′)) · ξ − (Q(λξ, t)−Q(λξ, t′))

)
.

Let us set ∥γ∥∞ = ∥γ∥L∞(BR(x0)×IT (t0)). From (2.1) and (2.2) we have

|∇ξφ(ξ)| ⩾ C − 2λ1−m|t− t′|−1∥γ∥∞,

|∂βξ φ(ξ)| ⩽ C + 2λ1−m|t− t′|−1∥γ∥∞

for some C > 0. Hence by routine integration by parts (max(2, [d− 2α] + 3) times) we see
that if |t− t′| ⩾ Cλ−m+1(∥γ∥∞ + 1) for a sufficiently large C,

(2.8) |K(x, y, t, t′)| ⩽ Cλd(1 + λm|t− t′|)−max(2,d−2α+2).

So we get for dist(J, J ′) ⩾ Cλ1−m(∥γ∥∞ + 1)

∥χJTT
∗(FJ ′)∥∞,∞ ⩽ Cλd(1 + λm dist(J, J ′))−max(2,d−2α+2)∥FJ ′∥1,1.

Since F may be assumed to be supported in the closure of BR(x0) × IT (t0), it follows
that if dist(J, J ′) ⩾ Cλ1−m(∥γ∥∞ + 1)

∥χJTT
∗(FJ ′)∥q,r ⩽ Cλd(1 + λm dist(J, J ′))−max(2,d−2α+2)∥F∥q′,r′ .

Since ⟨T ∗FJ , T
∗FJ ′⟩ = ⟨FJ , χJTT

∗FJ ′⟩, by Hölder’s inequality and using the above∑
J,J ′∈J: dist(J,J ′)⩾Cλ1−m(∥γ∥∞+1)

∣∣⟨T ∗FJ , T
∗FJ ′⟩

∣∣
⩽

∑
J,J ′∈J: dist(J,J ′)⩾Cλ1−m(∥γ∥∞+1)

Cλd(1 + λm dist(J, J ′))−max(2,d−2α+2)∥FJ∥q′,r′∥FJ ′∥q′,r′ .

Since dist(J, J ′) ⩾ Cλ1−m(∥γ∥∞ + 1), for any J ′∑
J∈J: dist(J,J ′)⩾Cλ1−m(∥γ∥∞+1)

Cλd(1 + λm dist(J, J ′))−max(2,d−2α+2) ⩽ Cλ2αλ−1.
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By Schur’s test ∑
J,J ′∈J: dist(J,J ′)⩾Cλ1−m(∥γ∥∞+1)

∣∣⟨T ∗FJ , T
∗FJ ′⟩

∣∣ ⩽ Cλ2α−1
(∑

J

∥FJ∥2q′,r′
)
.

Since 1 ⩽ q′, r′ ⩽ 2 and J are disjoint,
(∑

J ∥FJ∥2q′,r′
)
⩽ ∥(

∑
J |FJ |2)

1
2 ∥2q′,r′ = ∥

∑
J FJ∥2q′,r′ .

Therefore,

(2.9)
∑

J,J ′∈J: dist(J,J ′)⩾Cλ1−m(∥γ∥∞+1)

∣∣⟨T ∗FJ , T
∗FJ ′⟩

∣∣ ⩽ Cλ2α−1∥
∑
J

FJ∥2q′,r′ .

Now, by Hölder’s inequality and (2.5) we have
∣∣⟨T ∗FJ , T

∗FJ ′⟩
∣∣ ⩽ Cλ2α∥FJ∥q′,r′∥FJ ′∥q′,r′ .

Hence, ∑
J,J ′∈J: dist(J,J ′)<Cλ1−m(∥γ∥∞+1)

∣∣⟨T ∗FJ , T
∗FJ ′⟩

∣∣
⩽ Cλ2α

∑
J,J ′∈J: dist(J,J ′)<Cλ1−m(∥γ∥∞+1)

∥FJ∥q′,r′∥FJ ′∥q′,r′

⩽ C(∥γ∥∞ + 1)λ2α
(∑

J

∥FJ∥2q′,r′
)
⩽ C(∥γ∥∞ + 1)λ2α∥

∑
J

FJ∥2q′,r′ .

Combining this with (2.9), we get the desired inequality (2.7). This completes the proof. □

In general, Lemma 2.1 does not hold with f ∈ Lp,α, p ̸= 2 and it is valid only for local
estimates. Lemma 2.1 also provides a simple proof of the local smoothing estimate

∥eitP f∥
L2
x,t

(
B1(0)×(0,1)

) ⩽ C∥f∥
H−m−1

2
.

(See [8, 23, 28].) Here eitP (D)f is a solution to the dispersive equation (4.7) and P satisfies
(4.6). In fact, by Lemma 2.1, Littlewood-Paley decomposition and Plancherel’s theorem,
it is enough to show that

∥eitP f∥
L2
x,t

(
B1×(0,λ1−m)

) ⩽ Cλ−
m−1

2 ∥f∥2

if f̂ is supported in {ξ : |ξ| ∼ λ}, but this is obvious from Plancherel’s theorem and
integration in the interval (0, λ1−m).

Let χ be a smooth function such that suppχ ⊂ {|ξ| ∼ 1} and
∑

k∈Z χ(2
−k·) = 1. Let us

set χ0 =
∑0

k=−∞ χ(2−k·) = 1−
∑∞

k=1 χ(2
−k·). As usual, for k ⩾ 0, we define the projection

operators Pk by

P̂kf = χ(2−k·)f̂ , k ⩾ 1, and P̂0f = χ0f̂ .

When γ is smooth, it is possible to put together estimates for U c
γPλf without any loss.

Lemma 2.2. Let γ be a continuous function defined on BR(x0)× IT+ϵ(t0), ϵ > 0. Suppose
that ∂tγ is bounded and smooth in t, that is, γ(x, ·) ∈ C∞ and suppose that |∂tQ(ξ, t)| ∼ |ξ|m
for |ξ| ≫ 1, m > 1. If 1 < r <∞, then for N > 0 and x ∈ BR(x0),

∥
∑
k⩾0

TQ
γ Pkf(x, ·)∥Lr

t (IT (t0)) ⩽ C∥(
∑
k⩾1

|TQ
γ Pkf(x, ·)|2)

1
2 ∥Lr

t (IT+ϵ(t0)) + CN∥f∥H−N (Rd).
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Proof. Let ψ be a smooth cutoff function which ψ ≡ 1 on IT (t0) and supported in IT+ϵ(t0).

For a fixed x ∈ B1, define T̃
Q
γ f by

T̃Q
γ f(t) = ψ(t)TQ

γ f(x, t).

Since ∥TQ
γ P0f∥∞ ≲ ∥f∥H−N for any N , it is sufficient to show that

∥
∑
k⩾1

T̃Q
γ Pkf∥Lr

t (IT (t0)) ⩽ C∥(
∑
k⩾1

|T̃Q
γ Pkf |2)

1
2 ∥Lr

t (R) + CN∥f∥H−N (Rd).

Let ψ̃ be a smooth function which ψ̃ ≡ 1 on {τ−1
0 ⩽ |τ | ⩽ τ0} and supported on {(2τ0)−1 ⩽

|τ | ⩽ 2τ0} for some τ0 > 0 and for k ⩾ 1, define P̃k by
̂̃
PkF = ψ̃(2−kτ)F̂ (τ). By Minkowski’s

inequality

∥
∑
k⩾1

T̃Q
γ Pkf∥Lr

t (IT (t0)) ⩽ ∥
∑
k⩾1

P̃mkT̃
Q
γ Pkf∥Lr

t (R) +
∑
k⩾1

∥(1− P̃mk)T̃
Q
γ Pkf∥Lr

t (IT (t0))

= I + II.

For I, by applying Littlewood-Paley theorem in t, we obtain

I ⩽ C∥(
∑
k⩾1

|T̃Q
γ Pkf(x, ·)|2)

1
2 ∥Lr

t (R) ⩽ C∥(
∑
k⩾1

|TQ
γ Pkf(x, ·)|2)

1
2 ∥Lr

t (IT+ϵ(t0))

for some C > 0. So it suffices to show

II ⩽ CN∥f∥H−N (Rd).

We now observe that

(2.10) (1− P̃mk)T̃
Q
γ Pkf(x, t) =

∫∫
χ(2−kξ)(1− ψ̃(2−mkτ))K(x, ξ, τ)f̂(ξ)eiτtdτdξ,

where

K(x, ξ, τ) =
1

(2π)d+1

∫
ψ(t)ei(γ(x,t)·ξ−Q(ξ,t)−tτ)dt.

Since τ ⩽ 2mkτ−1
0 or τ ⩾ 2mkτ0 for k ⩾ 1 and |ξ| ⩽ 2k+2 and |∂tγ| ⩽ C, we observe that

for sufficiently large τ0, |∂t(γ(x, t) · ξ −Q(ξ, t)− tτ)| ⩾ Cmax(2mk, |τ |). By integration by
parts, we obtain, for N > 0,

|K(x, ξ, τ)| ⩽ CN (1 + 2mk|τ |)−N .

Putting this in (2.10) and integrating, we get for any N > 0

|(1− P̃mk)T̃
Q
γ Pkf(t)| ⩽ CN2−mNk

∫
|χ(2−kξ)f̂(ξ)|dξ ⩽ CN ′2−2Nk+ d

2
k∥Pkf∥2.

Choosing sufficiently large N , by Hölder’s inequality and Plancherel’s theorem, we see that

∥(1− P̃mk)T̃
Q
γ Pkf∥Lr(IT (t0)) ⩽ CN2−k∥f∥H−N (Rd).

Hence we get the desired inequality. □

3. Proofs of Theorems 1.1 and 1.3

In this section we prove Theorems 1.1 and 1.3. The argument here is basically a mod-
ification of TT ∗ argument and it is incorporated with temporal localization (Lemma 2.1)
which can be applied after frequency localization.
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Proof of Theorem 1.1. Let Pλ be the projection operator which is given by Pλf = (ψ(·/λ)f̂ )∨
with ψ ∈ C∞

0 ((−2,−1
2) ∪ (12 , 2)). In order to prove Theorem 1.1 it is enough to show that

(3.1) ∥MΘPλf∥L2[−1,1] ⩽ C
√
N(Θ, λ−1/2)λ

1
4 ∥f∥2.

In fact, from the definition of β(Θ) it follows that N(Θ, λ−1/2) ≲ λ
β(Θ)

2
+ϵ for any ϵ > 0.

Hence we have

∥MΘPλf∥B1 ⩽ Cλ
β(Θ)+1

4
+ϵ∥f∥2.

By Littlewood-Paley decomposition, triangle inequality and direct summation we get (1.2)

whenever s > β(Θ)+1
4 .

It remains to show (3.1). Let Ω1, Ω2,. . . denote N(Θ, λ−1/2) intervals of length λ−
1
2

which covers Θ. Then by Cauchy–Schwarz’s inequality it follows that

MΘPλf(x) = sup
(t,θ)∈I×Θ

|eit∆Pλf(x+ θt)|

⩽
( ∑

1⩽k⩽N(Θ,λ−1/2)

sup
(t,θ)∈I×Ωk

|eit∆Pλf(x+ θt)|2
) 1

2
.

Hence, to get (3.1) it is sufficient to show the following.

Lemma 3.1. If Ω is an interval of length λ−
1
2 , then

∥MΩPλf∥L2[−1,1] ⩽ Cλ
1
4 ∥f∥2.

Proof of Lemma 3.1. Let us set

χ(x, t, θ) = χ[−1,1]×[0,1]×Ω(x, t, θ)

and

Tf(x, θ, t) = χ(x, t, θ)

∫
ei(−t|ξ|2+(x+tθ)·ξ)ψ(ξ/λ)f(ξ)dξ.

By Plancherel’s Theorem the estimate is equivalent to

∥Tf∥L2
xL

∞
θ,t

⩽ Cλ
1
4 ∥f∥2.

We consider the adjoint operator of T which is given by

T ∗F (ξ) = ψ(ξ/λ)

∫∫∫
ei(t

′|ξ|2−(y+t′ϑ)·ξ)χ(y, t′, ϑ)F (y, t′, ϑ)dydt′dϑ.

Then by duality (TT ∗ argument) it is enough to show that

(3.2) ∥TT ∗∥L2
xL

∞
θ,t

⩽ Cλ
1
2 ∥F∥L2

xL
1
θ,t
.

We now note that

TT ∗F (x, t, θ) = χ(x, t, θ)

∫∫∫
Kλ(t, t

′, x, y, θ, ϑ)χ(y, t′, ϑ)F (y, t′, ϑ)dydt′dϑ

where

Kλ(t, t
′, x, y, θ, ϑ) = χ(x, t, θ)χ(y, t′, ϑ)λ

∫
ei
(
λ2(t′−t)|ξ|2+λ(x−y+θt−ϑt′)·ξ

)
ψ2(ξ)dξ.

Since |x|, |y|, t, t′, θ, ϑ ≲ 1, |∇ξ

(
λ2(t′ − t)|ξ|2 + λ(x − y + θt − ϑt′) · ξ

)
| ⩾ Cλ2|t − t′| if

|t− t′| ⩾ Cλ−1 for some large C. Hence, by integration by parts it follows that

|Kλ(t, t
′, x, y, θ, ϑ)| ⩽ Cλ−N (1 + λ|t− t′|)−N
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if |t − t′| ⩾ Cλ−1. So, the operator is localized at scale of λ−1 in time. By a standard
localization argument it is enough to show that

∥TT ∗F∥L2
xL

∞
θ L∞

t (J) ⩽ Cλ
1
2 ∥F∥L2

xL
1
θL

1
t (J)

.

Here J ⊂ Ω is an interval of length ∼ λ−1. (For example see the proof of Lemma 2.1). Let
us set

χ̃(x, t, θ) = χJ(t)χ(x, t, θ).

and

K̃λ(t, t
′, x, y, θ, ϑ) = χ̃(x, t, θ)χ̃(y, t′, ϑ)λ

∫
ei(λ

2(t′−t)|ξ|2+λ(x−y+θt−ϑt′)·ξ)ψ2(ξ)dξ.

Then we are reduced to show that∥∥∥ ∫ K̃λ(t, t
′, x, y, θ, ϑ)F (y, t′, ϑ)dydt′

∥∥∥
L2
xL

∞
θ,t

⩽ Cλ
1
2 ∥F∥L2

xL
1
θ,t
.

This follows from Schur’s test and the estimates

(3.3)

∫
sup

θ, t, ϑ, s
|K̃λ(t, t

′, x, y, θ, ϑ)|dy,
∫

sup
θ, t, ϑ, s

|K̃λ(t, t
′, x, y, θ, ϑ)|dx ⩽ Cλ

1
2 .

We now claim that

(3.4) |K̃λ(t, t
′, x, y, θ, ϑ)| ≲ λ(1 + λ|x− y|)−

1
2

provided that |x − y| ⩾ Cλ−
1
2 for some large constant C > 0. Since t, t′ ∈ J ⊂ [0, 1] and

θ, ϑ ∈ Ω we have tθ − t′ϑ = O(λ−
1
2 ) because J , Ω are intervals of length ∼ λ−1, λ−

1
2 ,

respectively. So, if |x − y| ⩾ Cλ−
1
2 , then |x − y + θt − ϑt′| ∼ |x − y|. On the other hand,

if |λ2(t − t′)| ≫ λ|x − y| or |λ2(t − t′)| ≪ λ|x − y|, by integration by parts it follows that

|K̃λ(t, t
′, x, y, θ, ϑ)| ⩽ λ(1 + λ|x− y|)−N . Hence we may assume that |λ2(t− t′)| ∼ λ|x− y|.

Then by Van der Corput’s lemma |K̃λ(t, t
′, x, y, θ, ϑ)| ⩽ Cλ(1 + λ2|t′ − t|)−

1
2 . So, we get

(3.4).

Since |K̃λ| ≲ λ, by (3.4)∫
K̃λ(t, t

′, x, y, θ, ϑ)|dx ⩽ Cλ(

∫ Cλ− 1
2

0
dx+ λ−

1
2

∫ 1

0
|x− y|−

1
2dx) ≲ λ

1
2 .

Hence we get the desired estimates (3.3). This completes the proof. □

Proof of Theorem 1.3. By changing variables (x, t) → (x0 + Rx, t0 − T + 2Tt), we may
assume that BR(x0) = [−1, 1] and IT (t0) = [0, 1]. We set

Uγf(x, t) = eit∆f(γ(x, t)),

and

U∗
γf(x) = sup

0⩽t⩽1
|eit∆f(γ(x, t))|.

By Littlewood-Paley decomposition it is sufficient to show that for s ⩾ max(12 − α, 14)

∥U∗
γPλf∥L2

xL
∞
t ([−1,1]×[0,1]) ⩽ Cλs∥f∥2,

where as before Pλ is the projection operator to the set {|ξ| ∼ λ}. Let J be an interval of
length λ−1 contained in [0, 1]. By Lemma 2.1, it is enough to show

∥U∗
γPλf∥L2

xL
∞
t ([−1,1]×J) ⩽ Cλs∥f∥2
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with C independent of J . By TT ∗ argument it suffices to show that

(3.5) ∥
∫
K(x, y, t, t′)F (y, t′)dydt′∥L2

xL
∞
t ([−1,1]×J) ⩽ Cλ2s∥F∥L2

xL
1
t ([−1,1]×J)

where

K(x, y, t, t′) =

∫
ei
(
(γ(x,t)−γ(y,t′))·ξ+(t′−t)|ξ|2

)
ψ2(ξ/λ)dξ

and ψ ∈ C∞
0 ((−2,−1

2) ∪ (12 , 2)). Changing of variables ξ → λξ, we have

K(x, y, t, t′) = λ

∫
ei
(
λ(γ(x,t)−γ(y,t′))·ξ+λ2(t′−t)|ξ|2

)
ψ2(ξ)dξ.

Lemma 3.2. Let J ⊂ [0, 1] be an interval of sidelength λ−1. Suppose that γ : [0, 1] → R
satisfies (1.4) and (1.5). Then, if |x− y| ⩾ Cλ−α for some large C, then for t, t′ ∈ J

(3.6) |K(x, y, t, t′)| ⩽ Cλ(1 + λ|x− y|)−
1
2 .

Proof. Let us set

φ(ξ) = λ(γ(x, t)− γ(y, t′)) · ξ + λ2(t′ − t)|ξ|2.
Since t, t′ ∈ J , from the conditions (1.4) and (1.5) we observe that

(3.7)

γ(x, t)− γ(y, t′) = (γ(x, t)− γ(x, t′)) + (γ(x, t′)− γ(y, t′)),

|γ(x, t)− γ(x, t′)| ≲ |t− t′|α = O(λ−α),

|γ(x, t′)− γ(y, t′)| ∼ |x− y|.

So, we separately consider three cases:

|x− y| ≫ λ|t− t′|, |x− y| ≪ λ|t− t′|, |x− y| ∼ λ|t− t′|.

For the first case |x − y| ≫ λ|t − t′|, we have | ddξφ| ≳ λ|x − y| because |x − y| ⩾ Cλ−α.

Hence, by non stationary phase method (integration by parts), we get for any N

|K(x, y, t, t′)| ⩽ C
λ

(1 + λ|x− y|)N
.

If |x − y| ≪ λ|t − t′|, then we see that | ddξφ(ξ)| ≳ λ2|t − t′| because ψ is supported away

from zero. Integration by parts gives the bound

|K(x, y, t, t′)| ⩽ C
λ

(1 + λ2|t− t′|)N
⩽ C

λ

(1 + λ|x− y|)N
.

For the last case |x− y| ∼ λ|t − t′|, | d2
dξ2
φ| ≳ λ2|t − t′|. Hence by van der Corput’s lemma

we obtain that

|K(x, y, t, t′)| ⩽ Cλ
1

(1 + λ2|t− t′|)1/2
∼ λ

(1 + λ|x− y|)1/2
.

Combining these three cases we get the desired (3.6). □

Lemma 3.3. Assume that J ⊂ [0, 1] be an interval of sidelength λ−1and γ : [0, 1] → R
satisfies (1.4) and (1.5). Then, for t, t′ ∈ J

(3.8) |K(x, y, t, t′)| ⩽ Cmax(
λ1/2

|x− y|1/2
, |x− y|−

1
2α ).
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Proof. Here we use the same notation as in the proof of Lemma 3.2. We first consider two
cases |x− y| ≲ |t− t′|α, |x− y| ≫ |t− t′|α, separately. If |x− y| ≲ |t− t′|α, we use the fact

that | d2
dξ2
φ| ≳ λ2|t− t′| and van der Corput’s lemma to obtain

|K(x, y, t, t′)| ≲ λ
1

(1 + λ2|t− t′|)1/2
⩽ |t− t′|−1/2 ≲ |x− y|−1/2α.

Now we consider the case |x− y| ≫ |t− t′|α. Then, recalling (3.7), we see that

| d
dξ
φ(ξ)| = |λ(γ(x, t)− γ(y, t′)) + 2λ2(t′ − t)ξ| ≳ λ|x− y| −O(λ2|t− t′|).

Thus if |x − y| ≫ λ|t − t′|, then | ddξφ| ⩾ λ|x − y|. So it follows from integration by parts

that |K(x, y, t, t′)| ⩽ λ
(1+λ|x−y|)N . And if λ|t− t′| ≫ |x−y|, then by van der Corput’s lemma

again we have

|K(x, y, t, t′)| ⩽ λ1/2

|x− y|1/2
.

Hence we have the desired bounds. □

Now we prove (3.5). We break the interval [−1, 1] into essentially intervals of side length
Cλ−α so that [−1, 1] =

∪
Ik. So we bound the square of the left hand side of (3.5) by∑

k

∥
∑
k′

∫
χIk(x)K(x, y, t, t′)χIk′ (y)F (y, t

′)dydt′∥2L2
xL

∞
t (Ik×J),

which is again bounded by the sum of

2
∑
k

∥
∫
χIk(x)K(x, y, t, t′)χ

Ĩk
(y)F (y, t′)dydt′∥2L2

xL
∞
t (Ik×J) ,(3.9)

2
∑
k

∥
∑
k′ ̸∼k

∫
χIk(x)K(x, y, t, t′)χIk′ (y)F (y, t

′)dydt′∥2L2
xL

∞
t (Ik×J),(3.10)

where we say k ̸∼ k′ if the distance between the two intervals Ik and Ik′ is bigger than

4Cλ−α and Ĩk is an interval containing Ik and of length slightly bigger than 2Cλ−α.
We handle the case 1

2 ⩽ α ⩽ 1 first. In this case we need to show (3.5) with s = 1
4 .

We first deal with (3.9), which is easier. Note that |K| ⩽ Cλ and the length of interval
Ik ∼ λ−α. Hence it follows that∫

sup
t,t′∈J

|χIk(x)K(x, y, t, t′)χ
Ĩk
(y)|dx,

∫
sup
t,t′∈J

|χIk(x)K(x, y, t, t′)χ
Ĩk
(y)|dy ⩽ Cλ1−α.

Schur’s test gives the bound∥∥∥ ∫ χIk(x)K(x, y, t, t′)χ
Ĩk
(y)F (y, t′)dydt′

∥∥∥2
L2
xL

∞
t (Ik×J)

⩽ Cλ2(1−α)∥Fk∥2L2
xL

1
t
,

where Fk(x, t) = χ
Ĩk
(x)F (x, t). Now using the disjoint of the supports, we get

(3.9) ⩽ Cλ2(1−α)
∑
k

∥Fk∥2L2
xL

1
t
⩽ Cλ2(1−α)∥F∥2L2

xL
1
t
⩽ Cλ∥F∥2L2

xL
1
t
.
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Now we consider (3.10). Since dist(Ik, Ik′) ⩾ Cλ−α if k ̸= k′, from Lemma 3.2 we see
that

|
∑
k′ ̸∼k

∫
χIk(x)K(x, y, t, t′)χIk′ (y)F (y, t

′)dydt′|

⩽χIk(x)

∫
|K(x, y, t, t′)||

∑
k′ ̸∼k

χIk′ (y)F (y, t
′)|dydt′

⩽CχIk(x)

∫
λ(1 + λ|x− y|)−

1
2 |

∑
k′ ̸∼k

χIk′ (y)F (y, t
′)|dydt′

⩽CχIk(x)

∫
λ(1 + λ|x− y|)−

1
2 |F (y, t′)|dydt′.

Hence (3.10) is bounded by

∥
∫
λ(1 + λ|x− y|)−

1
2 |F (y, t′)|dydt′∥2L2

xL
∞
t ([−1,1]×J).

Since ∥λ(1 + λ| · |)−
1
2 ∥L1[−2,2] ⩽ Cλ

1
2 . Hence by Schur’s test again we get

(3.10) ⩽ Cλ∥F∥2L2
xL

1
t
.

Combining the above two estimate for (3.9) and (3.10), we get (3.5) with s = 1
4 .

Now we consider the case 0 < α < 1/2. Note that
∫ 1
−1min(|x− y|−

1
2α , λ) ≲ λ1−2α when

0 < α < 1/2. Hence by (3.8) and the fact that |K| ⩽ Cλ implies∫ 1

−1
sup
t,t′∈J

|K(x, y, t, t′)|dx,
∫ 1

−1
sup
t,t′∈J

|K(x, y, t, t′)|dy ≲ max(λ
1
2 , λ1−2α).

Using Schur’s test again, we obtain

∥
∫
K(x, y, t, t′)F (y, t′)dydt′∥L2

xL
∞
t ([−1,1]×J) ⩽ Cmax(λ

1
2 , λ1−2α)∥F∥L2

xL
∞
t ([−1,1]×J).

This completes the proof of Theorem 1.3.

4. Time dependent quadratic potentials; proof of Theorem 1.6

We begin by recalling the following result in [25] (Lemma 1 in [25] and also see Lemma

3.3 in [5]) which generalizes Mehler’s formula to the equation (1.7) with ω ∈ C1
loc.

1) If
ω ∈ C1

loc, there exists T > 0 such that for t ∈ (−T, T )

eitHωf =
( d∏

j=1

2πiτj(t)
)− 1

2

∫
Rd

e
i
2
ϕ(x,y,t)f(y)dy,

where

ϕ(x, y, t) =

d∑
j=1

(aj(t)x
2
j − 2bj(t)xjyj + dj(t)y

2
j ),

1)In fact, it remains valid for locally Lipschitz continuous function ω. See Lemma 3.3 in [5].



CONVERGENCE OF THE SCHRÖDINGER EQUATION 15

and τj , aj , bj , and dj are given by

τ ′′j + ωj(t)τj = 0; τj(0) = 0, τ ′j(0) = 1,(4.1)

aj = τ ′j/τj , bj = 1/τj ,

dj = τ−1
j

(
(τ ′j)

−1 −
∫ t

0
ωj(t

′)(τ ′j(t
′))−2dt′

)
.(4.2)

Using this we have the following lemma which relates eitHωf to eit∆f .

Lemma 4.1. Let ω ∈ C1
loc. There is a T > 0 such that

eitHωf(x, t) = ε(x, t)U c
γf(x, t), (x, t) ∈ Rd × [−T, T ],

|ε(x, t)| ∼ 1, and c ∈ C2[−T, T ] satisfies c(t) = (t, t, . . . , t, t) +O(t2) and

γ(x, t) = (γ1(t)x1, γ2(t)x2, · · · , γd(t)xd), γj(t) = 1 +O(t).

Proof. By completing square and using the fundamental solution to the free Schrödinger
equation we see

eitHω =
e

i
2

∑d
j=1(aj−

b2j

d2
j

)x2
j∏d

j=1(2πiτj(t))
1/2

∫
Rd

e
i
2

∑d
j=1 dj(t)(yj−

bj(t)

dj(t)
xj)

2

f(y)dy

=
e

i
2

∑d
j=1(aj−

b2j

d2
j

)x2
j∏d

j=1(τj(t)dj(t))
1/2

1

(2π)d

∫
Rd

e
i(
∑d

j=1

bj(t)

dj(t)
xjξj−

∑d
j=1

1
2dj(t)

|ξj |2)
f̂(ξ)dξ.

Now we set

ε(x, t) = e
i
2

∑d
j=1(aj−

b2j

d2
j

)x2
j

d∏
j=1

(τj(t)dj(t))
− 1

2 ,

cj(t) =
1

2dj(t)
=

1

2
τj

(
(τ ′j)

−1 −
∫ t

0
ωj(t

′)(τ ′j(t
′))−2dt′

)−1
,

γj(t) = bj(t)(dj(t))
−1 =

(
(τ ′j)

−1 −
∫ t

0
ωj(t

′)(τ ′j(t
′))−2dt′

)−1
.

Since ω ∈ C1
loc, it follows from (4.1) that τj ∈ C3 locally. Using the second equation above,

we see that cj ∈ C2 locally. From (4.1), τj(t) = t+O(t2) and τ ′j(t) = 1 +O(t). Hence it is

easy to see |ε(x, t)| ∼ 1 because τj(t)dj(t) ∼ 1 by (4.2) if t is sufficiently small. The other
properties are easy to check. So, we omit the details. □

Proof of Corollary 1.7. Now assuming Theorem 1.6 we prove Corollary 1.7. By Lemma 4.1
it is sufficient to show

∥ sup
0⩽t⩽T

U c
γf∥L2(B1(x0)) ⩽ C∥f∥Hs

for any x0 ∈ Rd. Now it is easy to see that γ, c in Lemma 4.1 satisfy the assumptions
in Theorem 1.6. Hence the above estimate holds for s > s0 if ∥ sup0⩽t⩽T e

it∆f∥L2(B1(0)) ⩽
C∥f∥Hs0 which is valid for s0 ⩾ 1

4 when d = 1, s0 >
1
2 − 1

4d when d ⩾ 2 (see [3, 14]). This

proves Corollary 1.7 except the endpoint case s = 1
4 when d = 1, which can be proven by

following the argument in [22]. The details are omitted.
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Proof of Theorem 1.6. We only prove that (1.10) implies (1.11). The converse also can be
shown similarly. To begin with, we first establish the following equivalence of the estimates
over intervals of length ∼ λ−1, which will be combined to get the desired estimate by
making use of Lemma 2.1.

Lemma 4.2. Let λ ≫ 1 and q, r ⩾ 1. Suppose that γ and c satisfy the assumptions in

Theorem 1.6. Let J ⊂ IT (t0) be an interval of length ∼ λ−1 and assume that f̂ is supported
in {ξ : |ξ| ∼ λ}. Then the followings are equivalent :

∥eit∆f∥Lq
x(B1(0),Lr

t [0,λ
−1]) ⩽ Cλs∥f∥L2 ,(4.3)

∥U c
γf∥Lq

x(BR(x0),Lr
t (J))

⩽ Cλs∥f∥L2 .(4.4)

Proof. First we prove the implication from (4.3) to (4.4). Let t∗ ∈ J . For simplicity let us
set Ξ = (|ξ1|2, . . . , |ξd|2). By rescaling ξ → λξ we have

U c
γf(x, t) = λd

∫
1
2
⩽|ξ|<2

ei(λγ(x,t)·ξ−λ2c(t)·Ξ)f̂(λξ)dξ

= λd
∫

1
2
⩽|ξ|<2

eiΨ(x,t,ξ)ei(λγ(x, t∗)·ξ−(t−t∗)λ2c′(t∗)·Ξ)e−iλ2c(t∗)·Ξf̂(λξ)dξ,

where

Ψ(x, t, ξ) = λ
(
γ(x, t)− γ(x, t∗)

)
· ξ − λ2

(
c(t)− c(t∗)− (t− t∗)c

′(t∗)
)
· Ξ

Since t∗ ∈ J and length of J is O(λ−1), it is easy to see that |∂βξ Ψ| = O(1) uniformly

in x, t because γ ∈ Lip(BR(x0) × IT (t0)) and c ∈ C2(IT (t0)). So we may expand eiΨ(x,t,ξ)

into Fourier series on [−π, π]d so that eiΨ(x,t,ξ) =
∑

k∈Zd Ck(x, t)e
ik·ξ with |Ck(x, t)| ⩽

C(|k|+ 1)−N for large N . Hence we have

U c
γf(x, t) = λd

∑
k∈Zd

Ck(x, t)

∫
1
2
⩽|ξ|<2

eik·ξei(λγ(x,t∗)·ξ−(t−t∗)λ2c′(t∗)·Ξ)e−iλ2c(t∗)·Ξf̂(λξ)dξ

=
∑
k∈Zd

Ck(x, t)

∫
λ/2⩽|ξ|<2λ

ei(γ(x,t∗)·ξ−tc′(t∗)·Ξ)f̂t∗,λ,k(ξ)dξ

with ∥ft∗,λ,k∥2 = ∥f∥2. Now, recalling (1.9), we make change of variables ξi → |c′i(t∗)|−
1
2 ξi

to get

∥U c
γf∥Lq

x(BR(x0),Lr
t (J))

⩽
∑
k

C(|k|+ 1)−N∥eit∆f̃k(γ(x, t∗))∥Lq
x(BR(x0),Lr

t (J))

with f̃k which is fourier supported in {ξ : |ξ| ∼ λ} and ∥f̃k∥2 ∼ ∥f∥2. Since γ(x, t∗) is
independent of t and bilipschitz in x, changing variables in x we get

∥U c
γf∥Lq

x(BR(x0),Lr
t (J))

⩽
∑
k

C(|k|+ 1)−N∥eit∆f̃k∥Lq
x(BCR(γ(x0,t∗),Lr

t (J))
.

We now use the assumption (4.3) which is translation invariant. So, by (1.10), translation
and mild dilation it follows that

∥U c
γf∥Lq

x(BR(x0),Lr
t (J))

⩽
∑
k

C(|k|+ 1)−Nλs∥f̃k∥2 ⩽ Cλs∥f∥2.

This completes the proof of the implication (4.3) → (4.4). The converse can be proven
similarly. We omit the details. □
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Let λ ≫ T−1. We split the interval IT (t0) into a union of disjoint intervals J of length
∼ λ−1. Trivially (1.10) implies (4.3). Hence, by Lemma 4.2 we get for each J

∥U c
γf∥Lq

x(BR(x0),Lr
t (J))

⩽ Cλs∥f∥2

provided that f̂ ∈ {ξ : |ξ| ∼ λ}. By Lemma 2.1, it follows that

(4.5) ∥U c
γf∥Lq

x(BR(x0),Lr
t (IT (t0))) ⩽ Cλs∥f∥2

if f̂ ∈ {ξ : |ξ| ∼ λ}. Since (1.10) holds for s > s0, so does (4.5). Also note that (1.11) is

trivial when f̂ is supported in {ξ : |ξ| ≲ 1}. Hence, summation along dyadic pieces gives
(1.11).

If we additionally have smoothness for γ and c, we may use Lemma 2.2. In fact, since
we are assuming that γ ∈ C∞(BR(x0)× IT (t0)) and c ∈ C∞(IT (t0)), we may replace IT (t0)
with a slightly extended region IT+ϵ(t0) for some ϵ > 0. So we may assume that (4.5) on
BR(x0)× IT+ϵ(t0) holds. By Lemma 2.2, for 1 < r <∞, x ∈ BR(x0)

∥U c
γf(x, ·)∥Lr

t (IT (t0)) ⩽ C∥(
∑
k⩾1

|U c
γPkf(x, ·)|2)

1
2 ∥Lr

t (IT+ϵ(t0)) + C∥f∥H−N (Rd).

Since q, r ⩾ 2, by Minkowski’s inequality and (4.5) (with IT+ϵ(t0))

∥U c
γf∥Lq

x(BR(x0),Lr
t (IT (t0))) ⩽ C

(∑
k⩾1

∥U c
γPkf∥2Lq

x(BR(x0),Lr
t (IT+ϵ(t0)))

) 1
2
+ C∥f∥H−N (Rd)

⩽ C
(∑

k⩾1

22sk∥Pkf∥22)
1
2 + C∥f∥H−N (Rd) ⩽ C∥f∥Hs .

This completes the proof of the implication (1.10) → (1.11).

Higher order dispersive equation. Let m ⩾ 2 and P satisfy that for |ξ| ≫ 1

(4.6) |∂βξ P (ξ)| ⩽ C|ξ|m−|β|, |∇P (ξ)| ∼ |ξ|m−1.

Let eitP f be the solution of the equation

(4.7) i∂tu+ P (D)u = 0, u(·, 0) = f.

When m > 2, we can relax Lipschitz condition in t to Hölder condition.

Proposition 4.3. Let γ : Br(x0)× IT (t0) → Rd satisfy (1.5) for x, y ∈ Br(x0), t ∈ IT (t0)
and

(4.8) |γ(x, t)− γ(x, t′)| ⩽ C|t− t′|
1

m−1

all x ∈ B(x0, r), t, t
′ ∈ IT (t0). Let 2 ⩽ q, r ⩽ ∞, and s0 ∈ R. Then, for s > s0

(4.9) ∥eitP f∥Lq
x(B1(0), Lr

t [0,1])
⩽ c ∥f∥Hs(Rd)

if only if for s > s0

(4.10) ∥eitP f(γ(x, t))∥Lq
x(BR(x0)), Lr

t (IT (t0)) ⩽ C ∥f∥Hs(Rd).

As before, if γ is smooth in t, using Lemma 2.2 we can show the equivalence of (4.9) and
(4.10) except r = ∞. However, we don’t know whether the equivalence fails if the exponent

1
m−1 in (4.8) is replaced by a smaller number. It seems interesting to find the exact order
of Hölder condition which guarantees the equivalence.

Proposition 4.3 can be proven similarly as Theorem 1.6. In fact, since |∇P (ξ)| ∼ |ξ|m−1,
by Lemma 2.1 we are reduced to showing equivalence on an interval of length λ1−m. By
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recalling the proof of Theorem 1.6, it is not difficult to see that the equivalence follows if
we show that λ(γ(x, t)− γ(x, t′)) = O(1) when |t− t′| ≲ λ1−m. This is obvious from (4.8).
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[23] P. Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J. 55 (1987), no. 3, 699–715.
[24] E.M. Stein, On limits of sequences of operators, Ann. of Math. (2) 74 (1961), 140–170.
[25] E. Suazo, On Schrödinger Equation with Time-Dependent Quadratic Hamiltonian in Rd,

arXiv:0912.2113.
[26] T. Tao, A sharp bilinear restrictions estimate for paraboloids, Geom. Funct. Anal. 13 (2003), no. 6,

1359–1384.
[27] T. Tao and A. Vargas, A bilinear approach to cone multipliers. I & II., Geom. Funct. Anal. 10 (2000),

no. 1, 216–258.
[28] L. Vega, Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc. 102

(1988), no. 4, 874–878.



CONVERGENCE OF THE SCHRÖDINGER EQUATION 19
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