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Abstract. Null form estimates (from Ḣα1 × Ḣα2 to Lq
t (Lr

x)) for the wave equa-
tion in Rn+1 are studied. For n ≥ 4, we obtain the sharp null form estimates
except for the endpoints. For n = 2, 3 we obtain the estimates under the addi-
tional assumption 4/n < q when 2 < r.

1. Introduction

In this paper we consider null form estimates for the wave equation. Let φ, ψ be
solutions of the homogeneous wave equation in Rn+1, n ≥ 2;

¤φ = 0, ¤ψ = 0, (¤ = ∆x − ∂2
t , x ∈ Rn, t ∈ R).

The well known Strichartz’s estimates say that

‖φ‖Lq
t Lr

x
≤ C[‖φ(0)‖Hs + ‖∂tφ(0)‖Hs−1 ]

if 1/q + n/r = n/2− s and 2/q + (n− 1)/r ≤ (n− 1)/2 with the exception (q, r) =
(2,∞) when n = 3 (see [4]). However, bilinear generalization of such estimates makes
it possible to introduce additional multiplier weights which compensate interaction
between two waves. This gives further available estimates which are not allowed in
the linear setting.

Let D0, D+, D− denote the Fourier multiplier operators defined by

D̂0f(ξ, τ) = |ξ|f̂(ξ, τ),

D̂+f(ξ, τ) = (|ξ|+ |τ |)f̂(ξ, τ),

D̂−f(ξ, τ) = ||ξ| − |τ ||f̂(ξ, τ).

Here ξ, τ are the Fourier variables corresponding to x, t respectively. We are mainly
concerned with the estimates of the form

‖Dβ0

0 D
β+

+ D
β−
− (φψ)‖Lq

t Lr
x
≤ C(‖φ(0)‖Ḣα1 + ‖∂tφ(0)‖Ḣα1−1)(1)

× (‖ψ(0)‖Ḣα2 + ‖∂tψ(0)‖Ḣα2−1)

where Ḣα is the homogeneous L2-Sobolev space of order α.
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This type of bilinear estimate was studied by M. Beals [1] and by Klainerman
and Machedon [5]. They obtained some of the estimates (1) for q = r = 2 and
non-trivial exponents (β0, β−, β+, α1, α2). These estimates played an important role
in their study of nonlinear wave equations possessing null form structure. Results
for some particular cases were obtained by the same authors in [6], [7] and by
Klainerman and Selberg [8].

In [3] D. Foschi and S. Klainerman determined all (β0, β−, β+, α1, α2) for which
(1) holds for q = r = 2 and they also conjectured that for 1 ≤ q, r ≤ ∞ (1) holds if
and only if the following conditions on (q, r, β0, β−, β+, α1, α2) are satisfied:

• Scaling invariance:

(2) β0 + β+ + β− = α1 + α2 +
1

q
− n(1− 1

r
).

• Geometry of the cones:

(3)
1

q
≤ n + 1

2
(1− 1

r
),

1

q
≤ n + 1

4
.

• Concentration near null directions:

(4) β− ≥ 1

q
− n− 1

2
(1− 1

r
).

• Low frequency interactions (++):

β0 ≥ 1

q
− n(1− 1

r
),(5)

β0 ≥ 2

q
− (n + 1)(1− 1

r
).(6)

• Low frequency interactions (+−):

α1 + α2 ≥ 1

q
,(7)

α1 + α2 ≥ 3

q
− n(1− 1

r
).(8)

• Interaction between high and low frequency:

αi ≤ β− +
n

2
,(9)

αi ≤ β− +
n

2
− 1

q
+

n− 1

2
(
1

2
− 1

r
),(10)

αi ≤ β− +
n

2
− 1

q
+ n(

1

2
− 1

r
),(11)

αi ≤ β− +
n

2
− 1

q
+ n(

1

2
− 1

r
) + (

1

2
− 1

q
).(12)

These necessary conditions can be obtained by considering various interactions
between two waves. However, a close examination of (1) reveals that further condi-
tions are necessary for the estimate (1)(see Section 5). When 1 ≤ q ≤ 2 ≤ r ≤ ∞,
the following conditions should be additionally satisfied:
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2/q = (n + 1)(1− 1/r)
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Figure 1. The previously know (1/r, 1/q)-range of sharp estimates,
n ≥ 4: The sharp estimates at A are due to Klainerman and Foschi
[3] and the estimates at B due to Tao [15]. The extension to the line
segment (C,D) is due Tataru [20].

• Interaction between high and low frequency:

αi ≤ β− +
n

2
− 1

q
+

1

2
,(13)

αi ≤ β− +
n

2
− 1

q
+ n(

1

2
− 1

r
) +

1

r
− 1

q
.(14)

• Low frequency interactions (++):

(15) β0 ≥ 2

q
− n(1− 1

r
)− 1

2
.

Bilinear inequalities for q = r < 2 , n = 2 were first considered by Bourgain [2] in
connection with the cone multiplier problem. He showed the estimates

‖φψ‖Lq
t Lq

x
≤ C‖φ(0)‖L2‖ψ(0)‖L2

for some q < 2 under the assumption that the two waves are Fourier supported in
the cone {(ξ, τ) : |ξ| = τ, τ ∼ 1} and their Fourier supports are separated by O(1)
angle. These estimates were used to improve the boundedness of the cone multiplier
due to Mockenhaupt [11]. Bourgain’s result was improved by Tao and Vargas [17].
Finally, Wolff [22] and Tao [15] obtained the optimal result in all dimensions.

Regarding to the estimates (1) for (q, r) 6= (2, 2), Tao and Vargas [18] obtained
some partial results for the case q = r < 2. Some sharp Lp-estimates were obtained
by Tao [15]. Later Tataru [20] extended Tao’s results to mixed norms estimates for
some hyperbolic equations with rough coefficients (see Figure 1). However, these
results only give sharp Lq

t (L
r
x)-estimates for (1/r, 1/q) on the line 2/q = (n + 1)(1−
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1/r). When (1/r, 1/q) is away from it, for most of q, r the sharp estimates have not
been known. The following is our main result.

Theorem 1.1. Suppose (2) holds and the inequalities (3)–(15) hold with strict in-
equalities. Then if n ≥ 4, (1) holds for 1 < r ≤ ∞, 1 < q ≤ ∞ and when n = 2, 3,
(1) holds for 1 < r ≤ 2, 1 < q ≤ ∞ and for 2 < r ≤ ∞, 4/n < q ≤ ∞.

Hence all sharp estimates for n ≥ 4 are obtained (except for the endpoints) but
there remain some gaps for 2 < r ≤ ∞, 4/(n + 1) ≤ q ≤ 4/n when n = 2, 3. We
hope to return to this matter later. It is actually possible to obtain some of the end
point estimates but most of them are left open. As it will be seen, these are related
to the unresolved endpoint estimates for bilinear restriction estimates [15, 16].

There are other null forms of special interest which are related to the study of
nonlinear equations, such as Wave maps and the Yang-Mills equations (see [3, 5, 8,
9]). In particular, the following ones;

Q0(φ, ψ) = ∂tφ∂tψ −∇xφ · ∇xψ,

Q0j(φ, ψ) = ∂tφ∂xj
ψ − ∂xj

φ∂tψ,

Qij(φ, ψ) = ∂xi
φ∂xj

ψ − ∂xj
φ∂xi

ψ.

For the first one, a simple calculation shows that −2Q0(φ, ψ) = D+D−(φ, ψ). Hence,
(1) is valid if Q0(φ, ψ), β+ − 1 and β− − 1 replace φψ, β+ and β−, respectively. As
it is known from the analysis of the multipliers (see e.g. [3], [18]), for the others it
is expected that these null-forms (heuristically) behave like

Q0j(φ, ψ) ∼ D
1/2
+ D

1/2
− (D

1/2
0 φD

1/2
0 ψ),

Qij(φ, ψ), ∼ D0D
−1/2
+ D

1/2
− (D

1/2
0 φD

1/2
0 ψ).

A slight modification of arguments allows us to obtain the analogous of (1) for these
null forms as if the above heuristics was correct (see Section 3.3).

Corollary 1.2. Suppose (2) holds and (3)–(15) hold with strict inequalities. Then
if n ≥ 4, for 1 < r ≤ ∞, 1 < q ≤ ∞,

‖Dβ̃0

0 D
β̃+

+ D
β̃−
− Q(φ, ψ)‖Lq

t Lr
x
≤ C(‖φ(0)‖Ḣα1+1/2 + ‖∂tφ(0)‖Ḣα1−1/2)(16)

× (‖ψ(0)‖Ḣα2+1/2 + ‖∂tψ(0)‖Ḣα2−1/2),

holds in each of the following cases;

Q =Q0,j, β̃0 = β0, β̃+ = β+ − 1/2, β̃− = β− − 1/2,

Q =Qi,j, β̃0 = β0 − 1, β̃+ = β+ + 1/2, β̃− = β− − 1/2.

When n = 2, 3, (16) holds for 1 < r ≤ 2, 1 < q ≤ ∞ and 2 < r ≤ ∞, 4/n < q ≤ ∞.
Moreover, conditions (2) and (3)–(15) are necessary for (16) to hold.

It is not difficult to show that conditions (2)–(12) are necessary with a minor
modification of known examples ([3]). For the necessity of (13)–(15) see Section 5.

The paper is organized as follows: In Section 2, we state several bilinear (adjoint)
restriction estimates which are needed in the proof of Theorem 1.1. Those estimates
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will be proven in Section 4. Assuming the estimates in Section 2 we prove Theorem
1.1 and Corollary 1.2 in Section 3. Theorem 1.1 is proven first and the proof of
Corollary 1.2 is similar; details will be given in Section 3.3. In Section 5 we show
the necessity of conditions (13), (14) and (15).

Throughout the paper, the constant C may vary depending on the dimension n,
1 ≤ q, r ≤ ∞, ε > 0 and the exponents α1, α2, β0, β+, β− if it is not mentioned
otherwise.

Acknowledgement. The authors wish to thank the referee for comments and
suggestions which helped to improve the paper.

2. Mixed norm estimates for bilinear extension operators

In this section we state several preliminary estimates which are needed for the
proof of the main theorem but that also have interest for themselves. In fact, they
are mixed norm generalizations of the bilinear restriction estimates for the cone and
the paraboloid (c.f. [10, 16, 22, 15, 21]).

To obtain sharp null form estimates it is essential to get sharp estimates for var-
ious interactions between two waves. Through suitable decomposition of the waves
(especially, Littewood-Paley and angular Whitney-type decompositions) matters are
reduced to obtaining the estimates for high-low and low-low (or high-high) frequency
interactions with specified angular separation between two waves (see the reductions
at the beginning of Section 3). From the estimates for large angular separation we
deduce the sharp estimates for small angular separation using rescaling arguments
(see Proposition 2.4, 2.5).

2.1. Estimates with large angular separation. For convenience, we define the
energy of the wave φ by

E(φ) := ‖φ(t)‖2
2

which is independent of t by Plancherel’s theorem. For l, k ≥ 0 let us define

Γ0(2
−l) = {(ξ′′, ξn−1, ξn, τ) : τ = |ξ|, ξn ∼ 1, ξn−1 ∼ 2−l, |ξ′′| ≤ 2−l},

Γ′k(2
−l) = 2k{(ξ′′, ξn−1, ξn, τ) : τ = −|ξ|, ξn ∼ −1, ξn−1 ∼ 2−l, |ξ′′| ≤ 2−l},

respectively, where ξ′′ = (ξ1, . . . , ξn−2). Even though the results in this section are
stated in terms of the specified conic subsets Γ0(2

−l) and Γ′k(2
−l), it should be noted

that they obviously remain valid under spatial rotations.

The following is a mixed norm generalization of the bilinear restriction estimate
for the cone [15, 22].

Theorem 2.1. Let φ, ψ (or ψ̄) be waves having Fourier supports contained in Γ0(1),
Γ′k(1), respectively. Then, for ε > 0 and 1 < q, r ≤ 2 satisfying 1/q < min(1, n+1

4
),

1/q < n+1
2

(1− 1
r
), there is a constant C (independent of k, φ and ψ) such that

‖φψ‖Lq
t Lr

x
(or ‖φψ̄‖Lq

t Lr
x
) ≤ C2( 1

q
− 1

2
+ε)kE(φ)1/2E(ψ)1/2.
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q < (n + 1)(1− 1

r )

1/q

n−1
n+1

n
n+1

Figure 2. The range of (q, r) for Theorem 2.1, n ≥ 3

The conditions 1/q ≤ min(1, n+1
4

), 1/q ≤ n+1
2

(1 − 1
r
) are necessary. It can be

shown using the test functions for (3) given in [3]. It seems highly possible to obtain
the estimates for 2/q = (n + 1)(1 − 1

r
) by adapting the argument in [15] but the

ε > 0 has to be removed to obtain some of the endpoint estimates in Theorem 1.1.

The estimates (1) for q, r satisfying both (7), (8) are rather special. As it was
pointed out in [15], they are closely related to the bilinear restriction to the parab-
oloid (or to elliptic surfaces). Let us set

(17) θ(ξ′) =
√

1 + |ξ′|2 − 1, ξ′ = (ξ1, ξ2, . . . , ξn−1).

Then for 0 < a ¿ 1 and 1 ≤ b ≤ 2 we define extension operators by

(18) f̂dσi(x, t) =

∫

Si

ei(x′ξ′+xnξn+tξnθ(ξ′/ξn))f(ξ)dξ, i = 1, 2

where

Si = {ξ ∈ Rn : b ≤ ξn ≤ b + a, |ξ′/ξn + (−1)ie′n−1| ≤ 1/2}, i = 1, 2.

Theorem 2.2. Let f̂dσ1, f̂dσ2 be defined as above. If 0 < a ¿ 1,1 ≤ b ≤ 2 and
n ≥ 2, then for q, r satisfying 1/q < min(1, n/4), 2/q < n(1 − 1/r), and for any
ε > 0, there is a constant C, independent of a and b, such that

(19) ‖
2∏

i=1

f̂idσi‖Lq
t Lr

x
≤ Ca1− 1

r
−ε‖f1‖2‖f2‖2.

By the argument in Section 4 and the estimates in [10] (c.f. (67)-(70)), it is
possible to obtain a mixed norm version of the bilinear restriction estimates for
hypersurfaces with non-vanishing Gaussian curvature. We record it here hoping
that it could be useful somewhere else.



SHARP NULL FORM ESTIMATES 7

(0, 0)

1

1(n− 2)/n

1/q

1/r

2/q < n(1− 1/r)

Figure 3. The range of (q, r) for Theorem 2.2, n ≥ 4

Let n ≥ 2 and φ1, φ2 be smooth functions defined on [−1, 1]n−1. Define extension
operators by

Eif(x′, t) =

∫

[−1,1]n−1

ei(x′ξ′+tφi(ξ
′))f(ξ′)dξ′, i = 1, 2.

Theorem 2.3. If det Hφ1, det Hφ2 6= 0 on [−1, 1]n−1 and for all ξ′, ζ ′ ∈ [−1, 1]n−1,

|〈Hφ−1
i (ξ′)(∇φ1(ξ

′)−∇φ2(ζ
′)),∇φ1(ξ

′)−∇φ2(ζ
′)〉| ≥ c > 0, i = 1, 2,

then for 1 < q, r satisfying 1/q < min(1, n/4), 2/q < n(1− 1/r), there is a constant
C such that

‖E1(f1)E2(f2)‖Lq
t Lr

x′
≤ C‖f1‖2‖f2‖2.

It is also possible to obtain such mixed norm estimates for bilinear restriction to
the conic surfaces studied in [10] which generalize Theorem 2.1.

The condition 2/q ≤ n(1 − 1/r) is necessary in Theorem 2.3 and when n = 2,
there is an additional condition1 1/r + 2/q ≤ 3/2.

Indeed, for the first one consider φ1(ξ
′) = |ξ′ + 2e′1|2 and φ2(ξ

′) = |ξ′ − 2e′1|2
defined on [−1, 1]n−1. For ε ¿ 1, let A = {ξ′ : |ξ1| ≤ ε2, |ξi| ≤ ε, i = 2, . . . n − 1}
and set f1(ξ

′) = f2(ξ
′) = χA(ξ′). Then, the condition follows from routine argument

because |E1f1(x
′, t)|, |E2f2(x

′, t)| ≥ cεn provided |x1| ≤ cε−2, |t| ≤ cε−2, |xi| ≤ cε−1,
i = 2, . . . n − 1. The second condition can be obtained using φ1(ξ

′) = (ξ′ + 4)2,
φ2(ξ

′) = (ξ′)2, f1 = χ{|ξ′|≤ε} and f2 = χ{|ξ′|≤ε2} because |(E1f1E2f2)(x
′, t)| ∼ ε3 if

|x′ + 8t| ≤ cε−1 and |t| ≤ cε−2.

1This is less restrictive than the condition 1/q < n/4, 2/q < n(1 − 1/r) in Theorem 2.3 when
n = 2
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2.2. Estimates with small angular separation. Now we give small angle ver-
sions of Theorem 2.1, 2.2. These will be obtained from rescaling and stability of
bilinear estimates with large angle separation. (See Section 4.2, 4.4.)

Proposition 2.4. Let n ≥ 2. Suppose that φ, ψ (or ψ̄) are free waves with Fourier
supports in Γ0(2

−l), Γ′k(2
−l), respectively. Then, for ε > 0 and 1 < q, r ≤ 2 satisfying

1/q < min(1, n+1
4

), 1/q < n+1
2

(1− 1
r
),

‖φψ‖Lq
t Lr

x
, (or ‖φψ̄‖Lq

t Lr
x
) ≤ C2k( 1

q
− 1

2
+ε)2l( 2

q
−(n−1)(1− 1

r
))E(φ)

1
2 E(ψ)

1
2 .

Let 0 < a ¿ 1 and 1 ≤ b ≤ 2 as before. We define Λ(2−l), Λ′(2−l) by

Λ(2−l) = {(ξ′, ξn, τ) ∈ Γ0(2
−l) : b ≤ ξn ≤ a + b},

Λ′(2−l) = {(ξ′, ξn, τ) ∈ Γ′0(2
−l) : b ≤ −ξn ≤ a + b},

respectively. The following is a corollary of Theorem 2.2.

Proposition 2.5. Let φ, ψ (or ψ̄) be waves with Fourier supports in Λ(2−l), Λ′(2−l),
respectively. Then, for 2/q < n(1− 1/r), q > max(1, 4/n) and any ε > 0,

‖φψ‖Lq
t Lr

x
≤ C2l(2/q−(n−1)(1−1/r))a1−1/r−εE(φ)

1
2 E(ψ)

1
2 .

As usual, for the proof of Theorem 1.1 it is convenient to factor the multiplier
weight Dβ0

0 D
β+

+ D
β−
− as (Dβ0

0 D
β+−β−
+ )|¤|β− . Here |¤| = D+D−. The following is

useful in handling the multiplier weight |¤|β− .

Lemma 2.6. Let β− be a complex number and let |¤| = D+D−. Suppose that φ, ψ
(or ψ̄) are waves with Fourier supports in Γ0(2

−l), Γ′k(2
−l), respectively. Then for

1 ≤ q, r ≤ ∞, k, l ≥ 0 and any N > 0, there is a constant C, independent of β−,
such that

‖|¤|β−(φψ)‖Lq
t Lr

x
≤ C(1 + |β−|)N2Re(β−)(k−2l)(20)

×
∑

µ=(µ1,µ2)∈Zn×Zn

(1 + |µ|)−N‖φµ1ψµ2‖Lq
t Lr

x

where φµ1, ψµ2 are waves satisfying E(φµ1) = E(φ), E(ψµ2) = E(ψ), and φµ1, ψµ2

(or ψ̄µ2 ) are Fourier supported in Γ0(2
−l), Γ′k(2

−l), respectively.

Here β− is allowed to be complex. For the most of applications it is not necessary
but we use it for complex interpolation (see Section 3.2.1).

Proof. We write φψ as

(2π)−2n

∫∫
ei(x′(ξ′+η′)+xn(ξn+ηn)+t(|ξ|±|η|))φ̂(0)(ξ)ψ̂(0)(η)dξdη.

Here the sign + stands for the case ψ̄ is supported in Γ′k(2
−l) and − does for the case

ψ is supported in Γ′k(2
−l). Then by re-scaling ξ′ → 2−lξ′, (η′, ηn) → (2k−lη′, 2kηn),

the phase part is transformed to

Φ(x, t, ξ, η) = x′(2−lξ′ + 2k−lη′) + xn(ξn + 2kηn) + t(|(2−lξ′, ξn)| ± |(2k−lη′, 2kηn)|).
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So, applying |¤|β− produces additional factor |w±(ξ, η)|β− in the above integral
where

w±(ξ, η) = |2−lξ′ + 2k−lη′|2 + (ξn + 2kηn)2 − (|(2−lξ′, ξn)| ± |(2k−lη′, 2kηn)|)2

= 22k−2l 2−2l[(ξ′η′)2 − |ξ′|2|η′|2]− ξ2
nη

2
n|ξ′/ξn − η′/ηn|2

2−2lξ′η′ + ξnηn ±
√

ξ2
nη2

n + 2−2l|ξ′|2η2
n + 2−2lξ2

n|η′|2 + 2−4l|ξ′|2|η′|2
and the integration is now taken over the set

S± = {ξ : ξn ∼ 1, ξn−1 ∼ 1, |ξ′′| ≤ 1} × {η : ηn ∼ ±1, ηn−1 ∼ ∓1, |η′′| ≤ 1}.
Hence it is enough to show that

‖
∫

S±
eiΦ(x,t,ξ,η)|2−k+2lw±(ξ, η)|β−F (ξ, η)dξdη‖Lq

t Lr
x
≤ C(1 + |β−|)N

×
∑

µ∈Zn×Zn

(1 + |µ|)−N‖
∫

S

eiΦ(x,t,ξ,η)ei〈µ,(ξ,η)〉F (ξ, η)dξdη‖Lq
t Lr

x
.

Because we can get the required by reversing all the changes of variables done
so far. If l ≥ 0, |2−k+2lw±(η, ξ)| ∼ 1 because |ξ′/ξn − η′/ηn|2 ∼ 1 on S±. So
|2−k+2lw±(ξ, η)|β− is smooth on S± for any complex number β−. Then by Fourier
series expansion we may write

|2−k+2lw±(ξ, η)|β− =
∑

µ∈Z2n

Cµe
i〈µ,(ξ,η)〉

on S± and from direct differentiation it is easy to see that |Cµ| = O((1+ |β−|)N(1+
|µ|)−N) for any positive integer N . This gives the required estimate (c.f. Lemma
2.1 in [14]). ¤

Remark 2.7. In fact this lemma can be strengthened slightly. Let Q be a form with
associated multiplier m. That is,

Q(φ, ψ) = (2π)−2n

∫∫
ei(x(ξ+η)+t(|ξ|±|η|))m(ξ, η)φ̂(0)(ξ)ψ̂(0)(η)dξdη.

Then it is obvious from the proof that Lemma 2.6 remains valid if φψ and φµ1ψµ2

in (20) are replaced by Q(φ, ψ) and Q(φµ1 , ψµ2), respectively.

3. Proof of Theorem 1.1

Assuming Theorems 2.1 and 2.2 and Propositions 2.4 and 2.5 we prove Theorem
1.1. By finite decomposition and symmetry, we may assume that the Fourier trans-
form of φ is supported in the forward light cone and ψ is supported in the forward
or backward light cone.

By the standard Littlewood-Paley decomposition of the initial data φ(0), ψ(0), we
write

φ =
∞∑

j=−∞
φj, ψ =

∞∑

k=−∞
ψk
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Interactions Main devices
high and low frequency, k À 1 Proposition 2.4, Lemma 2.6, 3.2

low frequency, k = O(1) (+−) Proposition 2.4, 2.5, Lemma 2.6
low frequency, k = O(1) (++) small angle separation Proposition 2.4, Lemma 2.6
low frequency, k = O(1) (++) large angle separation Proposition 2.4, 3.3

Table 1. Interactions and main devices.

where φj, ψk are waves having frequency supports on region D0 ∼ 2j, D0 ∼ 2k,
respectively in the light cones. Then, to prove the estimate (1), it is sufficient to
show that

‖Dβ
0 D

β+

+ D
β−
− (φjψk)‖Lq

t Lr
x
≤ C2−ε|j−k|(22α1jE(φj))

1
2 (22α2kE(φk))

1
2 .

Then, the required estimate follows from using Cauchy-Schwarz’s inequality and
Plancherel’s theorem. By symmetry and re-scaling with the condition (2), we may
also assume j = 0 ≤ k. Hence we are reduced to showing

(21) ‖Dβ
0 D

β+

+ D
β−
− (φ0ψk)‖Lq

t Lr
x
≤ C2−εk(E(φ0))

1
2 (22α2kE(φk))

1
2 .

Fixing k, for each l ≥ 0 we decompose dyadically the double light cone into
finitely overlapping projective sectors Γ, Γ′ with angle 2−l such that φ0 =

∑
Γ φ0,Γ,

ψk =
∑

Γ′ ψk,Γ′ where φ0,Γ, ψk,Γ′ are supported sectors Γ, Γ′, respectively. We denote
by ∠(Γ, Γ′) the angle between the sectors. Then, by a Whitney type decomposition
we can write φ0ψk as

φ0ψk =
∑

l≥0

∑

Γ,Γ′;∠(Γ,Γ′)∼2−l

φ0,Γψk,Γ′ .

This kind of decomposition was frequently used to exploit bilinear estimates obtained
under separation condition (see [15, 18, 19, 22]). So, it is enough to show that if
∠(Γ, Γ′) ∼ 2−l, then for ε > 0 and k, l ≥ 0,

‖Dβ
0 D

β+

+ D
β−
− (φ0,Γψk,Γ′)‖Lq

t Lr
x
≤ C2−ε(k+l)2α2kE(φ0,Γ)

1
2 E(ψk,Γ′)

1
2 .(22)

Then, estimate (21) can be obtained by Cauchy-Schwarz’s inequality and Plancherel’s
theorem.

By rotation we may assume that

(+−) supp φ̂0,Γ ⊂ Γ0(2
−l), supp ψ̂k,Γ′ ⊂ Γ′k(2

−l), or

(++) supp φ̂0,Γ ⊂ Γ0(2
−l), supp ψ̂k,Γ′ ⊂ −Γ′k(2

−l).

We denote the first case by (+−) and the second by (++).

We prove (22) considering the cases k À 1 and k = O(1), separately. They
correspond to high and low, low frequency interactions, respectively. Then, low
frequency interaction is handled by dividing the cases (+−) and (++). In the latter
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case the small angle 2−1 ¿ 1 and large angle 2−1 ∼ 1 cases are shown separately.
We summarize the details in Table 1.

3.1. Proof of estimate (22) when k À 1; high and low frequency interaction.
In this case the behavior of D0, D+ is simple. To be more precise, the Fourier
transform of φ0,Γψk,Γ′ is contained in the region D0, D+ ∼ 2k since k À 1. On the
other hand, by the well known multiplier theorem it is easy to see

‖Dβ0

0 D
β+−β−
+ F‖Lq

t Lr
x
≤ C2k(β0+β+−β−)‖F‖Lq

t Lr
x

provided the Fourier transform of F is supported in the region D0, D+ ∼ 2k. Hence,
for (22) it suffices to show that if ∠(Γ, Γ′) ∼ 2−l, then for ε > 0 and k, l ≥ 0,

‖|¤|β−(φ0,Γψk,Γ′)‖Lq
t Lr

x
≤ C2−ε(k+l)2−k(β0+β+−β−)2α2kE(φ0,Γ)

1
2 E(ψk,Γ′)

1
2 .

By Lemma 2.6, this further reduces to showing

‖φ0,Γψk,Γ′‖Lq
t Lr

x
≤ C2−ε(k+l)2k(α2−β0−β+)22lβ−E(φ0,Γ)

1
2 E(ψk,Γ′)

1
2 .

Now, by (2) and (4) with strict inequality it is enough to show the following;

Lemma 3.1. Let k À 1. If 1/q < min(1, n+1
4

) and 2/q < (n + 1)(1− 1/r), then

‖φ0,Γψk,Γ′‖Lq
t Lr

x
≤ C2k(β−−α1−1/q+n(1−1/r)−ε)(23)

× 2l(2/q−(n−1)(1−1/r))E(φ0,Γ)
1
2 E(ψk,Γ′)

1
2 .

We prove Lemma 3.1 considering the cases n ≥ 3 and n = 2 separately.

Proof of Lemma 3.1 when n ≥ 3. For n ≥ 3, let us define (see Figure 4) the sets
∆1(n), ∆2(n), . . . , ∆6(n) ⊂ [0, 1]× [0, 1) by setting

∆1(n) = {(1
r
,
1

q
) ∈ [0, 1]× [0, 1) :

2

q
< (n + 1)(1− 1

r
),

1

q
≤ 1

2
≤ 1

r
},

∆2(n) = {(1
r
,
1

q
) ∈ [0, 1]× [0, 1) :

1

q
≤ 1

2
,

1

q
≤ n− 1

2
(
1

2
− 1

r
)},

∆3(n) = {(1
r
,
1

q
) ∈ [0, 1]× [0, 1) :

1

2
≤ 1

q
,

1

r
≤ n− 3

2(n− 1)
},

∆4(n) = {(1
r
,
1

q
) ∈ [0, 1]× [0, 1) :

n− 3

2(n− 1)
≤ 1

r
≤ 1

2
,

n− 1

2
(
1

2
− 1

r
) ≤ 1

q
≤ 1

r
+

n + 1

2
(
1

2
− 1

r
)},

∆5(n) = {(1
r
,
1

q
) ∈ [0, 1]× [0, 1) :

1

r
+

n + 1

2
(
1

2
− 1

r
) ≤ 1

q
,

1

r
≤ 1

2
},

∆6(n) = {(1
r
,
1

q
) ∈ [0, 1]× [0, 1) :

1

2
≤ 1

r
,

1

2
≤ 1

q
<

n + 1

2
(1− 1

r
)}.

Then comparing the conditions2 (9)–(12), (13) and (14), we see that among those
conditions (9) is the strongest on the set ∆2(n), (13) on ∆3(n), (10) on ∆4(n), (14)
on ∆5(n), (11) on ∆1(n), and (12) on ∆6(n). Hence, for (23) we need to show the
following estimates:

2Conditions for high and low frequency interaction
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∆4(n)

(10)

∆5(n)

(14)

∆1(n)

(11)

∆6(n)

(12)

1
r

1
q

1
2

1
2

(0, 0)

(1, 1)

P

QR

∆2(n)

(9)

∆3(n)

(13)

n−3
2(n−1)

n−1
n+1

n
n+1

2/q = (n + 1)(1− 1/r)

Figure 4. For n ≥ 3, the sets ∆1(n), ∆2(n), . . . , ∆6(n); comparing
the conditions (9)–(12), (13) and (14)

Assuming E(φ0,Γ)
1
2 = E(ψk,Γ′)

1
2 = 1, for ε > 0,

(24)
‖φ0,Γψk,Γ′‖Lq

t Lr
x
≤ C2l(2/q−(n−1)(1−1/r)) if (1/r, 1/q) ∈ ∆1(n),

‖φ0,Γψk,Γ′‖Lq
t Lr

x
≤ C2k(−1/q+n(1/2−1/r)+ε)2l(2/q−(n−1)(1−1/r)) if (1/r, 1/q) ∈ ∆2(n),

‖φ0,Γψk,Γ′‖Lq
t Lr

x
≤ C2k((n−1)/2−n/r)+ε)2l(2/q−(n−1)(1−1/r)) if (1/r, 1/q) ∈ ∆3(n),

‖φ0,Γψk,Γ′‖Lq
t Lr

x
≤ C2k n+1

2
(1/2−1/r)+ε)2l(2/q−(n−1)(1−1/r)) if (1/r, 1/q) ∈ ∆4(n),

‖φ0,Γψk,Γ′‖Lq
t Lr

x
≤ C2k(1/q−1/r)+ε)2l(2/q−(n−1)(1−1/r)) if (1/r, 1/q) ∈ ∆5(n),

‖φ0,Γψk,Γ′‖Lq
t Lr

x
≤ C2k(1/q−1/2+ε)2l(2/q−(n−1)(1−1/r)) if (1/r, 1/q) ∈ ∆6(n).

As it can be easily verified from the necessary conditions and rescaling, all these
estimates are sharp up to ε-loss. In view of interpolation, to prove this we only need
to show the corresponding estimates for

(
1

r
,
1

q

)
= (1, 0) ,

(
1

2
, 0

)
, (0, 0) ,

P =

(
n

n + 1
,
1

2

)
,

(
1

2
,
1

2

)
,

(
n− 3

2 (n− 1)
,
1

2

)
,

(
0,

1

2

)
,

Q =

(
n− 1

n + 1
, 1

)
, R =

(
1

2
, 1

)
,

(
n− 3

2 (n− 1)
, 1

)
, (0, 1) ,

or for some (1/r, 1/p) which is arbitrarily close to these points.
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For P, Q, R, we are not able to obtain the corresponding end point estimates.
However, it is possible to prove estimates for some (1/r, 1/q) arbitrarily close to the
points P, Q, R. These estimates follow from Proposition 2.4.

The estimates for (1, 0), (1
2
, 0), (0, 0), ( n−3

2(n−1)
, 1

2
), (0, 1

2
), ( n−3

2(n−1)
, 1), (0, 1) can be

proven from Strichartz’s estimates and re-scaling. We need the following:

Lemma 3.2. If ψ is a wave with its Fourier support contained in the set

{(ξ,±|ξ|) : ξn ∼ 2k, |ξ′| . 2k−l},
then, for q ≥ 2, 2/q ≤ (n− 1)(1/2− 1/r) and l ≥ 0,

‖ψ‖Lq
t Lr

x
≤ C2k(n(1/2−1/r)−1/q)2l(2/q+(n−1)(1/r−1/2))‖ψ(0)‖L2

with the exception (q, r) = (2,∞) when n = 3.

Proof. We may assume that l À 1 by the usual Strichartz’s estimates for the wave
equation [4] and a mild rescaling. We write ψ as

ψ(x, t) =

∫∫
ei(x′ξ′+xnξn±t|ξ|)ψ̂(0)(ξ)dξ.

Then, by changing variables xn → xn − t we may replace the phase part by x′ξ′ +
xnξn ± t(|ξ| − ξn). Re-scaling (ξ′, ξn) → (2k−lξ′, 2kξn) transforms the phase to

2k−lx′ξ′ + 2kxnξn ± t(
√

22k−2l|ξ′|2 + 22kξ2
n − 2kξn).

By (x′, xn, t) → (2−k+lx′, 2−kxn, 2−k+2lt) it is further changed to

φ(x, t, ξ) = x′ξ′ + xnξn ± t2−k+2l(
√

22k−2l|ξ′|2 + 22kξ2
n − 2kξn).

Let us set

Uf(x, t) =

∫

ξn∼1,|ξ′|.1

eiφ(x,t,ξ)f̂(ξ)dξ.

Since 2−k+2l(
√

22k−2l|ξ′|2 + 22kξ2
n − 2kξn) = |ξ′|2/ξn + O(2−l|ξ′|3/ξ2

n), we can use
the well known argument for Strichartz’s estimates to obtain ‖Uf‖Lq

t Lr
x
≤ C‖f‖2

for q ≥ 2 and 2/q ≤ (n − 1)(1/2 − 1/r) (see [4]). Reversing rescaling gives the
required. ¤

From Lemma 3.2 it follows that for 1
q
≤ n−1

2
(1− 1

r
) (with the exception of (q, r) =

(1,∞) when n = 3),

(25) ‖φ0,Γψk,Γ′‖Lq
t Lr

x
≤ C2k(n

2
(1−1/r)−1/(2q))2l(2/q−(n−1)(1−1/r)),

for q ≥ 2, 1
q
≤ n−1

2
(1

2
− 1

r
) (with the exception of (q, r) = (2,∞) when n = 3),

(26) ‖φ0,Γψk,Γ′‖Lq
t Lr

x
≤ C2k(n(1/2−1/r)−1/q)2l(2/q−(n−1)(1−1/r))

and for 1
q
≤ (n− 1)(1

2
− 1

r
), (with the exception of q = 1 when n = 3),

(27) ‖φ0,Γψk,Γ′‖Lq
t Lr

x
≤ C2k(n(1/2−1/r)−1/2q)2l(2/q−(n−1)(1−1/r)).

For (25) use ‖φ0,Γψk,Γ′‖Lq
t Lr

x
≤ ‖φ0,Γ‖2q,2r‖ψk,Γ′‖2q,2r and apply Lemma 3.2 with ex-

ponents (2q, 2r) to each term. (26) follows from ‖φ0,Γψk,Γ′‖Lq
t Lr

x
≤ ‖φ0,Γ‖∞,∞‖ψk,Γ′‖Lq

t Lr
x
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and Lemma 3.2. For (27) use ‖φ0,Γψk,Γ′‖Lq
t Lr

x
≤ ‖φ0,Γ‖2q,∞‖ψk,Γ′‖2q,r and apply

Lemma 3.2 with exponents (2q,∞) and (2q, r).

Now, for n ≥ 4, the estimates for (1
r
, 1

q
) = (1, 0), (0, 1) are particular cases of (25),

the estimates for (1
2
, 0), (0, 0), ( n−3

2(n−1)
, 1

2
) and (0, 1

2
) are particular cases of (26) and

the estimate for ( n−3
2(n−1)

, 1) is a particular case of (27). At (1/2, 1/2), we need to

show

(28) ‖φ0,Γψk,Γ′‖L2
t L2

x
≤ C2l(3−n)/2.

Let dσ0, dσk be the induced Lebesgue measures on Γ0, Γ′k, respectively. It is easy to
see ‖dσ0 ∗ dσk‖∞ ≤ C2l(3−n). Then the required estimate follows from Plancherel’s
Theorem and interpolation between L∞ and L1 estimates. (It also can be shown
from (42) by rescaling.)

When n = 3, the set ∆3 shrinks to the line segment [(0, 1/2), (0, 1)]. Even though,
the required estimates can be obtained by the same argument except for (1/r, 1/q) =
(0, 1), (0, 1

2
) because the estimate for (1/r, 1/q) = (0, 1/2) is not allowed in Lemma

3.2. However it is possible to obtain the corresponding estimates for some (1/r, 1/q)
arbitrary close to (0, 1) and (0, 1

2
) by Lemma 3.2 and Hölder’s inequality. ¤

Now we turn to the case n = 2.

Proof of Lemma 3.1 when n = 2. For n = 2 the picture is slightly different (see
Figure 5). Recalling the condition (3), let us define the sets ∆1(2), ∆2(2), ∆4(2),
∆5(2), ∆6(2) ⊂ [0, 1]× [0, 3/4) by setting

∆1(2) = {(1
r
,
1

q
) ∈ [0, 1]× [0, 3/4) :

2

q
< 3(1− 1

r
),

1

q
≤ 1

2
≤ 1

r
},

∆2(2) = {(1
r
,
1

q
) ∈ [0, 1]× [0, 3/4) :

1

q
≤ 1

2
,

1

q
≤ 1

2
(
1

2
− 1

r
)},

∆4(2) = {(1
r
,
1

q
) ∈ [0, 1]× [0, 3/4) :

1

2
(
1

2
− 1

r
) ≤ 1

q
≤ 1

r
+

3

2
(
1

2
− 1

r
)},

∆5(2) = {(1
r
,
1

q
) ∈ [0, 1]× [0, 3/4) :

1

r
+

3

2
(
1

2
− 1

r
) ≤ 1

q
,

1

r
≤ 1

2
},

∆6(2) = {(1
r
,
1

q
) ∈ [0, 1]× [0, 3/4) :

1

2
≤ 1

r
,

1

2
≤ 1

q
<

3

2
(1− 1

r
)}.

To obtain (23) we need to show (24) with n = 2 but for Theorem 1.1 it is enough
to do it for (1/r, 1/q) = (1, 0), (1/2, 0), (0, 0), (1/2, 1/2), (1/2, 3/4), P = (2/3, 1/2),
(0, 1/4) and (0, 1/2) or arbitrarily close to them. The estimates for (1, 0) and (0, 1/2)
follow from (25) and for (0, 0), (1/2, 0) and (0, 1/4) follow from (26). For (1/2, 1/2)
we use (28) and for P = (2/3, 1/2) and (1/2, 3/4) we use Proposition 2.4. ¤

3.2. Proof of estimate (22) when k = O(1); low frequency interactions.
Obviously, (22) is equivalent to

(29) ‖Dβ
0 D

β+−β−
+ |¤|β−(φ0,Γψk,Γ′)‖Lq

t Lr
x
≤ C2−εlE(φ0,Γ)

1
2 E(ψk,Γ′)

1
2
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∆4(2)
(10)

∆2(2)
(9)

∆5(2)
(14)

∆1(2)
(11)

∆6(2)
(12)

1 1
r

3
4

1
q

1
2

1
2

1
4

(0, 0)

P

2
3

2/q = 3(1− 1/r)

Figure 5. n = 2, ∆1(2), ∆2(2), ∆4(2), ∆5(2), ∆6(2) ; comparing (9)–
(12), (14)

for some ε > 0. The symbol Dβ
0 D

β+−β−
+ no longer behaves so nicely as in high and

low frequency interactions. We decompose the waves further to handle Dβ
0 D

β+−β−
+

near the origin. We will prove (29) by considering two cases, (++) and (+−),
separately.

3.2.1. (+−) case. First we show (29) when (1/r, 1/q) is close enough to the line
2/q − (n + 1)(1 − 1/r) = 0 and next we will show (29) for 2/q < n(1 − 1/r) (see
Figure 6). Then interpolation between these two kind of estimates gives (29) for
all r, q, 2/q < (n + 1)(1 − 1/r) < 0. Indeed, it is possible to obtain estimates (29)
even if β0, β+, β− are complex number as long as Re(β0), Re(β+), Re(β−) satisfy
the conditions (2)-(15) with strict inequality instead of β0, β+, β−. And it is easy
to see the constant C in (29) is O(1 + |β0|+ |β+|+ |β−|)N from the argument below
(c.f. Lemma 2.6). Hence we can use complex interpolation along β0, β+, β−.

To begin with, we make a further decomposition to handle Dβ
0 D

β+−β−
+ . For each

m, 0 ≤ m ≤ l, we decompose dyadically along the direction of light ray to break each
of the surfaces Γ0(2

−l), Γ′k(2
−l) into sectors Λm,j, Λ

′
m,i of size 2−l × · · · × 2−l × 2m−l

essentially (the longest direction is parallel to to the light ray). So, for each fixed
m, we have

Γ0(2
−l) =

⋃
j

Λm,j , Γ′k(2
−l) =

⋃
i

Λ′m,i.

Then, we may write

Γ0(2
−l)× Γ′k(2

−l) =
⋃

0≤m≤l

⋃

dist (Λm,j ,−Λ′m,i)∼2m−l

Λm,j × Λ′m,i.
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2/q < n(1− 1/r)
(7)

2/q = (n + 1)(1− 1/r)

(8)

1/r

1/q

(0, 0)

Figure 6. Comparing the conditions (7) and (8)

Note that dist (Λm,j,−Λ′m,i) & 2−l (in the case m = 0 this follows from the angular
separation). Hence, we have

φ0,Γψk,Γ′ =
∑

0≤m≤l

∑

dist (Λm,j ,−Λ′m,i)∼2m−l

φΛm,j
ψΛ′m,i

where φΛm,j
, ψΛ′m,i

are waves with their Fourier supports contained in Λm,j, Λ′m,i,

respectively.

It is easy to see that if the Fourier transform of F is supported on Λm,j + Λ′m,i

‖Dβ0

0 D
β+−β−
+ F‖Lq

t Lr
x
≤ C2(m−l)(β0+β+−β−)‖F‖Lq

t Lr
x

because dist (Λm,j,−Λ′m,i) ∼ 2m−l. Hence, using this and Lemma 2.6, we have

‖Dβ0

0 D
β+−β−
+ |¤|β−(φΛm,j

ψΛ′m,i
)‖Lq

t Lr
x

(30)

≤ C2m(β0+β+−β−)2−l(β0+β++β−)‖φΛm,j
ψΛ′m,i

‖Lq
t Lr

x
.

When (1/q, 1/r) is near the line 2/q = (n + 1)(1 − 1/r). From the above (30) and
Proposition 2.4 we have

‖Dβ0

0 D
β+

+ D
β−
− (φΛm,j

ψΛ′m,i
)‖Lq

t Lr
x
≤ C2(m−l)(β0+β+−β−)

× 2−l(2β−−2/q+(n−1)(1−1/r))E(φΛm,j
)

1
2 E(ψΛ′m,i

)
1
2 .

Hence, if β0+β+−β− ≥ 0, then (29) follows from summation in m, Cauchy-Schwarz’s
inequality and Plancherel’s theorem because 2β− − 2/q + (n − 1)(1 − 1/r) > 0 by
(4) with strict inequality.

On the other hand, if β0 + β+ − β− < 0, then by using the above estimates and
direct summation in m (also by Schwarz’s inequality and Plancherel’s theorem) we
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get ∑

0≤m≤l

∑

dist (Λm,j ,−Λ′m,i)∼2m−l

‖Dβ0

0 D
β+

+ D
β−
− (φΛm,j

ψΛ′m,i
)‖Lq

t Lr
x

≤ C2−l(β0+β++β−−2/q+(n−1)(1−1/r))E(φ0,Γ)
1
2 E(ψk,Γ′)

1
2 .

From (2), the exponent of 2−l equals to α1 + α2 − 1/q − (1 − 1/r). Since (8) is
valid with strict inequality, to say, α1 + α2 − 3/q + n(1 − 1/r) = δ for some δ > 0.
Obviously α1 + α2 − 1/q − (1 − 1/r) > 0 if δ/2 > 2/q − (n + 1)(1 − 1/r) > −δ/2.
Hence we get the required estimates (29) as long as (1/r, 1/q) is close enough to the
line 2/q − (n + 1)(1− 1/r) = 0.

When 2/q < n(1− 1/r). In this case, to obtain the sharp estimates it is not enough
to apply Proposition 2.4 to (30). Instead, we use Proposition 2.5 to get better
bounds. Note that the conditions3 (7), (8) coincide along the line 2/q = n(1− 1/r)
and (7) is stronger when 2/q < n(1− 1/r). (See figure 6.)

Using (30) and Proposition 2.5, we have

‖Dβ0

0 D
β+

+ D
β−
− (φΛm,j

ψΛ′m,i
)‖Lq

t Lr
x
≤ C2(m−l)(β0+β+−β−+1−1/r−ε)

× 2−l(2β−−2/q+(n−1)(1−1/r))E(φΛm,j
)

1
2 E(ψΛ′m,i

)
1
2 .

If β0 + β+ − β− + 1− 1/r > 0, choosing sufficiently small ε > 0 such that β0 + β+−
β− + 1 − 1/r − ε > 0 we get (29) by summation in m and the condition (4) with
strict inequality.

On the other hand, if β0 + β+ − β− + 1− 1/r ≤ 0, from summation in m and the
condition (3) we see∑

0≤m≤l

∑

dist (Λm,j ,−Λ′m,i)∼2m−l

‖Dβ0

0 D
β+

+ D
β−
− (φΛm,j

ψΛ′m,i
)‖Lq

t Lr
x

≤ C2−l(α1+α2−1/q−ε)E(φ0,Γ)
1
2 E(ψk,Γ′)

1
2 .

Hence, if (7) holds with strict inequality, we get (29) with sufficiently small ε > 0.
It should be noted that when n = 2, 3, the additional assumption 4/n < q was

used for r > 2 (see Proposition 2.5).

3.2.2. Case (++). We consider the two cases, 2−l ∼ 1 and 2−l ¿ 1, separately.

Case 2−l ¿ 1. In this case the multipliers for D0, D+ are smooth and bounded

away from zero on the Fourier support of (φ0,Γψk,Γ′). So, the harmless Dβ0

0 , D
β+−β−
+

can be discarded. Hence it is enough to show that

‖|¤|β−(φ0,Γψk,Γ′)‖Lq
t Lr

x
≤ C2−εlE(φ0,Γ)

1
2 E(ψk,Γ′)

1
2 .

From Lemma 2.6 and Proposition 2.4, we see that the left hand side of the above
inequality is bounded by

2−l(2β−−2/q+(n−1)(1−1/r))E(φ0,Γ)
1
2 E(ψk,Γ′)

1
2 .

3conditions for low frequency interaction (+−)
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Therefore from the condition (4) we get the required estimate (29).

Case 2−l ∼ 1. If the angular separation 2−l ∼ 1, on the Fourier support of φ0,Γψk,Γ′

D
β+

+ , D
β−
− are a harmless smooth operator because the multipliers are bounded away

from zero. So we may discard them as before.

For m ≥ 10, let Pm be the usual Littlewood-Paley projection in ξ to the set

{(ξ, τ) ∈ Rn × R : |ξ| ∼ 2−m}.
Then it is enough to show that for ε > 0,

‖PmDβ
0 (φ0,Γψk,Γ′)‖Lq

t Lr
x
≤ C2−εmE(φ0,Γ)

1
2 E(ψk,Γ′)

1
2 .

Equivalently, it suffices to show

‖Pm(φ0,Γψk,Γ′)‖Lq
t Lr

x
≤ C2mβ0−εmE(φ0,Γ)

1
2 E(ψk,Γ′)

1
2 .

We decompose Γ0(2
−l) and Γ′k(2

−l) into disjoint surfaces Λ, Λ′ of diameter ∼ 2−m

so that
φ0,Γ =

∑
Λ

φΛ, ψk,Γ′ =
∑

Λ′
ψΛ′ ,

where φΛ and ψΛ′ are waves Fourier supported in Λ, Λ′, respectively. Then by
Cauchy–Schwarz’s inequality and Plancherel’s theorem we are reduced to showing

(31) ‖Pm(φΛψΛ′)‖Lq
t Lr

x
≤ C2mβ0−εmE(φΛ)

1
2 E(ψΛ′)

1
2

for some ε > 0. Note that Pm(φΛψΛ′) 6= 0 only if Λ + Λ′ ∈ {(ξ, τ) : |ξ| ≤ C2−m}. So,
by rescaling and rotation we may assume that

(32) Λ = {(ξ, |ξ|) : ξ ∈ B(en, C2−m)}, Λ′ = {(ξ, |ξ|) : ξ ∈ B(−en, C2−m)}.
Let us set I = [0, 1]

∆7 = {(1
r
,
1

q
) ∈ I × I :

1

q
≤ 1− 1

r
,

1

q
≤ 1

2
},

∆8 = {(1
r
,
1

q
) ∈ I × I : min(1,

n + 1

4
) >

1

q
≥ 1

2
,

1

r
≤ 1

2
},

∆9 = {(1
r
,
1

q
) ∈ I × I : min(1,

n + 1

4
) >

1

q
≥ 1− 1

r
,

1

r
≥ 1

2
,
2

q
< (n + 1)(1− 1

r
)}.

Hence comparing the conditions4 (5), (6) and (15), for (31) it is sufficient to show
the following estimates:

For any ε > 0,

‖φΛψΛ′‖Lq
t Lr

x
≤ C2m(1/q−n(1−1/r)+ε)E(φΛ)

1
2 E(ψΛ′)

1
2 if (1/r, 1/q) ∈ ∆7,

‖φΛψΛ′‖Lq
t Lr

x
≤ C2m(2/q−n(1−1/r)−1/2+ε)E(φΛ)

1
2 E(ψΛ′)

1
2 if (1/r, 1/q) ∈ ∆8,

‖φΛψΛ′‖Lq
t Lr

x
≤ C2m(2/q−(n+1)(1−1/r)+ε)E(φΛ)

1
2 E(ψΛ′)

1
2 if (1/r, 1/q) ∈ ∆9.

(33)

4Conditions for low frequency interaction (++)
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1/2

(6)
∆9

(15)
∆8

(5)
∆7

1/2

2/q = (n + 1)(1− 1/r)

1/r

1/q

(0, 0)

Figure 7. Comparing (5), (6) and (15), n ≥ 3

For n ≥ 3 it is enough to show the estimates corresponding to the points
(

1

r
,
1

q

)
= (1, 0) , (0, 0) ,

(
1

2
,
1

2

)
,

(
0,

1

2

)
,

(
n− 1

n + 1
, 1

)
,

(
1

2
, 1

)
, (0, 1) ,

or (1/r, 1/q) arbitrary close to these points (see Figure 7). If n = 2, we need
estimates corresponding to the points

(
1

r
,
1

q

)
= (1, 0) , (0, 0) ,

(
1

2
,
1

2

)
,

(
0,

1

2

)
,

(
1

2
,
3

4

)
,

(
0,

3

4

)
.

Estimates at (1, 0) and (0, 0) are trivial from Hölder’s inequality and Plancherel’s
theorem. Since Λ and Λ′ transversal to each other, the estimate at (1/2, 1/2) can be
proven by the same way as (28). Now note that the Fourier supports of (φΛψΛ′)(·, t)
are contained in a set of diameter C2−m. So, the estimate at (0, 1/2) can be obtained
by applying Bernstein’s inequality to the estimate at (1/2, 1/2).

When n = 2, the Lq
tL

r
x estimates at (1/r, 1/q) arbitrarily close to (1/2, 3/4) is

contained in Proposition 2.4 because angular separation between the sets Λ and Λ′

is about 1. Finally the remaining estimates at (0, 3/4) follow from the estimates at
(1/2, 3/4) by Bernstein’s inequality.

Now we turn to the case n ≥ 3. Note that the Lq
tL

r
x estimates at (1/r, 1/q)

arbitrarily close to (n−1
n+1

, 1) are particular cases of Proposition 2.4. As before the
estimates at (1/r, 1/q) arbitrarily close to (0, 1) follow from the estimates at (1/2, 1)
by Bernstein’s inequality. Hence, by Lemma 4.4 (Globalization Lemma) it is enough
to show
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Proposition 3.3. Let n ≥ 3 and let Λ and Λ′ be the sets given by (32). If φΛ, ψΛ′

are the waves having Fourier supports in Λ, Λ′, respectively. Then, for any α > 0

(34) ‖φΛψΛ′‖L1
t L2

x(Q(R)) ≤ 2(3/2−n/2)mRα‖φΛ(0)‖2‖ψΛ′(0)‖2, R À 1

where Q(R) is the cube with side length R centered at the origin.

Indeed, by rescaling and stationary phase method, one can see that φΛ, φΛ′ are
expressed as extension operators given by measures dσ1, dσ2, respectively, which

satisfy |d̂σi(x, t)| ≤ C2mc(1 + |(x, t)|)−(n−1)/2 for some c. Then from Lemma 4.4 we
obtain Lq

tL
r
x estimates for (1/q, 1/r) arbitrarily close to (1, 1/2) at loss of 2εm. See

Remark 4.5.

Proof of Proposition 3.3. Recall that Λ, Λ′ are parts of the cone of diameter C2−m-
balls in centered at (en, 1), (−en, 1), respectively. We start with the induction as-
sumption that (34) is valid for some α > 0. Following the induction on scales
argument [22], we will show that (34) implies that for 0 < δ, ε ¿ 1 and R À 1,

(35) ‖φΛψΛ′‖L1
t L2

x(Q(R)) ≤ CRε(Rα(1−δ) + Rcδ)2(3/2−n/2)m‖φΛ(0)‖2‖ψΛ′(0)‖2

with c independent of ε, δ, R. Iterative use of this implication gives (34) for any
α > 0.

By the same argument used for (28) we have

‖φΛψΛ′‖L2
t,x(Q(R)) ≤ C2−m(n−1)/2‖φΛ(0)‖2‖ψΛ′(0)‖2.

Hence if R ≤ 22m it gives (34) with α = 0 by Hölder’s inequality. So, we may assume
R À 22m. Fixing R À 22m, by wave packet decomposition at the scale of R we can
write

φΛ =
∑
T∈T

CT PT , ψΛ′ =
∑

T ′∈T ′
CT ′PT ′

on QR. Here T , T ′ are the collections of tubes associated to wave packet decom-
position for φΛ, ψΛ′ at scale R, respectively. PT , PT ′ are functions, essentially sup-
ported on T, T ′, respectively. Their spatial Fourier transforms are contained in R−1

neighborhood of the Fourier supports of φΛ, ψΛ′ and ‖PT (0)‖L2 = ‖PT ′(0)‖L2 = 1.
Moreover ‖φΛ(0)‖2

L2 ≈
∑

T C2
T and ‖ψΛ′(0)‖2

L2 ≈
∑

T ′ C
2
T ′ . See [10] for more details

(see also [16]).

By the standard argument involving pigeonholing we are reduced to showing that
if R À 22m, 0 < δ ¿ 1, then

‖
∑

T,T ′
PT PT ′‖L1

t L2
x(Q(R)) ≤ C2(3/2−n/2)m(Rα(1−δ) + Rcδ)#(T )1/2#(T ′)1/2.

Then partition Q(R) into R1−δ-cubes and we denote by {b} these cubes. The left
hand side of the above is bounded by
∑

b

‖
∑

T,T ′
PT PT ′‖L1

t L2
x(b) ≤

∑

b

‖
∑

T∼b,T ′∼b

PT PT ′‖L1
t L2

x(b) +
∑

b

‖
∑

T 6∼b or T ′ 6∼b

PT PT ′‖L1
t L2

x(b)

where ∼ is the usual relation between T, T ′ and b defined in [16] (see also [10]).
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For the first term we can use the induction assumption to bound it by

C2(3/2−n/2)mRα(1−δ)#(T )1/2#(T ′)1/2.

For the second term,

‖
∑

T 6∼b or T ′ 6∼b

PT PT ′‖L1
t L2

x(b) ≤ CR1/2‖
∑

T 6∼b or T ′ 6∼b

PT PT ′‖L2
t L2

x(b)

≤ CRcδR1/2R−(n−1)/4#(T )1/2#(T ′)1/2

≤ CRcδ2(3−n)m/2#(T )1/2#(T ′)1/2

because R ≥ 22m. The second inequality is a consequence of estimate (2.12) in [10],
which is in the same spirit as inequality (23) in Tao’s [16]. ¤

3.3. Remarks for the proof of Corollary 1.2; Sufficiency part. The suffi-
ciency part can be proven following the same way as before. But we need to handle
the additional multiplier weights for Q0,j Qi,j at some stages of the argument. It
should be noted that the null forms Q0,j, Qi,j are not completely invariant under
spatial rotation. In other words, we may not be able to assume that the angularly
decomposed waves φ0,Γ, ψk,Γ′ are supported in the specified conic subsets Γ0(2

−l)
and Γ′k(2

−l) as before. However it does not cause any problem since we can work in
an adapted coordinates frame.

After dyadic decomposition, angular Whitney-type decompositions and rotation
if necessary, to each pair of waves we can apply Lemma 2.6 and the following.

Lemma 3.4. Let Q = Q0,j, or Q = Qi,j and set Λk(2
−l) = 2k{(ξ, |ξ|) : |ξ| ∼

1, |ξ/|ξ| − v| ≤ 2−l} for some |v| = 1. Suppose φ, ψ (or ψ̄) are waves with Fourier
supports in Λ0(2

−l), Λk(2
−l), respectively. Then for 1 ≤ q, r ≤ ∞, k, l ≥ 0 and any

N > 0, there is a constant C, independent of v, such that

‖Q(φ, ψ)‖Lq
t Lr

x
≤ C2k−l

∑

µ=(µ1,µ2)∈Zn×Zn

(1 + |µ|)−N‖φµ1ψµ2‖Lq
t Lr

x

where φµ1, ψµ2 are waves satisfying E(φµ1) = E(φ), E(ψµ2) = E(ψ), and φµ1, ψµ2

(or ψ̄µ2) are Fourier supported in Λ0(2
−l), Λk(2

−l), respectively.

This lemma with Remark 2.7 enables us to trade off the multiplier Q = Q0,j,
Q = Qi,j for sharp bounds in terms of 2k, 2l. Using Lemma 3.4 one can easily
check that the arguments for the proof Theorem 1.1 in Sections 3.1, 3.2 work except
for the case 2−l ∼ 15 in section 3.2.2 ((++) in low frequency interaction). For the
remaining case one can use the following:

Lemma 3.5. Let Λ = {(ξ, |ξ|) : |ξ − v| ≤ C2−m}, Λ′ = {(ξ, |ξ|) : |ξ + v| ≤ C2−m}
for some v, |v| = 1. Suppose φ, ψ (or ψ̄) are waves with Fourier supports in Λ, Λ′,
respectively. Then for 1 ≤ q, r ≤ ∞, k, l ≥ 0 and any N > 0, there is a constant C,

5We did not use Lemma 2.6 in this case.
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independent of v, such that

‖Q0,j(φ, ψ)‖Lq
t Lr

x
≤ C

∑

µ=(µ1,µ2)∈Zn×Zn

(1 + |µ|)−N‖φµ1ψµ2‖Lq
t Lr

x
,(36)

‖Qi,j(φ, ψ)‖Lq
t Lr

x
≤ C2−m

∑

µ=(µ1,µ2)∈Zn×Zn

(1 + |µ|)−N‖φµ1ψµ2‖Lq
t Lr

x
(37)

where φµ1, ψµ2 are waves satisfying E(φµ1) = E(φ), E(ψµ2) = E(ψ), and φµ1, ψµ2

(or ψ̄µ2) are Fourier supported in Λ, Λ′, respectively.

After decomposing φ0,Γ, ψk,Γ′ into disjoint waves φΛ, ψΛ′ as in section 3.2.2, using
this lemma we can drop the additional weight. Then the last of argument in Section
3.2.2 works without modification.

Now we close this section with the proof of Lemma 3.4, 3.5. The proof is similar
to that of Lemma 2.6. We shall be brief.

Proof of Lemma 3.4. To begin with, we write Q(φ, ψ) as

(2π)−2n

∫∫
ei(x(ξ+η)+t(|ξ|±|η|))m(ξ, η)φ̂(0)(ξ)ψ̂(0)(η)dξdη.

Here, m(ξ, η) = ξj|η| ∓ ηj|ξ|, or ξjηi − ξiηj and φ̂(0), ψ̂(0) are supported in

S(2−l) = {ξ : |ξ| ∼ 1, |ξ/|ξ| − v| ≤ 2−l}, 2kS(2−l),

respectively. The − sign in the integral stands for the case that ψ̄ is Fourier sup-
ported in Λk(2

−l). Obviously, we may assume k = 0 by the change of η → 2kη.

Following the proof Lemma 2.6, we use translation and rescaling to transform the
multiplier weight m to 2−lm̃ so that m̃ has uniformly bounded derivatives on the
set of integration. Then, we can expand out m̃ using Fourier series and we get the
desired by reversing the change of the variables. Hence, it is enough to show that
such transformation is possible for m.

First, we show it with m = ξj|η| ∓ ηj|ξ|. We only consider m = ξj|η| − ηj|ξ|
because the other one can be handled similarly.

Let (c′′, cn−1, cn) be the coordinates of ξ with respect to the (ordered) orthonormal
basis {v1, . . . , vn−1, v}. Similarly, let (d′′, dn−1, dn) be the coordinates of η with
respect to the same basis. Then, we may assume

S(2−l) = {(c′′, cn−1, cn) : cn ∼ 1, |(c′′, cn−1)| ≤ 2−l}.
Without loss of generality we may also assume that ξj-axis is contained the two
plane spanned by vn−1, v. Then, ξj = cos θcn−1 + sin θcn for some θ depending the
angle between ξj axis and v. Hence in the new coordinates we can write

m(c, d) = (cos θcn−1 + sin θcn)|(d′′, dn−1, dn)| − (cos θdn−1 + sin θdn)|(c′′, cn−1, cn)|.
Rescaling (c′′, cn−1) → 2−l(c′′, cn−1) and (d′′, dn−1) → 2−l(d′′, dn−1) transforms m(c, d)
to 2−lm̃(c, d) where

m̃(c, d) = cos θ(cn−1dn − cndn−1) + O(2−l)



SHARP NULL FORM ESTIMATES 23

because |(c′′, cn−1, cn)| = cn + |(c′′, cn−1)|2/2cn + O(|(c′′, cn−1)|4). Note that the in-
tegration is now taken over S(1). Obviously, m̃ is a smooth function with bounded
derivatives on S(1).

Now we turn to the case m(ξ, η) = ξjηi − ξiηj. Here we may assume ξi axis
is contained in the span of vn−2, vn−1, v. Hence, ξi = αcn−2 + βcn−1 + γcn with
|(α, β, γ)| = 1. Therefore m(c, d) is equal to

(αcn−2+βcn−1+γcn)(cos θdn−1+sin θdn)−(αdn−2+βdn−1+γdn)(cos θcn−1+sin θcn).

After rescaling (c′′, cn−1) → 2−l(c′′, cn−1) and (d′′, dn−1) → 2−l(d′′, dn−1), m(c, d)
is changed to 2−lm̃ and the integration is taken over S(1) where m̃ has bounded
derivatives. ¤
Proof of Lemma 3.5. We follow the same argument in the above proof. The first (36)
is obvious because the associated multiplier ξj|η| ± ηj|ξ| smooth if |ξ| ∼ 1, |η| ∼ 1.
For (37), after translation ξ → ξ − v, η → η + v and rescaling (ξ, η) → 2−m(ξ, η),
the associated multiplier is given by

µ(ξ, η) = det

(
2−mξi − a 2−mξj − b
2−mηi + a 2−mηj + b

)

for some a, b, |a|, |b| ≤ C. Hence it is obvious that 2mµ(ξ, η) is a smooth function
with bounded derivatives in B(0, C) where the integration is taken. ¤

4. Proofs of the bilinear extension estimates

As it was already seen in the proof of Proposition 3.3, the proofs of Theorem
2.1 and 2.2 are based on the so called induction on scale argument which was
used to obtain sharp bilinear restriction estimates for the cone and the paraboloid
[22, 15, 16]. We also use the crucial L2 estimates in [15, 16] to get various mixed
norm generalizations. After obtaining almost sharp local estimates on a cube of side
length R, we use Lemma 4.4 to get estimates on the whole space.

4.1. Proof of Theorem 2.1. The proof is actually an adaptation of Tao’s proof
of sharp bilinear restriction for the cone [15]. The argument here is easier since we
are not trying to obtain the endpoint estimates. Various mixed norm estimates are
obtained using the basic estimates in Proposition 4.1. We begin by quoting several
notions and a proposition we need here.

Let S be a finite set. A function Φ : Rn+1 → `2(S) is called a red wave with fre-
quency 2k if it takes values in `2(S) and its space-time Fourier transform is supported
in the set

Γred
k = {(ξ, |ξ|) : ∠(ξ, e1) ≤ π/8, |ξ| ∼ 2k}.

A function Ψ : Rn+1 → `2(S) is called a blue wave of frequency 2k if its space-time
Fourier transform is supported in the set

Γblue
k = {(ξ,−|ξ|) : ∠(ξ, e1) ≤ π/8, |ξ| ∼ 2k}.
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Let R À 2k and Q ⊂ Rn+1 be the cube of side length R centered at the origin.
For each 0 ≤ j, partition dyadically Q into cubes of side length 2−jR and denote by
Qj(Q) the collection of these cubes. Then for 0 < c ¿ 1 set

Ic,C0(Q) =
⋃

q∈QC0
(Q)

(1− c)q.

Here (1− c)q is the cube having the same center as q and side length of (1− c) times
as long as that of q. A red (or blue) wave table φ on Q with depth j is defined to
be any red (or blue) wave having the form

φ =: (φ(q))q∈Qj(Q).

If φ is a wave table of depth j over Q, then for 1 ≤ l ≤ j and q ∈ Ql(Q), we set
φ(q) = (φ(q′))q′∈Qj(Q),q′⊂q. For 0 ≤ l ≤ j, we also define the l-quilt [φ]l is defined by

[φ]l =
∑

q∈Ql(Q)

χq|φ(q)|.

Then the pointwise estimate

(38) [φ]j ≤ [φ]j−1 ≤ · · · ≤ [φ]1 ≤ |φ|χQ

follows. For a red wave Φ of frequency 2k, the margin of Φ is defined by

margin(Φ) := 2−kdist(suppΦ̂, ∂Γred
k ),

and the margin of a blue wave is similarly defined.

Proposition 4.1 (Proposition 15.1 p.245, [15]). Let m,m′ be integers and let R À
2−m, 2m−2m′

, 0 < c < 2−C0. Let Φ be a red wave of frequency 2m with margin
(Φ) ≥ (2mR)−1/2 and Ψ be a blue wave of frequency 2m′

. Then for a sufficiently large
number C0 depending only on n, there is a red wave having values in l2(QC0(Q))

Φ̃ = Φ̃c(Φ, Ψ;QC0(Q)) = (Φ̃c(Φ, Ψ)(q))q∈QC0
(Q)

of frequency 2m with margin(Φ̃) ≥ margin(Φ)− C(2mR)−1/2 such that

E(Φ̃) ≤ (1 + Cc)E(Φ),(39)

‖(|Φ| − [Φ̃]C0)Ψ‖L2(Ic,C0 (Q)) ≤ c−C(2−mR)−(n−1)/4E(Φ)1/2E(Ψ)1/2(40)

hold with C independent of c.

Suppose that φ and ψ are free waves Fourier supported in subsets of the cone with
height 1,2k and O(1)-angular separation. By a finite decomposition, a mild Lorentz
transformation, we may assume that φ and ψ are supported in the set Γred

0 and
(−Γblue

k ), respectively. Since ‖φψ‖Lq
t Lr

x
= ‖φψ̄‖Lq

t Lr
x
, taking conjugate and changing

variables by reflection, we may assume that φ and ψ are supported in the sets Γred
0

and Γblue
k , respectively and they have margin ≥ 1/100. And we assume

E(φ), E(ψ) ≤ 1.

To show Theorem 2.1 by interpolation and using Lemma 4.4 below, we need to show
that for any ε > 0 and for any Q cube of sidelenth R ≥ C2k,

(41) ‖φψ‖Lq
t Lr

x(Q) ≤ CRε2k(1/q−1/2+ε).
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Recall that

(42) ‖φψ‖2 ≤ CE(φ)1/2E(ψ)1/2

provided ψ is a blue wave of frequency 2k and φ is a red wave of frequency of 1.
Therefore, it is enough to obtain (41) for (q, r) = (2, n+1

n
), (1, 2), (1, n+1

n−1
) when n ≥ 3

and for (q, r) = (4
3
, 2), (2, 3

2
) when n = 2. First we show it when n ≥ 3.

4.1.1. Proof (41) for (q, r) = (2, n+1
n

). For 0 ≤ j ≤ k which are multiple of C0, let
φj be the sequence of wave tables of depth j on Q defined which are recursively
defined by

φ
(Q)
0 = φ,

φ
(q)
j+C0

= Φc2−(k−j)/N (φ
(q)
j , ψ;QC0(q)) for all q ∈ Qj(Q)

using Proposition 4.1. (Here k is also assumed to be a multiple of constant C0;
this can be achieved by a simple re-scaling.) Note that the wave φj+C0 has value
in l2(Qj+C0(Q)). By induction, margin(φj) ≥ 1/100− C(2−jR)−1/2. So the margin
condition is satisfied for each j. Then from (39) we have

(43) E(φj+C0) ≤ (1 + Cc2−(k−j)/N)E(φj).

Hence E(φj) ≤ C for all j ≤ k. From (40) we have for q ∈ Qj(Q)

‖([φj]j − [φj+C0 ]j+C0)ψ‖L2(IC,c2−(k−j)/N
(q))

(44)

≤ c−C2C(k−j)/N(2−jR)−
n−1

4 E(φ
(q)
j )1/2

applying Proposition 4.1 with Φ = φ
(q)
j , Ψ = ψ and Q = q.

Now, let us set

X(Q) =
k⋂

j=C0

Ic2−(k−j)/N ,j(Q).

Since ‖[φj]j‖L2(X(Q)) ≤ 2CC02−j/2R1/2 by the trace lemma and (43), obviously

(45) ‖([φj]j − [φj+C0 ]j+C0)ψ‖L2
t L1

x(X(Q)) ≤ 2CC02−j/2R1/2.

Taking squares and summing (44) over q ∈ Qj(Q) gives

(46) ‖([φj]j − [φj+C0 ]j+C0)ψ‖L2(X(Q)) ≤ c−C2C(k−j)/N(2−jR)−
n−1

4 .

(This is the estimate (79) in [15].) Then interpolation between (45) and (46) gives

‖([φj]j − [φj+C0 ]j+C0)ψ‖
L2

t L
n+1

n
x (X(Q))

≤ C2C(k−j)/N .(47)

Applying Proposition 4.1 with Φ = ψ and Ψ = φk, we get Ψ̃ = Φc(ψ, φk;QC0(Q))
which satisfies

E(Ψ̃) ≤ (1 + Cc)E(Ψ),(48)

‖[φk]k(|ψ|−[Ψ̃]C0)‖L2(X(Q)) ≤ c−C(2−kR)−
n−1

4 .(49)

Again by trace lemma, (43) and (48) it is easy to see

(50) ‖[φk]k(|ψ| − [Ψ̃]C0)‖L2
t L1

x(X(Q)) ≤ 2CC02−k/2R1/2.
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Interpolation between the above two estimates gives

(51) ‖[φk]k(|ψ| − [Ψ̃]C0)‖
L2

t L
n+1

n
x (X(Q))

≤ c−C2CC0 .

The following is a simple modification of the averaging lemma in [15] (Lemma
6.1).

Lemma 4.2. Let R > 0 and 0 < 2−C0, F be a smooth function. For 1 ≤ q, r < ∞
and any R-cube Q̃, there is a CR-cube Q ⊂ C2Q̃ such that

‖F‖Lq
t Lr

x(Q̃) ≤ (1 + C1c)‖F‖Lq
t Lr

x(X(Q))

with C1 depending on c,N, q, r, n.

Proof. From Lemma 6.1 in [15], for any positive G ∈ L1 there is a CR-cube Q such
that ∫

Q̃

G(x, t)dxdt ≤ (1 + C1c)

∫

X(Q)

G(x, t)dxdt.

We may assume ‖F‖Lq
t Lr

x(Q̃) = 1. Then there are functions g and h such that

1 =

∫

Q̃

F (x, t)g(x, t)h(t)dxdt

with ‖g(·, t)‖r′ = ‖h‖q′ = 1. Hence from the above inequality, there is a cube Q
such that

1 ≤ (1 + C1c)

∫

X(Q)

|F (x, t)g(x, t)h(t)|dxdt ≤ (1 + C1c)‖F‖Lq
t Lr

x(X(Q)).

This gives the required inequality by duality. ¤

Let (Blue)k ((Red)k resp.) be the set of blue (red resp.) waves having support in
Γblue

k (Γred
k resp.) with energy ≤ 1. For a cube R-cube Q, let us define

Aq,r(R) = inf{C : ‖φψ‖Lq
t Lr

x(Q) ≤ C, φ ∈ (Blue)0, ψ ∈ (Red)k}.
By translation invariance, it is easy to see that Aq,r does not depend on a particular
choice of Q.

Let Q̃ be a R-cube and Q be such a CR-cube as in Lemma 4.2. Since Q is now a
CR cube, we have to replace R by CR in (43)-(51) but the inequalities remain valid
only with different constant C. Then, telescoping summation of (47) and using (51)
gives

(52) ‖φψ‖
L2

t L
n+1

n
x (Q̃)

≤ (1 + Cc)‖[φk]k[Ψ̃]C0‖
L2

t L
n+1

n
x (X(Q))

+ (1 + Cc)(2CC0 + 2Ck/N).

By triangle inequality and (38) we see

‖[φk]k[Ψ̃]C0‖Lq
t Lr

x(X(Q)) ≤ ‖[Φ]C0 [Ψ̃]C0‖Lq
t Lr

x(X(Q)) ≤
∑

q∈QC0

‖Φ(q)Ψ(q)‖Lq
t Lr

x(q).

Then the above, (48) and (43) give

A2, n+1
n

(R) ≤ (1 + Cc)A2, n+1
n

(CR/2C0) + (1 + Cc)(2CC0 + 2Ck/N).
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We can iterate this as long as R À 2k, hence we obtain

A2, n+1
n

(R) ≤ (1 + Cc)C log RA2, n+1
n

(C2k) + (2CC0 + 2Ck/N)(1 + Cc)C log R.

Lemma 4.3. Let n ≥ 2. Then, for 1 ≤ q, r ≤ 2, 2/q ≤ (n + 1)(1− 1/r) and ε > 0,
Aq,r(C2k) ≤ C2(1/q−1/2)k.

Proof. First we handle the case n ≥ 3. It is needed to show the cases (q, r) =
(2, 2), (1, 2), (2, n+1

n
), (1, n+1

n−1
). The case (2, 2) is contained in (42). Then, the case

(1, 2) follows from Hölder’s inequality in t.
Now we consider the case (q, r) = (2, n+1

n
). Let R = C2k for some large C > 0

and let Q̃ and Q be the ones as in (52). Repeating the previous argument on

Q, we consider wave tables φk, Ψ̃. From the trace lemma and (43) we see that

‖[φk]k[Ψ̃]C0‖L2
t L1

x(X(Q)) ≤ C. Then by Hölder’s inequality ‖[φk]k[Ψ̃]C0‖L1
t L1

x(X(Q)) ≤
C2k/2. From the above inequalities (including the estimates for (q, r) = (2, 2), (1, 2))
we see that for 1 ≤ q, r ≤ 2,

‖[φk]k[Ψ̃]C0‖Lq
t Lr

x(X(Q)) ≤ C2(1/q−1/2)k.

Then by (52) we see A2, n+1
n

(C2k) ≤ C2k n−1
2(n+1) by choosing sufficiently large N . And

the case (q, r) = (1, n+1
n−1

) can be similarly handed by using inequality (59) below.

When n = 2, it is enough to show the cases (q, r) = (2, 3
2
), (4

3
, 2). The case (q, r) =

(2, 3
2
) is already obtained in the above reasoning. The estimate for (q, r) = (4

3
, 2)

can be shown using (61) by the same argument. ¤
Using Lemma 4.3, we get

A2, n+1
n

(R) ≤ (C2k n−1
2(n+1) + 2CC0 + 2Ck/N)(1 + Cc)C log R.

Since (1 + Cc)C log R ≤ RC2c, by choosing c = ε/C2 and N = (Cε)−1 we get (41) for
(q, r) = (2, n+1

n
).

4.1.2. Proof (41) for (q, r) = (1, n+1
n−1

). By Hölder’s inequality and (46), we can get

(53) ‖([φj]j − [φj+C0 ]j+C0)ψ‖L1
t L2

x(X(Q)) ≤ C2C(k−j)/N2j n−1
4 R−n−3

4

and from (45) and Hölder’s inequality it follows that

(54) ‖([φj]j − [φj+C0 ]j+C0)ψ‖L1
t,x(X(Q)) ≤ 2CC02−j/2R.

Interpolation between these two estimates gives

(55) ‖([φj]j − [φj+C0 ]j+C0)ψ‖
L1

t L
n+1
n−1
x (X(Q))

≤ C2C(k−j)/N2j/2.

Similarly from (49), (50) and Hölder’s inequality we have

‖[φk]k(|ψ| − [Ψ̃]C0)‖L1
t L2

x(X(Q)) ≤ C2k n−1
4 R−n−3

4 ,(56)

‖[φk]k(|ψ| − [Ψ̃]C0)‖L1
t L1

x(X(Q)) ≤ 2CC02−k/2R.(57)

Interpolation gives
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(58) ‖[φk]k(|ψ| − [Ψ̃]C0)‖
L1

t L
n+1
n−1
x (X(Q))

≤ 2CC02k/2

Telescoping summation of (55) and using (58), we have

(59) ‖φψ‖
L1

t L
n+1
n−1
x (Q)

≤ (1 + Cc)‖[φk]k[Ψ̃]C0‖
L1

t L
n+1
n−1
x (X(Q))

+ 2CC02k/2.

Hence following the same argument as before, we obtain

A1, n+1
n−1

(R) ≤ (1 + Cc)A1, n+1
n−1

(CR/2C0) + C2k/2.

Using this iteratively for R ≥ C2k, we see

A1, n+1
n−1

(R) ≤ (1 + Cc)C log RA1, n+1
n−1

(C2k) + (1 + Cc)C log R2CC02k/2

Finally using Lemma 4.3 and choosing suitable c, we get the required estimate (41)
for (q, r) = (1, n+1

n−1
).

4.1.3. Proof (41) for (q, r) = (1, 2). By telescoping summation of (53) and using
(56) it follows that

(60) ‖φψ‖L1
t L2

x(X(Q)) ≤ C‖[Φ]k[Ψ̃]C0‖L1
t L2

x(X(Q)) + 2CC02k n−1
4 R−n−3

4 .

It gives

A1,2(R) ≤ (1 + Cc)A1,2(CR/2C0) + 2CC02k n−1
4 R−n−3

4 .

Using this iteratively, we obtain

A1,2(R) ≤ (1 + Cc)C log RA1,2(C2k) + (1 + Cc)C log R2CC02k/2.

Hence using Lemma 4.3 and choosing suitable c we get the required estimate.

When n = 2, the estimate (41) for (q, r) = (2, 3/2) is already obtained in the
proof of the case (q, r) = (2, n+1

n
). For the remaining (q, r) = (4/3, 2) observe

(61) ‖φψ‖
L

4
3
t L2

x(X(Q))
≤ C‖[Φ]k[Ψ̃]C0‖

L
4
3
t L2

x(X(Q))
+ 2CC02k/4

which follows from (46) and (49) using telescoping summation and Hölder’s inequal-
ity. Then the required estimates can be obtained repeating the previous argument.

Lemma 4.4 (Globalization lemma). Let S1 and S2 be compact surfaces with bound-
ary Si = {(ξ, φi(ξ)) : ξ ∈ Ui} and the induced Lebesgue measures dσi(ξ) = dξ,
i = 1, 2, which satisfy ‖dσi‖ ≤ Mi, σi(B(z, ρ)) ≤ Cρn−1 for any z, ρ > 0 and

|d̂σi(x, t)| ≤ Mi(1 + |x|+ |t|)−σ

for some Mi ≥ 1 and 0 < σ. Suppose that for some 2+2σ
σ

≥ q0, r0 ≥ 1 and some
0 < ε ¿ σ,

(62) ‖
2∏

i=1

f̂idσi‖L
q0
t L

r0
x (Q) ≤ RεM

2∏
i=1

‖fi‖L2(dσi)
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for all cube Q with side length R. Set

1

q1

=
1

q0

− 2ε

2ε + σ

(
1

q0

− σ

2(σ + 1)

)
,

1

r1

=
1

r0

− 2ε

2ε + σ

(
1

r0

− σ

2(σ + 1)

)
.

Then, for all q, satisfying q1 < q

(63) ‖
2∏

i=1

f̂idσi‖Lq
t L

r1
x
≤ CM1− ε

σ (max(M1,M2))
aε+(1− q1

q
)(1− 1

r1
)

2∏
i=1

‖fi‖L2(dσi)

with some a > 0 depending on σ.

This is a mixed norm generalization of Lemma 2.4 in [17]. We give a proof in
the Appendix. This lemma can be further strengthened in various ways by taking
account of particular situations.

Remark 4.5. The restriction 2+2σ
σ

≥ q0, r0 ≥ 1 is not a serious one because we can
choose any 0 < σ′ < σ to extend the range. The range of q, r1 can be extended by in-

terpolation with the obvious estimates ‖∏2
i=1 f̂idσi‖L∞t L∞x ≤ (M1M2)

1/2
∏2

i=1 ‖fi‖L2(dσi),

‖∏2
i=1 f̂idσi‖L∞t L1

x
≤ ∏2

i=1 ‖fi‖L2(dσi). Hence if we have (62) for all ε > 0, then for
any δ > 0 we have

‖
2∏

i=1

f̂idσi‖Lq
t Lr

x
≤ C max(M,M1−δ)(max(M1,M2))

δ

2∏
i=1

‖fi‖L2(dσi)

provided r/q < r0/q0, q(1 − 1/r) > q0(1 − 1/r0) and (1/r, 1/q) is close enough to
(1/r0, 1/q0).

4.2. Proof of Proposition 2.4. Taking conjugation it is enough to consider the
case (++).

For f with Fourier transform supported in {ξ : |ξ′| ≤ 100ξn, 1/2 ≤ ξn}, we define

Ulf(x, t) =

∫
ei(x′ξ′+xnξn+tξn22lθ(2−lξ′/ξn))f̂(ξ)dξ

where θ is given by (17). Making the change of variables xn → xn − t, for the
proof of Proposition 2.4 it is enough to show that for 1 < q, r ≤ 2 satisfying 1/q <
min(1, n+1

4
), 1/q < n+1

2
(1− 1

r
),

‖U0fU0g‖Lq
t Lr

x
≤ C2k( 1

q
− 1

2
+ε)2l( 2

q
−(n−1)(1− 1

r
))‖f‖2‖g‖2

provided f̂ , ĝ are supported in

Θl = {(ξ1, ξ2, ξ
′′) : ξn ∼ 1, ξn−1 ∼ 2−l, |ξ′′| ¿ 2−l},

2kΘ′
l = 2k{(ξ1, ξ2, ξ

′′) : ξn ∼ 1, ξn−1 ∼ −2−l, |ξ′′| ¿ 2−l},
respectively. Then by re-scaling (ξ′, ξn) → (2−lξ′, ξn), (x, t) → (2lx′, xn, 2

2lt), we
are reduced to showing that if the Fourier transforms of f, g are supported in Θ0,
2kΘ′

0, respectively, then for 1 < q, r ≤ 2 satisfying 1/q < min(1, n+1
4

), 1/q < n+1
2

(1−
1
r
),

‖UlfUlg‖Lq
t Lr

x
≤ C2k( 1

q
− 1

2
+ε)‖f‖2‖g‖2
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with C independent of l. Since 22lθ(2−lη) converges to |η|2/2 as l → ∞, the conic
surface given as

(ξ′, ξn) → (ξ′, ξn, ξn22lθ(2−lξ′/ξn))

is not much different from the cone (given by (ξ′, ξn) → (ξ′, ξn, |ξ′|2/ξn)). In fact,
retracing the proof Proposition 4.1 in [15] one can see that it is valid for Ul uniformly
in l. Then the crucial estimates (46) and (49) hold uniformly and so does the trace
lemma for Ul. Hence we can repeat the argument used for the proof of Theorem 2.1
to obtain the required uniform estimates for Ul.

4.3. Proof of Theorem 2.2. Note that the critical line 2/q = n(1 − 1/r) is the
border line for the bilinear restriction for the paraboloid in Rn. So, from the ex-
pression (18) one might be tempted to apply directly the bilinear estimates for the
paraboloid freezing ξn variables but it does not seem to work because we still have
to integrate in xn. We again make use of the induction on scale argument and the
basic L2 estimates used to prove the sharp bilinear restriction for the paraboloid
((23) in [16]).

We first prove Theorem 2.2 for the case n ≥ 4 and later the cases n = 2, n = 3.

Let QR ⊂ Rn be the cube of side length R centered at the origin and IR =
[−R/2, R/2]. Let Q′

R ⊂ Rn−1 be the cube centered at the origin with side length R
so that QR = Q′

R × IR. As before it is enough to show that for 2/q ≤ n(1 − 1/r)
and ε > 0,

(64) ‖f̂1dσ1f̂2dσ2‖Lq
t (IR)Lr

x′,xn
(Q′R×R) ≤ Ca1−1/rRε‖f1‖2‖f2‖2.

The Rε can be removed by using Lemma 4.4.

By Cauchy–Schwarz’s inequality and Plancherel’s theorem, ‖f̂1dσ1f̂2dσ2‖L∞t L1
x
≤

C‖f1‖2‖f2‖2. Hence, to prove (64) it is enough to show it for the case (q, r) =
(1, n/(n − 2)). Then, by interpolation with the case (∞, 1) we get (64) for 2/q =

n(1− 1/r). Finally, since the Fourier transform of (f̂1dσ1f̂2dσ2)(·, t) is supported in
a slab of thickness a, we get all estimate (19) for 2/q < n(1 − 1/r) by Bernstein’s
inequality and interpolation.

Let us set

Bq,r(R) = inf{C : ‖f̂dσĝdσ‖Lq
t (IR)Lr

x′,xn
(Q′R×R) ≤ C‖f‖2‖g‖2}

We will show

B1, n
n−2

(R) ≤ C(RεB1, n
n−2

(R1−δ) + a2/nRcδ).(65)

From Bernstein’s inequality it is easy to see Bq,r(1) ≤ Ca1−1/r, 1 ≤ q, r ≤ ∞. Hence
iterating estimate (65) with ε = δ2, we get for any δ > 0

B1, n
n−2

(R) ≤ Ca2/nRCδ.

This proves the required estimate.
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Proof of (65). For i = 1, 2 and ρ ∈ [b, b + a], we denote by Sρ
i the surface given by

Sρ
i = {(η, τ) ∈ Rn−1 × R : τ = ρθ(η/ρ), (η, ρ) ∈ Si}.

Also let dσρ
i (η, ρ) = dη be the induced Lebesgue measure on Sρ

i and let fρ(η) =
f(η, ρ). Then we may write

(66) f̂idσi(x, t) =

∫ b+a

b

f̂ s
i dσs

i (x
′, t)eisxnds.

For fixed s, we decompose f̂ s
i dσs

i (in (66)) into wave packets on the R-cube QR =
Q′

R×IR. They have one to one correspondence with a collection of tubes of dimension
(R1/2)n−1 ×R. Hence, we can write for (x′, t) ∈ Q′

R

f̂ s
i dσs

i (x
′, t) =

∑
τ∈T s

i

f̂ s
i,τdσs

i (x
′, t)

where T s
1 , T s

2 , are the collections of tubes associated to the packet decomposition

for the extension operators f̂ s
1dσs

1, f̂ s
2dσs

2, respectively. Then, for each s ∈ [b, b + a]
and any subset A ⊂ T s

i (see Lemma 4.1 in [16]),

(
∑
τ∈A

‖f s
i,τ‖2

2)
1/2 ≤ C‖f s

i ‖2,(67)

‖
∑
τ∈A

f̂ s
i,τdσs

i (·, t)‖2 ≤ C(
∑
τ∈A

‖f s
i,τ‖2

2)
1/2.(68)

Let {B} be a collection of R1−δ cubes which partition QR. Then, there are
relations ∼ρ

1, ∼ρ
2 between B and τ ∈ T ρ

i such that for any s, t ∈ [b, b+a], 0 < δ ¿ 1,
∑
B

‖
∑
τ∼s

i B

f s
i,τ‖2

2 ≤ CRε‖f s
i ‖2

2,(69)

‖
∑

τ 6∼s
1B or τ ′ 6∼t

2B

f̂ s
1,τdσs

1f̂
t
2,τ ′dσt

2‖L2(B) ≤ CR−(n−2)/4+cδ‖f s
1‖2‖f t

2‖2(70)

with c independent of δ. This is a slight modification of the inequality (23) in [16]. It
is not hard to see that the constants C in (67), (68), (69) and (70) are independent
of s, t because the surfaces Ss

1, St
2 are uniformly elliptic in s, t ∈ [b, b + a] and the

separation condition between Ss
1, St

2 is also satisfied uniformly.
For each B, we break

f̂idσi(x, t) =

∫ b+a

b

∑
τ∼s

i B

f̂ s
i,τdσi

s(x
′, t)eisxnds +

∫ b+a

b

∑

τ 6∼s
i B

f̂ s
i,τdσi

s(x
′, t)eisxnds

For simplicity let us set F s
i,τ (x

′, t) = f̂ s
i,τdσi

s(x
′, t) and break

f̂1dσ1f̂2dσ2(x, t) =

∫∫
(

∑

τ∼s
1B and τ ′∼s′

2 B

+
∑

τ 6∼s
1B or τ ′ 6∼s′

2 B

)[F s
1,τF

s′
2,τ ′ ](x

′, t)ei(s+s′)xndsds′.

By triangle inequality

‖f̂1dσ1f̂2dσ2‖Lq
t (IR)Lr

x′,xn
(Q′R×R) ≤

∑

B=B′×I

‖f̂1dσ1f̂2dσ2‖Lq
t (I)Lr

x′,xn
(B′×R).
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Using the above decomposition

‖f̂1dσ1f̂2dσ2‖Lq
t (IR)Lr

x′,xn
(Q′R×R) ≤ I + II

where

I =
∑

B=B′×I

∥∥
∫∫ ∑

τ∼s
1B and τ ′∼s′

2 B

[F s
1,τF

s′
2,τ ′ ](x

′, t)ei(s+s′)xndsds′
∥∥

Lq
t (I)Lr

x′,xn
(B′×R)

,

II =
∑

B=B′×I

∥∥
∫∫ ∑

τ 6∼s
1B or τ ′ 6∼s′

2 B

[F s
1,τF

s′
2,τ ′ ](x

′, t)ei(s+s′)xndsds′
∥∥

Lq
t (I)Lr

x′,xn
(B′×R)

.

For I, it is easy to see that

‖
∫∫ ∑

τ∼s
1B and τ ′∼s′

2 B

(·)‖Lq
t (I)Lr

x′,xn
(B′×R)

≤ Bq,r(R
1−δ)‖

∑
τ∼s

1B

f s
1,τ‖L2

s(L2)‖
∑
τ∼s

2B

f s
2,τ‖L2

s(L2)

Then, using Cauchy–Schwarz’s inequality and (69) we see that

I ≤ CRεBq,r(R
1−δ)‖f1‖2‖f2‖2.

Since the number of B is . Rcδ, for (65) it is enough to show that for B = B′× I

‖
∫∫ ∑

τ 6∼s
1B or τ ′ 6∼s′

2 B

(·)‖
L1

t (I)L
n

n−2
x′,xn

(B′×R)
≤ Ca2/nRcδ‖f‖2‖g‖2(71)

Using (66) we apply Plancherel’s theorem and Minkowski’s inequality to see

∥∥
∫ b+a

b

∫ b+a

b

∑

τ 6∼s
1B or τ ′ 6∼s′

2 B

[F s
1,τF

s′
2,τ ′ ]e

i(s+s′)xndsds′
∥∥

L2
x′,t(B)L2

xn

(72)

≤ C

∫ b+a

b

‖χ[b,b+a](s
′ − s)(

∑

τ 6∼s
1B or τ ′ 6∼s′−s

2 B

F s
1,τF

s′−s
2,τ )‖L2

x′,t(B)L2
s′
ds

≤ CR−(n−2)/4+Cδ

∫ b+a

b

‖f s
1‖2(

∫ b+a

b

‖f s−s′
2 ‖2

2ds′)1/2ds

≤ CR−(n−2)/4+Cδa1/2‖f‖2‖g‖2.

For the second inequality we used (70) taking x′, t-integration first. From (72) and
Hölder’s inequality in t, we get

‖
∫∫ ∑

τ 6∼s
1B or τ ′ 6∼s′

2 B

(·)‖L1
t (I)L2

x′,xn
(B′×R) ≤ Ca1/2R−(n−4)/4+cδ‖f‖2‖g‖2.

From Plancherel, (67) and (68) it is easy to see that

‖
∫∫ ∑

τ 6∼s
1B or τ ′ 6∼s′

2 B

(·)‖L1
t (I)L1

x′,xn
(B′×R) ≤ CR1−δ‖f1‖2‖f2‖2.
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Interpolation between these two estimates gives (71). This completes the proof for
the case n ≥ 4. ¤

Finally, we prove the cases n = 2, 3. When n = 2, as before it is enough to show

‖f̂1dσ1f̂2dσ2‖2 ≤ Ca1/2‖f1‖2‖f2‖2. But this is easy to show because ‖dσ1 ∗ dσ2‖∞ ≤
Ca.

When n = 3, we need to show

B4/3,2(R) ≤ C(RεB4/3,2(R
1−δ) + a1/2Rcδ).

This can be obtained by using the estimate

‖
∫∫ ∑

τ 6∼s
1B or τ ′ 6∼s′

2 B

(·)‖
L

4/3
t (I)L2

x′,xn
(B′×R)

≤ Ca1/2Rcδ‖f‖2‖g‖2,

which follows from (72) by Hölder’s inequality.

4.4. Proof of Proposition 2.5. For l À 1, we set

Ulf(x, t) =

∫
ei(x′ξ′+xnξn+tξn22lθ(2−lξ′/ξn))f̂(ξ)dξ.

By conjugation, change of variable xn → xn − t and Plancherel’s theorem, it is
enough to show that for q, r as in Proposition 2.5,

‖U0f1U0f2‖Lq
t Lr

x
≤ C2l( 2

q
−(n−1)(1− 1

r
))a1−1/r−ε‖f1‖2‖f2‖2

if f1, f2 are supported in the sets Sl
1, Sl

2, respectively, where

Sl
i = {ξ : b ≤ ξn ≤ b + a, |2lξ′/ξn + (−1)ie′n| ≤ 1/2}, i = 1, 2.

Then by rescaling (ξ′, ξn) → (2−lξ′, ξn), (x, t) → (2lx′, xn, 2
2lt), we are reduced to

showing that

‖Ulf1Ulf2‖Lq
t Lr

x
≤ Ca1−1/r−ε‖f1‖2‖f2‖2

if f1, f2 are supported in the sets S1, S2, respectively. However 22lθ(2−l·) is uniformly
elliptic in l. So, it is not hard to see the estimates (67), (68), (69) and (70) are valid
with C, independent of l. Then retracing the proof of Theorem 2.2, one can obtain
the required estimate.

5. The additional necessary conditions (13)-(15)

Here we derive the additional necessary conditions. Unlike [3] where the neces-
sary conditions obtained considering pairs of waves supported in various sets, the
additional conditions (13) and (15) are obtained by considering collections of waves,
which make it possible to capture additional concentration.

We also discuss briefly the necessary conditions for (16) with the standard null
forms Q = Q0,j, or Qi,j. Taking account of the additional multiplier weights, the
necessity of the conditions (3)–(12) for (16) can be seen easily from the examples
given in [3] with minor modifications if needed. We make remarks only about the
new necessary conditions (13), (14) and (15).
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In this section, the symbol ̂ denotes the spatial Fourier transform. Let φ+

stand for a wave which is Fourier supported in the forward light cone.

5.1. Necessity of (13). Let ψ(= ψ+) be the wave defined from ψ̂(0)(ξ) which is
a smooth function supported in a small ball centered at e1 ∈ Rn. To construct φk,

consider φ̂(ξ) a smooth bump function, supported on a small ball centered at e2.
Write

F (x, t) =

∫
φ̂(η)ei(xη+t|η|)dη.

Let R À 1 and define a wave φk by

φk(x, t) = 2kn

2k/10∑
m=1

ωnF (2kx, 2k(t−R2−km))

where ωn = ±1. Since |F (x, t)| ≥ c > 0 for |(x, t)| < 1/10 and |F (x, t)| ≤ Ct−2 for
|x| < 1/10 and |t| > 10, we see that if |x| ≤ 2−k/10 and t ∈ ∪m(2−kRm, 2−kRm +
2−k/10), then |φk(x, t)| ∼ 2kn provided R is sufficiently large. Therefore,

(73) ‖φkψ‖Lq
t Lr

x
∼ 2kn−k n

r .

Note that φ̂k(0)(ξ) =
∑2k/10

m=1 ωnφ̂(2−kξ)e−i2−kRm|ξ|. Since D0, D+ ∼ 2k and D− ∼ 1
on the Fourier support of φkψ,

2k(β0+β+)‖φkψ‖Lq
t Lr

x
≤ C‖Dβ0

0 D
β+

+ D
β−
− (φkψ)‖Lq

t Lr
x
.

This can be shown by the same argument in proof of Lemma 2.6. Hence if (1) is
true, using (2) we have

‖φkψ‖Lq
t Lr

x
≤ C2k(β−−α2− 1

q
+n(1− 1

r
))‖φk(0)‖2‖ψ(0)‖2.

Note that (73) and the above does not depend on a particular choice of ωn. Thus,
by Khintchin’s inequality

2kn−k n
r ≤ C2k(β−−α2− 1

q
+n(1− 1

r
))‖(

∑
|φ̂(2−k·)e−i2−k10m|·||2)1/2‖2

≤ C2k(β−−α2− 1
q
+n(1− 1

r
))2

k(n+1)
2 .

This gives (13).

The necessity of (13) for (16). To obtain the condition (13), by symmetry it is
enough to consider Q0,1, Q1,2. Using the same φk and ψ as above, it is enough to
observe that

‖Dβ0

0 D
β+−1/2
+ D

β−−1/2
− Q0,1(φk, ψ)‖Lq

t Lr
x

& 2k(β0+β+−1/2)2k‖φkψ‖Lq
t Lr

x
,

‖Dβ0−1
0 D

β++1/2
+ D

β−−1/2
− Q1,2(φk, ψ)‖Lq

t Lr
x

& 2k(β0+β+−1/2)2k‖φkψ‖Lq
t Lr

x
.

This is easy to see because D0, D+ ∼ 2k, D− ∼ 1, Q0,1 ∼ 2k and Q1,2 ∼ 2k on the
Fourier supports of φk, ψ. Then the remaining details are straightforward.
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5.2. Necessity of (14). Let ψ (= ψ+) be the wave defined by ψ̂(0)(ξ) being the
characteristic function of the set

F = {ξ : 1/2 ≤ ξn ≤ 1, ||ξ|+ ξn − 2| ≤ 2−k} ∩ {ξ : ξ1 ≥ 1

10
√

n
}.

This set has measure ∼ 2−k and is obtained by scaling the set called F in Example
14.14 in [3]. Then

‖ψ(0)‖2 ∼ 2−k/2

and |ψ(x, t)| ≥ 2−k if |xn− t| . 1, |x′| . 1 and |t| . 2k. Here A . B means A ≤ CB
for some constant C > 0.

Let φk(= φ+
k ) be a wave defined by φ̂k(0) being the characteristic function of

the set {ξ : ξn ∼ −2k, |ξ′| . 1}. Then ‖φk(0)‖2 ∼ 2k/2 and |φk(x, t)| & 2k if

|xn− t| . 2−k, |x′| . 1 and |t| . 2k because ||ξ|+ ξn| . 2−k on the support of φ̂k(0).
Note that φkψ is Fourier supported in the set {(ξ, τ) : |ξ|−τ ∼ 1, |ξ′| . 1, ξn ∼ 2k}.

Hence, by a suitable affine transformation it is not hard to see

2k(β0+β+)‖φkψ‖Lq
t Lr

x
≤ C‖Dβ0

0 D
β+

+ D
β−
− (φkψ)‖Lq

t Lr
x
.

Hence if (1) holds, then by (2)

(74) ‖φkψ‖Lq
t Lr

x
≤ C2k(β−−α2− 1

q
+n(1− 1

r
))‖φk(0)‖2‖ψ(0)‖2.

On the other hand ‖φkψ‖Lq
t Lr

x
≥ C2k( 1

q
− 1

r
) from our choice of ψ, φk. Hence we get

(14).

The necessity of (14) for (16). As before it is enough to consider Q0,1, Q1,n. Using
the same φk and ψ, it suffices to observe that

‖Dβ0

0 D
β+−1/2
+ D

β−−1/2
− Q0,1(φk, ψ)‖Lq

t Lr
x

& 2k(β0+β+−1/2)2k‖φkψ‖Lq
t Lr

x
,

‖Dβ0−1
0 D

β++1/2
+ D

β−−1/2
− Q1,n(φk, ψ)‖Lq

t Lr
x

& 2k(β0+β+−1/2)2k‖φkψ‖Lq
t Lr

x
.

This is easy to see because D0, D+ ∼ 2k, D− ∼ 1, |Q0,1| ∼ 2k and |Q1,n| ∼ 2k on the
Fourier supports of φk, ψ.

5.3. Necessity of (15). For m ≥ 0, let B, B′ be balls in Rn given by

B = B(en, 2
−m), B′ = B(−en + 23−men−1, 2

−m)

and let φB(= φ+
B) and ψB′(= ψ+

B′) be waves with φ̂B(0), ψ̂B′(0) supported in B, B′,
respectively. Since D−, D+ ∼ 1 and D0 ∼ 2−m on the Fourier support of φBψB′ ,

2−β0m‖(φBψB′)‖Lq
t Lr

x
≤ C‖Dβ0

0 D
β+

+ D
β−
− (φBψB′)‖Lq

t Lr
x
.

Hence, from (15) it is enough to show that there are φB and ψB′ such that

‖φBψB′‖Lq
t Lr

x
≥ C2m(2/q−n(1−/r)−1/2)‖φB(0)‖2‖ψB′(0)‖2.

Let η be a wave so that η̂(0) is a smooth function supported on B. Then |η(x, t)| ∼
2−mn if |x′|, |xn + t| . 2m and |xn − t| . 22m. For R À 1 we set

φB =
∑

|k|≤2m

η(x′, xn −Rk2m, t).
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And let ψB′ be the wave with ψ̂B′(0) = χB′ . Then |ψB′(x, t)| ∼ 2−mn if |x′|, |xn−t| .
2m and |xn + t| . 22m.

By routine computation it is easy to see that

‖φBψB′‖Lq
t Lr

x
& 2m(n/r+2/q−2n), ‖φB(0)‖2 . 2m(1/2−n/2)

if R is large enough. Obviously ‖ψB′(0)‖2 ∼ 2−nm/2. It gives the required lower
bound.

The necessity of (15) for (16). By symmetry it is enough to consider Q0,n, Qn−1,n.
Using φB, ψB′ in the above, we need only to observe that

‖Dβ0

0 D
β+−1/2
+ D

β−−1/2
− Q0,n(φBψB′)‖Lq

t Lr
x

& 2−mβ0‖φBψB′‖Lq
t Lr

x
,

‖Dβ0−1
0 D

β++1/2
+ D

β−−1/2
− Qn−1,n(φBψB′)‖Lq

t Lr
x

& 2−mβ0‖φBψB′‖Lq
t Lr

x
.

It is easy to see since D−, D+ ∼ 1, D0 ∼ 2−m, Q0,n ∼ 1 and Qn−1,n ∼ 2−m on the
Fourier supports of φB, ψB′ .

Appendix: Proof of Globalization lemma

Set F to be any subset of

E =

{
(x, t) :

∣∣∣∣∣<
2∏

i=1

f̂idσi(x, t)

∣∣∣∣∣ > λ

}
.

Since σi(B(z, ρ)) ≤ Cρn−1 for any z, ρ > 0, following the argument [17] (see the
proof of Lemma 2.4 in that paper), we have the estimate

(75) ‖χF

2∏
i=1

f̂idσi‖L1 ≤ C

[
(max(M1,M2))

c

√
R−σ|F |σ+2

σ+1 + C2

] 2∏
i=1

‖fi‖L2(dσi)

for some C, c > 0, where C2 is any constant satisfying

‖χF ĝ1ĝ2‖L1 ≤ R−1C2‖g1‖L2‖g2‖L2

for all g1, g2 supported in O(R−1)-neighborhoods of S1, S2, respectively. Here R is
assumed to be bigger than or equal to 1.

First we try to estimate C2 making use of (62). Let φ be a smooth function with
its fourier transform supported in B(0, 1) satisfying

∑
k∈Zn+1 φ2(·−k) = 1. Then we

set φk = φ( x
R
− k) for k ∈ Zn+1. Since φk is essentially supported in a ball of radius

R, by a simple argument it is easy to see that (62) implies

‖φ2
kĝ1ĝ2‖Lq0Lr0 ≤ CMRε−1‖φkĝ1‖2‖φkĝ2‖2

provided g1, g2 are supported in O(R−1)-neighborhoods of S1, S2, respectively.
Hence by Schwartz inequality and Plancherel’s theorem

‖ĝ1ĝ2‖Lq0Lr0 ≤
∑

k

‖φ2
kĝ1ĝ2‖Lq0Lr0 ≤ CMRε−1‖g1‖2‖g2‖2.
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Meanwhile from Hölder’s inequality ‖χF ĝ1ĝ2‖L1 ≤ ‖χF‖Lq′0Lr′0‖g1g2‖Lq0Lr0 . Hence,

(76) C2 ≤ CMRε‖χF‖Lq′0Lr′0 .

For each t, let us set Et = {x : (x, t) ∈ E} and for a fixed B > 0,

E(B) =
⋃

t:B≤|Et|<2B

{(x, t) : x ∈ Et}, T (B) = {t : B ≤ |Et| < 2B}.

We claim that for some c > 0,

(77) ‖χE(B)‖Lq1Lr1 ≤ Cλ−1(max(M1,M2))
cεM1− 2ε

2ε+σ

2∏
i=1

‖fi‖L2(dσi).

Proof of (77). We may assume ‖f1‖L2(dσ1) = ‖f2‖L2(dσ2) = 1. Let us set A = |T (B)|.
Then obviously

AB ∼ |E(B)|, ‖χE(B)‖LqLr ∼ B1/rA1/q

for 1 ≤ p, r ≤ ∞. From (75) and (76)

(78) ‖χE(B)

2∏
i=1

f̂idσi‖L1 ≤ C

[
(max(M1,M2))

cR−σ
2 (AB)

σ+2
2σ+2 + MRεB1/r′0A1/q′0

]
.

If (max(M1,M2))
c(AB)

σ+2
2σ+2 ≥ MB1/r′0A1/q′0 , we get

‖χE(B)

2∏
i=1

f̂idσi‖L1 ≤ (max(M1,M2))
2cε

2ε+σ M1− 2ε
2ε+σ A1/q1

′
B1/r1

′

by choosing R ≥ 1 satisfying (max(M1,M2))
cR−σ

2 (AB)
σ+2
2σ+2 = MRεB1/r′0A1/q′0 . Note

that λAB ∼ λ|E(B)| ≤ ‖χE(B)f̂1dσ1f̂2dσ2‖L1 . So (77) follows from the above

because ‖χE(B)‖Lq1Lr1 ∼ A1/q1B1/r1 .

If (max(M1, M2))
c(AB)

σ+2
2σ+2 < MB1/r′0A1/q′0 , then we take R = 1 in (78) to get

A1/q0B1/r0 ≤ CMλ−1.

On the other hand, we have Stein–Tomas estimate ‖f̂i dσi‖
L

2σ+2
σ
≤ CM

1
2+2σ

i ‖fi‖L2(dσi)

for i = 1, 2 (see [13], chapter VIII, section 4 and also [12]). Hence, by Chebychev’s
and Cauchy–Schwarz’s inequalities,

A
σ

σ+1 B
σ

σ+1 ≤ Cλ−1(max(M1,M2))
2

2+2σ .

Therefore,

A1/q1B1/r1 = (A1/q0B1/r0)1− 2ε
2ε+σ (A

σ
2σ+2 B

σ
2σ+2 )

2ε
2ε+σ ≤ Cλ−1(max(M1,M2))

cεM1− 2ε
2ε+σ .

(Here we used the fact that r0, q0 ≤ 2 + 2/σ.) This proves (77). ¤
Assuming ‖fl‖L2(σl) = 1 for l = 1, 2, we prove for q > q1 the weak type inequality

(79) ‖χE‖LqLr1 ≤ Cλ−1(max(M1,M2))
aε+(1−q1/q)(1−1/r1)M1− ε

2ε+σ

for some a > 0. Since f1, f2 ∈ L2,
∏2

i=1 |f̂idσi| ≤ (M1M2)
1/2, and we may assume

λ ≤ (M1M2)
1/2.
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For B = 2k, define E(2k) as before and decompose E =
⋃

k E(2k). Set Ak =
|T (2k)|. For each fixed t, using the conservation of energy we have

(80) |{x : <
2∏

i=1

f̂idσi(x, t) > λ}| ≤ Cλ−1‖
2∏

i=1

f̂idσi(·, t)‖L1(dx) ≤ Cλ−1.

Therefore, we only need to consider the case 2k ≤ C/λ. Then,

‖χE‖q

Lq
t L

r1
x

=

∫
|Et|q/r1 dt =

∑

k: 2k≤C/λ

2kq/r1Ak ≤
∑

k: 2k≤C/λ

2k(q−q1)/r1 sup
k

Ak2
kq1/r1 .

We use (77) to obtain

‖χE‖q

Lq
t L

r1
x
≤ Cλ−qλ−(q−q1)(1/r1−1)(max(M1,M2))

2cq1ε
2ε+σ M (1− ε

2ε+σ
)q1 .

Since q > q1, r1 ≥ 1 and λ ≤ (M1M2)
1/2 ≤ max(M1,M2), we get (79).

Assuming ‖fl‖L2(σl) = ‖f2‖L2(σ2) = 1, we now obtain the strong type estimate.

Since
∏2

i=1 |f̂idσi| ≤ (M1M2)
1/2 ≤ max(M1,M2), we can write

2∏
i=1

|f̂idσi| ≤
∑

k:2−k≤(M1M2)1/2

2−kχF (k)

where F (k) = {(x, t) :
∏2

i=1 |f̂idσi(x, t)| ∼ 2−k}. Fix p > q1 and choose q satisfying
p > q > q1. Then,

‖
2∏

i=1

f̂idσi‖p
LpLr1 =

∫ [ ∑

k:2−k≤(M1M2)1/2

2−kr1|(F (k))t|
]p/r1

dt.

For β > 0, we bound this by

‖
2∏

i=1

f̂idσi‖p
LpLr1 ≤ C max(M1,M2)

β
∑

k:2−k≤(M1M2)1/2

∫
2kβ2−kp|(F (k))t|p/r1 dt.

(Actually, if p ≤ r1, we can take β = 0.) Since |(F (k))t| ≤ C2k for any t by (80),

‖
2∏

i=1

f̂idσi‖p
LpLr1 ≤ C max(M1,M2)

β
∑

k:2−k≤(M1M2)1/2

2kβ2−kp2k(p/r1−q/r1)‖χF (k)‖q
LqLr

1
.

By (79), the right hand side of the above is bounded by

C max(M1, M2)
β

∑

k:2−k≤(M1M2)1/2

2k(β−(p−q)(1−1/r1))×

(max(M1,M2))
aε+(q−q1)(1−1/r1)M (1− ε

2ε+σ
)q.

Thus, choosing β < (p− q)(1− 1/r1), we get

‖
2∏

i=1

f̂idσi‖p
LpLr1 ≤ C(max(M1,M2))

aε+(p−q1)(1−1/r1)M (1− ε
2ε+σ

)q.

This proves (63) for all q > q1.
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