SHARP NULL FORM ESTIMATES FOR THE WAVE EQUATION

SANGHYUK LEE AND ANA VARGAS

ABSTRACT. Null form estimates (from H*' x H® to LI(L")) for the wave equa-
tion in R™*! are studied. For n > 4, we obtain the sharp null form estimates
except for the endpoints. For n = 2, 3 we obtain the estimates under the addi-
tional assumption 4/n < ¢ when 2 < 7.

1. INTRODUCTION

In this paper we consider null form estimates for the wave equation. Let ¢, 1 be
solutions of the homogeneous wave equation in R**! n > 2;

Op=0, Oyp=0, (O=A47,—-0 zcR" tcR).
The well known Strichartz’s estimates say that

16llz2; < ClG(0)|azs + (|02 (0) || 11+-1]

if1/g+n/r=n/2—sand 2/q+ (n—1)/r < (n —1)/2 with the exception (¢,7) =
(2,00) when n = 3 (see [4]). However, bilinear generalization of such estimates makes
it possible to introduce additional multiplier weights which compensate interaction
between two waves. This gives further available estimates which are not allowed in
the linear setting.

Let Dy, Dy, D_ denote the Fourier multiplier operators defined by
Dof(&,7) = [€1F (€. 7).
D f(&;m) = (1€l + T (€. 7).

D_f(& ) = llgl = I7llf (&, 7).
Here &, 7 are the Fourier variables corresponding to x,t respectively. We are mainly
concerned with the estimates of the form

(1) 1D5° DS D= (¢ || e < CUI(0) o + 110:0(0) | o —1)
X ([[9(0) | oz + 11853(0) | o)

where H® is the homogeneous L2-Sobolev space of order a.
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This type of bilinear estimate was studied by M. Beals [1] and by Klainerman
and Machedon [5]. They obtained some of the estimates (1) for ¢ = r = 2 and
non-trivial exponents (g, 8, B4, a1, a2). These estimates played an important role
in their study of nonlinear wave equations possessing null form structure. Results
for some particular cases were obtained by the same authors in [6], [7] and by
Klainerman and Selberg [8].

In [3] D. Foschi and S. Klainerman determined all (5o, 5_, B4, a1, ) for which
(1) holds for ¢ = r = 2 and they also conjectured that for 1 < ¢, < oo (1) holds if
and only if the following conditions on (q,r, By, 5_, B4, a1, ) are satisfied:

e Scaling invariance:

1 1
(2) 60+ﬁ++672061+052+5—n(1—;).
o Geometry of the cones:
1 1 1 1 1
3) e
q 2 r q 4
o Concentration near null directions:
1 n-1 1
4 > - — 1—-).
(4) Bz ="
e Low frequency interactions (++):
1 1
(5) 6025—7%(1—;),
(© G> 2 (11— 1)
- —(n —-).
0= 7 ;
e Low frequency interactions (+—):
1
(7) a; +ag 2 7
3 1
8 >——n(l--).
( ) o1+ Qg > p n( 7’)
e [nteraction between high and low frequency:
n
9) a; < G-+ 5
n 1 n-—11 1
10 i <P+ = —- —— =),
(10 N s
n 1 1 1
11 <B4+ === - — =),
(11) a; < f +t5 q+n(2 T)
n 1 1 1 1 1
(12) a<f-.+=-——+nlz—=)+(z—--).

2 q 2 r 2 q
These necessary conditions can be obtained by considering various interactions
between two waves. However, a close examination of (1) reveals that further condi-
tions are necessary for the estimate (1)(see Section 5). When 1 < ¢ <2 <r < o0,
the following conditions should be additionally satisfied:
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FIGURE 1. The previously know (1/r,1/q)-range of sharp estimates,
n > 4: The sharp estimates at A are due to Klainerman and Foschi
[3] and the estimates at B due to Tao [15]. The extension to the line
segment (C, D) is due Tataru [20].

e Interaction between high and low frequency:

n 1 1
13 i <O+ ===+ =,
(13) Sty -ty

n 1 1 1 1 1
14 i< B+ === - — - - — -
(14) a; <3 +2 q+n(2 r>+r .

e Low frequency interactions (++):

2 1 1
15 > ——n(l—-)—=.
(15) oz (=) =5

Bilinear inequalities for ¢ = r < 2, n = 2 were first considered by Bourgain [2] in
connection with the cone multiplier problem. He showed the estimates

[ollLgrs < Cllo(0)]e2[¥(0)]] 2

for some ¢ < 2 under the assumption that the two waves are Fourier supported in
the cone {(&,7) : |¢] = 7,7 ~ 1} and their Fourier supports are separated by O(1)
angle. These estimates were used to improve the boundedness of the cone multiplier
due to Mockenhaupt [11]. Bourgain’s result was improved by Tao and Vargas [17].
Finally, Wolff [22] and Tao [15] obtained the optimal result in all dimensions.

Regarding to the estimates (1) for (¢,7) # (2,2), Tao and Vargas [18| obtained
some partial results for the case ¢ = r < 2. Some sharp LP-estimates were obtained
by Tao [15]. Later Tataru [20] extended Tao’s results to mixed norms estimates for
some hyperbolic equations with rough coefficients (see Figure 1). However, these
results only give sharp L](L")-estimates for (1/r,1/q) on the line 2/q = (n+1)(1 —
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1/r). When (1/r,1/q) is away from it, for most of ¢, r the sharp estimates have not
been known. The following is our main result.

Theorem 1.1. Suppose (2) holds and the inequalities (3)—(15) hold with strict in-
equalities. Then if n > 4, (1) holds for 1 <r < 00,1 < ¢ < oo and when n = 2,3,
(1) holds for1 <r <2, 1 <qg<o0 and for2<r < oo, 4/n < q < .

Hence all sharp estimates for n > 4 are obtained (except for the endpoints) but
there remain some gaps for 2 < r < 00, 4/(n+ 1) < ¢ < 4/n when n = 2,3. We
hope to return to this matter later. It is actually possible to obtain some of the end
point estimates but most of them are left open. As it will be seen, these are related
to the unresolved endpoint estimates for bilinear restriction estimates [15, 16].

There are other null forms of special interest which are related to the study of
nonlinear equations, such as Wave maps and the Yang-Mills equations (see [3, 5, 8,
9]). In particular, the following ones;

QO(Cba ¢) = 0100 — V¢ - Vb,
Qoj(¢, V) = 0:d0;9) — O GO),
Qij (9, %) = 00,00,,¢0 — 0,007
For the first one, a simple calculation shows that —2Q(¢, 1) = Dy D_(¢, ). Hence,

(1) is valid if Qo(¢, ), B+ — 1 and G — 1 replace ¢, B and [_, respectively. As
it is known from the analysis of the multipliers (see e.g. [3], [18]), for the others it
is expected that these null-forms (heuristically) behave like

Quj (6, ) ~ DY DY*(Dy*¢Dy/*y),
Qij(6,9), ~ DoD > DY*(Dy* 6Dy ).

A slight modification of arguments allows us to obtain the analogous of (1) for these
null forms as if the above heuristics was correct (see Section 3.3).

Corollary 1.2. Suppose (2) holds and (3)—(15) hold with strict inequalities. Then
ifn>4, forl <r<oo,1<q< o0,
(16) (D5 DL D Q(¢, ¥)llzary < CUISO0)| frossrrz + 9:6(0)] goy-1/2)
X ([9(0)] graz+12 + 1060 ()] graz-1/2),
holds in each of the following cases;
Q :Qﬂ,j7 EO = 507 g—i— = ﬁ-‘r - 1/27 6— == 5_ - 1/2,
Q=Qij, bo=p0—1, by=0++1/2, p_=p_—1)2.

When n = 2,3, (16) holds for 1 <r <2, 1 <g<oo and2 <r <oo, 4/n < q < occ.
Moreover, conditions (2) and (3)—(15) are necessary for (16) to hold.

It is not difficult to show that conditions (2)—(12) are necessary with a minor

modification of known examples ([3]). For the necessity of (13)—(15) see Section 5.

The paper is organized as follows: In Section 2, we state several bilinear (adjoint)
restriction estimates which are needed in the proof of Theorem 1.1. Those estimates
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will be proven in Section 4. Assuming the estimates in Section 2 we prove Theorem
1.1 and Corollary 1.2 in Section 3. Theorem 1.1 is proven first and the proof of
Corollary 1.2 is similar; details will be given in Section 3.3. In Section 5 we show
the necessity of conditions (13), (14) and (15).

Throughout the paper, the constant C' may vary depending on the dimension n,
1 < q,r < oo, € >0 and the exponents ay, as, By, B, if it is not mentioned
otherwise.

Acknowledgement. The authors wish to thank the referee for comments and
suggestions which helped to improve the paper.

2. MIXED NORM ESTIMATES FOR BILINEAR EXTENSION OPERATORS

In this section we state several preliminary estimates which are needed for the
proof of the main theorem but that also have interest for themselves. In fact, they
are mixed norm generalizations of the bilinear restriction estimates for the cone and
the paraboloid (c.f. [10, 16, 22, 15, 21]).

To obtain sharp null form estimates it is essential to get sharp estimates for var-
ious interactions between two waves. Through suitable decomposition of the waves
(especially, Littewood-Paley and angular Whitney-type decompositions) matters are
reduced to obtaining the estimates for high-low and low-low (or high-high) frequency
interactions with specified angular separation between two waves (see the reductions
at the beginning of Section 3). From the estimates for large angular separation we
deduce the sharp estimates for small angular separation using rescaling arguments
(see Proposition 2.4, 2.5).

2.1. Estimates with large angular separation. For convenience, we define the
energy of the wave ¢ by

E(¢) = llo(t)]l2
which is independent of ¢ by Plancherel’s theorem. For [,k > 0 let us define

FO(Qil) = {(5”7£n71>§n77) - T = |£’7 S~ 1, Enr 247 |€”‘ < 271}7
F;c(271> = 2k{(€”>5n717§n77_) T = _‘5’7 gn ~ _17 fnfl ~ 271, ‘5//‘ < 271}7

respectively, where £’ = (&1,...,&,_2). Even though the results in this section are
stated in terms of the specified conic subsets I'g(27!) and T} (27!), it should be noted
that they obviously remain valid under spatial rotations.

The following is a mixed norm generalization of the bilinear restriction estimate
for the cone [15, 22].

Theorem 2.1. Let ¢, ¢ (or 1)) be waves having Fourier supports contained in T'y(1),
[.(1), respectively. Then, for e >0 and 1 < q,r < 2 satisfying 1/q < min(1, "T“),
1/q < ”TH(l — %), there is a constant C' (independent of k, ¢ and 1) such that

1

16|y (or |60l ary) < C2G TR B(g) V2B () /2,
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1/q

|
I n

(3:3) = 1 L1/

FIGURE 2. The range of (¢,7) for Theorem 2.1, n > 3

The conditions 1/¢ < min(1,25), 1/¢ < %4(1 — 1) are necessary. It can be
shown using the test functions for (3) given in [3]. It seems highly possible to obtain
the estimates for 2/¢ = (n + 1)(1 — 1) by adapting the argument in [15] but the

T
e > 0 has to be removed to obtain some of the endpoint estimates in Theorem 1.1.

The estimates (1) for g, r satisfying both (7), (8) are rather special. As it was
pointed out in [15], they are closely related to the bilinear restriction to the parab-
oloid (or to elliptic surfaces). Let us set

(17) 9(5/) =V 1 + ‘5/‘2 - 17 fl = (517527 s 757171)-

Then for 0 < a < 1 and 1 < b < 2 we define extension operators by

(18) ﬁl;i(l’,t) — / ei(zlgl"!‘a?wan‘i‘tgne(g//gn))f(é')dé') i=1,2
S;

where

S =€ ERM b <& S btal¢/6+ (—1)ie, | <1/2}, i= 1,2,

Theorem 2.2. Let f/d;l, ﬁ;g be defined as above. If 0 < a < 1,1 < b < 2 and
n > 2, then for q,r satisfying 1/q < min(1,n/4), 2/q < n(1 — 1/r), and for any
e > 0, there is a constant C, independent of a and b, such that

2
5 _1_
(19) ] Fedoillsr, < Ca' =~ Asllall fall2-
i=1

By the argument in Section 4 and the estimates in [10] (c.f. (67)-(70)), it is
possible to obtain a mixed norm version of the bilinear restriction estimates for
hypersurfaces with non-vanishing Gaussian curvature. We record it here hoping
that it could be useful somewhere else.
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1/q
1
2/g<n(l—1/r)
(0,0) (n —[2)/71 1 1/r

FIGURE 3. The range of (¢,r) for Theorem 2.2, n > 4

Let n > 2 and ¢y, ¢ be smooth functions defined on [—1,1]"~!. Define extension
operators by

Eif(2',t) = /[ | ei($l€,+t¢i(f/))f(é“/)dgl’ i —
,1’1 n—1

Theorem 2.3. If det Héy, det Hoy # 0 on [—1,1)"7 and for all &', € [-1,1]"!

[(Hei (§)(Vor(§) = Va(()), Vor(€) = Vu(() 2 >0, i = 1,2,

then for 1 < q,r satisfying 1/q < min(1,n/4), 2/q < n(1 —1/r), there is a constant
C' such that

1EL(f1) E(f2)lleger, < Cllfill2ll f2ll2-

It is also possible to obtain such mixed norm estimates for bilinear restriction to
the conic surfaces studied in [10] which generalize Theorem 2.1.

The condition 2/¢ < n(1 —1 / r) is necessary in Theorem 2.3 and when n = 2,
there is an additional condition® 1/r +2/q < 3/2.

Indeed, for the first one consider ¢;(¢) = |¢' + 261]2 and ¢o(&) = & — 2¢€;?
defined on [—1,1]" ' For e < 1, let A ={¢: |&]| < &,|&] <61 =2,...n—1}
and set f1(&') = fo(¢) = xa(£). Then, the condition follows from routine argument
because |E1f1(:13 )], |E2f2(:v t)| > ce™ provided |z1| < ce7?, [t] < ce™?, |oy| < ceh
i = 2,...n — 1. The second condition can be obtained using ¢;(§') = (£ + 4)
$a(&') = (5) , J1 = Xqe<g and fo = X<y because (B fiEsfo)(2',1)] ~ € if
|2/ + 8t < ce! and |t| < ce?

IThis is less restrictive than the condition 1/¢ < n/4, 2/q < n(1 — 1/r) in Theorem 2.3 when
n=2
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2.2. Estimates with small angular separation. Now we give small angle ver-
sions of Theorem 2.1, 2.2. These will be obtained from rescaling and stability of
bilinear estimates with large angle separation. (See Section 4.2, 4.4.)

Proposition 2.4. Let n > 2. Suppose that ¢, ¢ (or 1)) are free waves with Fourier
supports in To(271), T.(27Y), respectively. Then, fore > 0 and 1 < q,r < 2 satisfying
1/(] < min(L nTH)a 1/q < nTH(l - %)7
- 110 (2 (n—1)(1—1 1 1
6@l arys (or |99 gry) < C2 G292 G =VU=D B(g)2 E(y)z.
Let 0 <a < 1and 1 <b <2 as before. We define A(27"), A’(27) by
AT ={(¢ &) €To(27) 1 b < & < a+ b},
N@ET) ={(€, &) eTH27) s b< —& <a+b},
respectively. The following is a corollary of Theorem 2.2.

Proposition 2.5. Let ¢, ¢ (or 1) be waves with Fourier supports in A(27%), A'(27),
respectively. Then, for 2/q <n(1—1/r), ¢ > max(1,4/n) and any € > 0,

P e e OB :(O
As usual, for the proof of Theorem 1.1 it is convenient to factor the multiplier
weight DX D7 D% as (D D77 |0|%-. Here |O| = D,D_. The following is
useful in handling the multiplier weight |O|°-.
Lemma 2.6. Let f_ be a complex number and let |0 = D D_. Suppose that ¢, v
(or 1) are waves with Fourier supports in To(27), T(27Y), respectively. Then for

1 <qg,r<oo, k,l >0 and any N > 0, there is a constant C, independent of (_,
such that

(20) 11017 (69) | pory < C(L+|B|)V2Re8-)k=20
X Z (1+ |M|)7NH¢H1w,UJ2HL§Lg

p=(p1,p12) EL™ XL

where ¢, , Yy, are waves satisfying E(d,,) = E(¢), E(Y,,) = E(), and ¢,,, ¥,
(or v, ) are Fourier supported in To(27"), T1.(27"), respectively.

Here 3_ is allowed to be complex. For the most of applications it is not necessary
but we use it for complex interpolation (see Section 3.2.1).

Proof. We write ¢ as

—_—

(Qﬂ)—% // ei(l”(f’+n’)+wn(§n+nn)+t(lf\iln\))¢(0)(5)¢<0)(n)d§dn_

Here the sign + stands for the case 9 is supported in '}, (27!) and — does for the case
v is supported in T(27!). Then by re-scaling & — 27, (7', n.) — (28", 2Fn,,),
the phase part is transformed to

O(x,t,6,m) = I/(Q_lg + Qk_lﬁl) + 20 (&0 + ann) + t(|(2_l§,a DE= |(2k_l77,a 2k77n)|)'
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So, applying |0]°- produces additional factor |w®(&,7)[?~ in the above integral
where

wE(&m) = 12716 + 28 P 4 (& + 28a)? — (127, &) £ (25717, 280 ])?
e 22 () — 1€ Pl P) = SRl S — o Il
272 + G £ /€22 + 27|02 + 2728200 2 + 274 [ Py
and the integration is now taken over the set
={8: &~ L&~ LI < 1} x{n g ~ £, ~ FL 0" < 1}

Hence it is enough to show that

”/ i®(z,t,¢,n) 2 k421 i(g 7])|f3 (f,n)dédUHLng §C<1+W—|)N

Xy (1+IHI)_NII/Seiq’(w’t’g’")e““’“’””F(&n)dfdnlngL;-

UELN X L™

Because we can get the required by reversing all the changes of variables done
so far. If [ > 0, [27F2wx(n, &) ~ 1 because [€/&, — 1'/na|*> ~ 1 on SE. So
|27FF2LwE (€, n)|P- is smooth on S* for any complex number 3_. Then by Fourier
series expansion we may write

|2k+2l:|:§,r]|ﬂf Zce

#EZQH

on S* and from direct differentiation it is easy to see that |C,| = O((1+[8-|)V(1+
||)~™) for any positive integer N. This gives the required estimate (c.f. Lemma
2.1 in [14]). O

Remark 2.7. In fact this lemma can be strengthened slightly. Let Q be a form with
assoctated multiplier m. That is,

Q(6,4) = (27)" // & U= (1) B(0) (€)(0) ().

Then it s obvious from the proof that Lemma 2.6 remains valid if o1 and ¢, 10,
in (20) are replaced by Q(¢, ) and Q(¢,,,Y,,), respectively.
3. PROOF OoF THEOREM 1.1

Assuming Theorems 2.1 and 2.2 and Propositions 2.4 and 2.5 we prove Theorem
1.1. By finite decomposition and symmetry, we may assume that the Fourier trans-
form of ¢ is supported in the forward light cone and v is supported in the forward
or backward light cone.

By the standard Littlewood-Paley decomposition of the initial data ¢(0),(0), we

write
b= b = > U

j=—00 k=—o00
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Interactions Main devices
high and low frequency, k > 1 Proposition 2.4, Lemma 2.6, 3.2
low frequency, k = O(1) (+-) Proposition 2.4, 2.5, Lemma 2.6
low frequency, k = O(1) | (++) | small angle separation Proposition 2.4, Lemma 2.6
low frequency, k = O(1) | (++) | large angle separation Proposition 2.4, 3.3

TABLE 1. Interactions and main devices.

where ¢;, 1 are waves having frequency supports on region Dy ~ 2/, Dy ~ 2%
respectively in the light cones. Then, to prove the estimate (1), it is sufficient to
show that

|DY D D (¢50n) | oy < C27H (22009 B(g)) 2 (2227 E(gy)) 2.

Then, the required estimate follows from using Cauchy-Schwarz’s inequality and
Plancherel’s theorem. By symmetry and re-scaling with the condition (2), we may
also assume j = 0 < k. Hence we are reduced to showing

(21) IDEDE D (¢oun)|lory < C2-F(E(¢o))? (222K B ()3

Fixing k, for each [ > 0 we decompose dyadically the double light cone into
finitely overlapping projective sectors I', T” with angle 27! such that ¢o = > . dor,
Yr = Y p Ye v where ¢or, ¥y are supported sectors I', I, respectively. We denote
by Z(I',I") the angle between the sectors. Then, by a Whitney type decomposition

we can write ¢g as
Govok =Y > P00 Uk,

>0 1,17, 4(0,I)~2-t

This kind of decomposition was frequently used to exploit bilinear estimates obtained
under separation condition (see [15, 18, 19, 22]). So, it is enough to show that if
Z([,T") ~ 271 then for € > 0 and k,l > 0,

(22) ||DﬁDB+ D% (Portwr)Lory < C2-<kHhgezk @ F) E(tx, r/)

Then, estimate (21) can be obtained by Cauchy-Schwarz’s inequality and Plancherel’s
theorem.

By rotation we may assume that

(+-) supp gg(); C FO(Q_Z), supp @Eg; C F;C(Q_l), or
(++) supp do.r C Lo(271), supp tpr C —T%(279).

We denote the first case by (+—) and the second by (++).

We prove (22) considering the cases £ > 1 and k£ = O(1), separately. They
correspond to high and low, low frequency interactions, respectively. Then, low
frequency interaction is handled by dividing the cases (+—) and (++). In the latter
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case the small angle 27! < 1 and large angle 271 ~ 1 cases are shown separately.
We summarize the details in Table 1.

3.1. Proof of estimate (22) when k > 1; high and low frequency interaction.
In this case the behavior of Dy, Dy is simple. To be more precise, the Fourier
transform of ¢o i v is contained in the region Dy, D, ~ 2F since k > 1. On the
other hand, by the well known multiplier theorem it is easy to see

1§ DL~ Flgpy < 0| Pl g,

provided the Fourier transform of F is supported in the region Dy, D, ~ 2F. Hence,
for (22) it suffices to show that if Z(I',T") ~ 27, then for ¢ > 0 and k,1 > 0,

1B (Gortbir) gy < C27 WM AT =090k B Gy )2 By ).
By Lemma 2.6, this further reduces to showing
o.cvn || g0y < C2HDRRO2=Bo=B) Q2P By )3 (1) 1) 3.

Now, by (2) and (4) with strict inequality it is enough to show the following;
Lemma 3.1. Let k> 1. If 1/q < min(1, %) and 2/q < (n + 1)(1 — 1/r), then
(23) ||¢0,F¢k,rf||LgL; < 2k (B-—a1—=1/q+n(1-1/r)—e)

X /=D=M (g0 ) B ()b,

We prove Lemma 3.1 considering the cases n > 3 and n = 2 separately.

Proof of Lemma 3.1 when n > 3. For n > 3, let us define (see Figure 4) the sets
Ai(n), As(n), ..., Ag(n) C [0,1] x [0,1) by setting

M) = {(, ) €0 X 01): > < (i D1 =), ~< 5 <)
Ba(m) ={(G. D DU x D) s <5 o< G- D)
Aol =47 2 €00 x DL 5 < = < pEmtey,
M) = {0 € DA x [0.1) 5 < S < 5
R R EFE R TR
Bs(m) = {1, 2) € 0.1 x[0.1): T+ G- < o T <3k
Bo(w) = {7 € 0. x[0.1) 5 < 1 5 <2< ot - ),
Then comparing the conditions? (9)—(12), (13) and (14), we see that among those
conditions (9) is the strongest on the set Ay

gn), (13) on Ag(n), (10) on Ag(n), (14)

on As(n), (11) on Aq(n), and (12) on Ag(n). Hence, for (23) we need to show the

following estimates:

—~

2Conditions for high and low frequency interaction
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2/g=mn+1)(1-1/r)

1 R Q (1,1)
As(n)
A3(n) (14) A6(n)
a3) (12)
1 A4(n)
2 (10) F
As(n) Aq(n)
9) (11)
00y 3 A

FIGURE 4. For n > 3, the sets Ay(n), Aay(n),...,Ag(n); comparing
the conditions (9)—(12), (13) and (14)

Assuming E(¢or)? = E(¢pr)2 = 1, for € > 0,
(24)
H¢0,F¢k’1"/||LgL; S Czl(Q/qf(nfl)(lfl/T)) 1f (1/7=7 1/q) E Al('ﬂ),

|’¢O,ka,F’HL§LQ < 2k (=1/a+n(1/2=1/r)+€)9l(2/q—(n=1)(1=1/r)) ;¢ (1/r,1/q) € Ay(n),
H¢0,F¢k,F’HL§L; < Ok (n=1)/2=n/r)+€)9l(2/q—(n—1)(1=1/7)) j¢ (1/r,1/q) € As(n),
H¢0,F¢k,F'HL§L; < CoF" 5 (1/2=1/r)+)9l(2/q—(n=1)(1-1/7)) if (1/r,1/q) € Ay(n),
|’¢0,F¢k,F"|L§L; < 02F(1/a=1/r)+e)9l2/a—(n=1)(1-1/r)) ¢ (1/r,1/q) € As(n),
| po.rtbn,r | pagy < C2FV/a1/2HAQI/a=n=VU= 4 (1/r,1/q) € Ag(n).

As it can be easily verified from the necessary conditions and rescaling, all these

estimates are sharp up to e-loss. In view of interpolation, to prove this we only need
to show the corresponding estimates for

(ra) =00 (50). 00
r= () () ) ()
o= (1) 7= () (i) 00,

or for some (1/r,1/p) which is arbitrarily close to these points.
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For P, ), R, we are not able to obtain the corresponding end point estimates.
However, it is possible to prove estimates for some (1/r,1/q) arbitrarily close to the
points P, ), R. These estimates follow from Proposition 2.4.

The estimates for (1,0),(3,0),(0,0), (52=25,2),(0,3), (52=25,1),(0,1) can be

2(n—1)7 2 12 2(n—1)’
proven from Strichartz’s estimates and re-scaling. We need the following:

Lemma 3.2. If ¢ is a wave with its Fourier support contained in the set
{(& £lel) - & ~ 28, 1€ S 257},
then, for g >2,2/qg<(n—1)(1/2—=1/r) and ! >0,
|| porr < C'2k(n(1/2=1/r)=1/q)9l(2/q+(n—1)(1/r—~1/2)) 14(0)|| 2
with the exception (q,r) = (2, 00) when n = 3.

Proof. We may assume that [ > 1 by the usual Strichartz’s estimates for the wave
equation [4] and a mild rescaling. We write v as

wlat) = [ [ e e

Then, by changing variables x,, — x, — t we may replace the phase part by '’ +
& £ (€] — &,). Re-scaling (£/,&,) — (2F71¢’, 28¢,,) transforms the phase to

2R lae! 4 2k, €, £ H(1 /2202 ¢1|2 4 22kE2 — 2k ).
By (2, x,,t) — (27%g’ 27kg, 27F2t) it is further changed to
3(,1,6) = 2 + waly £ 127 (222 4 2%e2 — 2b,).

Let us set

Uttty = [ ereafio
En~1,E<

Since 27+2(\ /PGP + PR — 2he,) = [€2/€, + 02|/ /€2), we can use
the well known argument for Strichartz’s estimates to obtain [|Uf|| ez, < C| f]l2
for ¢ > 2 and 2/q < (n — 1)(1/2 — 1/r) (see [4]). Reversing rescaling gives the
required. U

From Lemma 3.2 it follows that for
(1,00) when n = 3),

¢ < "5+ (1—1) (with the exception of (¢,r) =

(25) b0t || parr < Czk(%(1*1/7“)*1/(2@)21(2/!1*("*1)(1*1/7’))’
for ¢ > 2, 2 < "5H(5 — 1) (with the exception of (¢,r) = (2,00) when n = 3),
(26) | bortnr | arr < ok (n(1/2=1/r)=1/q)9l(2/q—(n—=1)(1-1/r))

and for % <(n—1)(3 — %), (with the exception of ¢ = 1 when n = 3),

(27) ot || poe < C2HRO/2-1/D=1/20) 91 a~(n=1)(1=1/r),
) ) tle —

For (25) use ||¢o. 0tk [l 1arr < [|@o.rll2g,20 |91 [|29,20 and apply Lemma 3.2 with ex-
ponents (2q, 2r) to each term. (26) follows from H(bol‘l/}k’r/HLng < | d0.1 || 00,00k ||L§L;
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and Lemma 3.2. For (27) use [gortrr|lzor, < [l¢orll2g.00ll¥rr|l2gr and apply
Lemma 3.2 with exponents (2¢, c0) and (2¢q,r).

Now, for n > 4, the estimates for (%, %) = (1,0), (0, 1) are particular cases of (25),

the estimates for (3,0), (0,0), (2(’;—__31), 1) and (0, 3) are particular cases of (26) and

the estimate for (2&—131), 1) is a particular case of (27). At (1/2,1/2), we need to

show
(28) [ po.r |2z < C2C/2,

Let doy, doy, be the induced Lebesgue measures on Iy, I', respectively. It is easy to
see ||dog * doy||s < C2!3~™. Then the required estimate follows from Plancherel’s
Theorem and interpolation between L™ and L' estimates. (It also can be shown
from (42) by rescaling.)

When n = 3, the set Ag shrinks to the line segment [(0,1/2), (0,1)]. Even though,
the required estimates can be obtained by the same argument except for (1/r,1/q) =
(0,1), (0,1) because the estimate for (1/r,1/q) = (0,1/2) is not allowed in Lemma
3.2. However it is possible to obtain the corresponding estimates for some (1/7,1/q)
arbitrary close to (0,1) and (0, 3) by Lemma 3.2 and Hélder’s inequality. O

Now we turn to the case n = 2.

Proof of Lemma 3.1 when n = 2. For n = 2 the picture is slightly different (see
Figure 5). Recalling the condition (3), let us define the sets A1(2), Ax(2), Ay(2),
A5(2), Ag(2) C [0,1] x [0,3/4) by setting

11

M) = {7 ) €D 0.3/4): 2 <3(1- 1), c< <),
Ba2) ={(7 ) €D X 0.3/4): L <5 235G - D,

A2 = (. ) €01 X [0.3/4): 55— D < = < T+ 5 - b
Bs() = {(; 1) € 0. X [0.3/4) T+ 3G -1 <7, 1<)
8o = {(;7) € DU X[0.3/4) 5 < 7 3 <7< 20 - D).

To obtain (23) we need to show (24) with n = 2 but for Theorem 1.1 it is enough
to do it for (1/r,1/g) = (1,0), (1/2,0), (0,0), (1/2,1/2), (1/2,3/4), P = (2/3,1/2)
(0,1/4) and (0, 1/2) or arbitrarily close to them. The estimates for (1,0) and (0, 1/2)
follow from (25) and for (0,0), (1/2,0) and (0,1/4) follow from (26). For (1/2,1/2)
we use (28) and for P = (2/3,1/2) and (1/2,3/4) we use Proposition 2.4. O

3.2. Proof of estimate (22) when k£ = O(1); low frequency interactions.
Obviously, (22) is equivalent to

(29) ||DgD§+_/Bf 1015~ (do.rtbwr)| ripr < C27 4 E(¢or) 3 E<¢k,1“’)%
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IN[UIt-N =

As5(2)
(14)

N|—=
I

Ay(2)
(10)

N,

—
=
-

N’

(0,0)

N|—=

Wi
—_

=

FIGURE 5. n =2, Ay(2), As(2), Ay(2), A5(2), A¢(2) ; comparing (9)—
(12), (14)

for some € > 0. The symbol Dg fo_ﬁ ~ no longer behaves so nicely as in high and
low frequency interactions. We decompose the waves further to handle Dg Dfi*_ﬁ -
near the origin. We will prove (29) by considering two cases, (++) and (+—),
separately.

3.2.1. (+—) case. First we show (29) when (1/r,1/q) is close enough to the line
2/qg— (n+1)(1 —1/r) = 0 and next we will show (29) for 2/q < n(1 — 1/r) (see
Figure 6). Then interpolation between these two kind of estimates gives (29) for
all ,q, 2/q < (n+1)(1 — 1/r) < 0. Indeed, it is possible to obtain estimates (29)
even if fy, B4, S are complex number as long as Re((y), Re(3:), Re((-) satisfy
the conditions (2)-(15) with strict inequality instead of (o, B4, f—. And it is easy
to see the constant C in (29) is O(1+ |Bo| + |8+ |+ |6-])" from the argument below
(c.f. Lemma 2.6). Hence we can use complex interpolation along (o, G, O-.

To begin with, we make a further decomposition to handle Dg Dfﬁ ~~_ For each
m, 0 < m <[, we decompose dyadically along the direction of light ray to break each
of the surfaces T'o(27"), I,(27") into sectors Ap,j, AL, ; of size 270 x -+ x 271 x 2m~1
essentially (the longest direction is parallel to to the light ray). So, for each fixed
m, we have

F0(2_l> = U AmJ ) F;(Q_l) = UA;W,Z
j i
Then, we may write

To(2™) x T2 = U A x AL

0<m<I dist (A, j,—Al, )~2m=!
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1/q 2/g=Mn+1)(1-1/r)

(8)

2/qg<n(l-1/r)
(7)

(070) 1/7’
FIGURE 6. Comparing the conditions (7) and (8)

Note that dist (A, ;, —AL,;) 2 27" (in the case m = 0 this follows from the angular
separation). Hence, we have

o, rVr T = Z Z DAy wAZﬂ,i

0<m<ldist (A, j,—A], )~2m—!

where ¢y, ;, ¥ar . are waves with their Fourier supports contained in A, ;, A

m,i)

respectively.

It is easy to see that if the Fourier transform of F' is supported on A, ; + A7, ;
||DgOD-€+_ﬁ7F||L§L; < Cz(mfl)(ﬁowrﬂ_)||FHL§L§
because dist (Ap,j, —AL, ;) ~ 2™ ' Hence, using this and Lemma 2.6, we have

(30) D DY IO (0, 0w, Mg

m,i

< CQm(’GO+6+7ﬁ_)27Z(ﬁ0+ﬁ++ﬁ_)H¢A "l/}A/ Larr -
= m,J m t~x

When (1/q,1/r) is near the line 2/q = (n+ 1)(1 — 1/r). From the above (30) and

Proposition 2.4 we have

IDG° D" D (¢n,, 0w, ) < Co(m=D(Bo+04—6-)

LiLr
x 9~ UB-=2/a+ (DAY B, VEE(py )3,
m,J m,i
Hence, if By+0+—0F- > 0, then (29) follows from summation in m, Cauchy-Schwarz’s

inequality and Plancherel’s theorem because 26_ —2/g+ (n — 1)(1 — 1/r) > 0 by
(4) with strict inequality.

On the other hand, if 5y + . — f_ < 0, then by using the above estimates and
direct summation in m (also by Schwarz’s inequality and Plancherel’s theorem) we
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get

3 3 1D DS D (¢, s, )lac

0<m<Ldist (A, j,—Al, ;)~2m=!
< oo WBo+B++B-—2/q+(n—1)(1-1/r)) (¢0 I‘)QE(wk I”)

From (2), the exponent of 27! equals to a; + ay — 1/¢ — (1 — 1/r). Since (8) is
valid with strict inequality, to say, a; + as — 3/q¢+ n(l — 1/r) = 6 for some § > 0.
Obviously a; + as —1/¢g— (1 =1/r) >0if §/2 > 2/¢g— (n+ 1)(1 = 1/r) > —=§/2.
Hence we get the required estimates (29) as long as (1/r,1/q) is close enough to the
line 2/qg— (n+1)(1—1/r)=0.

Nz\»—t

When 2/q < n(1 —1/r). In this case, to obtain the sharp estimates it is not enough
to apply Proposition 2.4 to (30). Instead, we use Proposition 2.5 to get better
bounds. Note that the conditions® (7), (8) coincide along the line 2/q = n(1 —1/r)
and (7) is stronger when 2/q < n(1 —1/r). (See figure 6.)

Using (30) and Proposition 2.5, we have
||D50Dﬁ+ Dﬁ (4 ¢A’ )

m,j

% 926~ —2/q+(n H-1/m) g (¢A ) E(@/)A’ )%‘
m,j m,i

If Bo+ By — G- +1—1/r >0, choosing sufficiently small € > 0 such that Gy + 5, —
fo+1—1/r—e >0 we get (29) by summation in m and the condition (4) with
strict inequality.

On the other hand, if fy + f — - +1—1/r <0, from summation in m and the
condition (3) we see

> > | Dg" DY D (i, 00ny, )

0<m<ldist (Am,j,—AL, )~2m l

< C’Q(m—l)(ﬁo+ﬁ+—ﬁf+1—1/T—€)

LiLr

< 02_1(a1+a2—1/q—e)E<¢0I)%E(Q/,M,)%,

Hence, if (7) holds with strict inequality, we get (29) with sufficiently small € > 0.
It should be noted that when n = 2,3, the additional assumption 4/n < ¢ was
used for r > 2 (see Proposition 2.5).

3.2.2. Case (++). We consider the two cases, 27! ~ 1 and 27! < 1, separately.

Case 27! < 1. In this case the multipliers for Dy, D, are smooth and bounded
away from zero on the Fourier support of (¢o k7). So, the harmless Dgo, D_’i*_ﬁ -
can be discarded. Hence it is enough to show that

1 1
110]° (Go.0¥e,r) |32y < C27E(dor)? E(trr)?.
From Lemma 2.6 and Proposition 2.4, we see that the left hand side of the above
inequality is bounded by

271(2ﬁ-72/q+(n71)(171/r))E(¢0 p)%E(W F,)%.

3conditions for low frequency interaction (+—)
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Therefore from the condition (4) we get the required estimate (29).

Case 27! ~ 1. If the angular separation 27! ~ 1, on the Fourier support of ¢o i
Dﬁﬂ D"~ are a harmless smooth operator because the multipliers are bounded away
from zero. So we may discard them as before.

For m > 10, let P, be the usual Littlewood-Paley projection in & to the set
{(¢&;7) e R xR:[¢] ~27"}.
Then it is enough to show that for e > 0,
||Png(¢0,F?/)k,r')||Lng < 02_6mE(¢0,r)% E(¢pr)2.
Equivalently, it suffices to show
[P (G000 )| Loz < C2750 B¢y, r)2 E ()2

We decompose I'g(27!) and T (27!) into disjoint surfaces A, A’ of diameter ~ 2™

so that
dor = E OAs Vi = E (1
A A

where ¢, and 1, are waves Fourier supported in A, A’, respectively. Then by
Cauchy—-Schwarz’s inequality and Plancherel’s theorem we are reduced to showing

(31) 1P (datonr) | Lary < C2M0~ME(§)2 E(3har)?

for some € > 0. Note that P, (¢atha) # 0 only if A+A" e {(&,7) : || < C27™}. So,
by rescaling and rotation we may assume that

(32)  A={(&[E) : €€ Blen, C27™)}, A ={(&[€]) : € € B(—en, C277)}.
Let us set I = [0, 1]

l\.’:\»—‘

A= {C, é)e]x]:%ﬁl—%, és%},
Agz{(%,é)élxlzmm(l,nzl)>éZ%, %S%},
Ag—{(% é)e[x[ min(1, n+1)>321—%,
T2 <mrDI-k
Hence comparing the conditions* (5), (6) and (15), for (31) it is sufficient to show

the following estimates:
For any € > 0,

—n(l-1/r)+e L
loaton | Loy < C2MY ORI B )2 E(pa)? if (1/7,1/q) € A,
(33)  [lgatow ooy < sz(z/q—n(1_1/r)—1/2+e)E(¢A)%E(¢A,)$ if (1/r,1/q) € A,

lgatn oz, < C2Ma NN B2 B(yp)? if (1/7,1/q) € A,

N[

4Conditions for low frequency interaction (++)
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2/g=Mn+1)(1-1/r)

1/q
Ag
(19 A
(6)
1/2
Ay
(5)
(070) 1/2 1/7’

FIGURE 7. Comparing (5), (6) and (15), n > 3

For n > 3 it is enough to show the estimates corresponding to the points

()= 0m-00.(42)- (). (52)- () o

or (1/r,1/q) arbitrary close to these points (see Figure 7). If n = 2, we need
estimates corresponding to the points

() -amon. (42).04).(2)-(02)

Estimates at (1,0) and (0,0) are trivial from Holder’s inequality and Plancherel’s
theorem. Since A and A’ transversal to each other, the estimate at (1/2,1/2) can be
proven by the same way as (28). Now note that the Fourier supports of (¢ppathar) (-, )
are contained in a set of diameter C27™. So, the estimate at (0, 1/2) can be obtained
by applying Bernstein’s inequality to the estimate at (1/2,1/2).

When n = 2, the L{L" estimates at (1/r,1/q) arbitrarily close to (1/2,3/4) is
contained in Proposition 2.4 because angular separation between the sets A and A’
is about 1. Finally the remaining estimates at (0,3/4) follow from the estimates at
(1/2,3/4) by Bernstein’s inequality.

Now we turn to the case n > 3. Note that the L{L! estimates at (1/r,1/q)

arbitrarily close to (Z—jr}, 1) are particular cases of Proposition 2.4. As before the

estimates at (1/r,1/q) arbitrarily close to (0, 1) follow from the estimates at (1/2,1)
by Bernstein’s inequality. Hence, by Lemma 4.4 (Globalization Lemma) it is enough

to show
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Proposition 3.3. Let n > 3 and let A and A’ be the sets given by (32). If ¢a, ar
are the waves having Fourier supports in A, N, respectively. Then, for any a > 0

(34) loavar iz @y < 22272 R 9a(0)|2l140ar (0) |2, B > 1
where Q(R) is the cube with side length R centered at the origin.

Indeed, by rescaling and stationary phase method, one can see that ¢, ¢p are
expressedA as extension operators given by measures doy, doy, respectively, which
satisfy |do;(x,t)| < C2m¢(1 + |(x,1)])~("~Y/2 for some c. Then from Lemma 4.4 we
obtain L{L! estimates for (1/q,1/r) arbitrarily close to (1,1/2) at loss of 2. See
Remark 4.5.

Proof of Proposition 3.3. Recall that A, A" are parts of the cone of diameter C'27"-
balls in centered at (e,, 1), (—e,, 1), respectively. We start with the induction as-
sumption that (34) is valid for some a > 0. Following the induction on scales
argument [22], we will show that (34) implies that for 0 < §,e < 1 and R > 1,

(35)  lléavarlliirzoemy < CRURMTD 4 RO 2GB202m g (0)[|a][4bas (0) 12

with ¢ independent of €,, R. Iterative use of this implication gives (34) for any
a > 0.
By the same argument used for (28) we have

loavnllzz ey < €270V 2164 (0) |2]1t0ar (0) 2.

Hence if R < 2™ it gives (34) with a = 0 by Hélder’s inequality. So, we may assume
R > 2*™ Fixing R > 2%, by wave packet decomposition at the scale of R we can
write
or=) CrPr, Wn=) CrPr
TeT T'eT’

on (Qr. Here 7,7 are the collections of tubes associated to wave packet decom-
position for ¢y, 1p at scale R, respectively. Pr, Pr: are functions, essentially sup-
ported on T, T", respectively. Their spatial Fourier transforms are contained in R~*
neighborhood of the Fourier supports of ¢a, ¥ and ||Pr(0)||zz = ||Pr(0)]| 2 = 1.
Moreover ||¢a(0)[132 ~ > C7 and ||¢a(0)]172 =~ > "7 CFi. See [10] for more details
(see also [16]).

By the standard argument involving pigeonholing we are reduced to showing that
if R> 2% 0< 6§ <1, then

|| ZPTPT’”L%LQ Q) < C2 (3/2—n/2)m (Ra(l d) RC(S)#(T)I/Q#(T,)IH.
71

Then partition Q(R) into R'~°-cubes and we denote by {b} these cubes. The left
hand side of the above is bounded by

Z||ZPTPT’HL1L2(Z;<ZH > PrPrlyzw+Y I D>, PrPrlluse
7T T, T ~b b Tobor T'oth

where ~ is the usual relation between T, 7" and b defined in [16] (see also [10]).
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For the first term we can use the induction assumption to bound it by
02(3/2—n/2)mRa(1—5)#<T)1/2#(71)1/2‘

For the second term,

I > PrPollye <CRI > PrPrlzeae
Totb or T/ b Toth or T'obb

< C«Rcde/QR—(n—l)M#(7)1/2#(7/)1/2
< ORC62(3—n)m/2#<T>1/2#(7/)1/2

because R > 2?™. The second inequality is a consequence of estimate (2.12) in [10],
which is in the same spirit as inequality (23) in Tao’s [16]. O

3.3. Remarks for the proof of Corollary 1.2; Sufficiency part. The suffi-
ciency part can be proven following the same way as before. But we need to handle
the additional multiplier weights for Qo ; Q);; at some stages of the argument. It
should be noted that the null forms @)y ;, @;; are not completely invariant under
spatial rotation. In other words, we may not be able to assume that the angularly
decomposed waves ¢or, Y are supported in the specified conic subsets T'g(27)
and T}, (27!) as before. However it does not cause any problem since we can work in
an adapted coordinates frame.

After dyadic decomposition, angular Whitney-type decompositions and rotation
if necessary, to each pair of waves we can apply Lemma 2.6 and the following.

Lemma 3.4. Let Q = Qu;, or Q = Q,; and set Ap(27") = 28{(&,|€]) : [¢] ~
1,1€/1€] — v| < 271} for some |v| = 1. Suppose ¢, 1 (or 1) are waves with Fourier
supports in Ao(27Y), Ap(27), respectively. Then for 1 < q,r < oo, k,I > 0 and any
N >0, there is a constant C, independent of v, such that

1Q(¢, W) lpar, < C2H > (U4 1ul) ™Ml dw usllLos

pu=(p1,p2) EZ™ X"

where ¢y, , Y, are waves satisfying E(%l) = E(9), E(Yy,) = E(Y), and ¢y, , Py,
(or 1., ) are Fourier supported in Ao(27%), Ax(271), respectively.

This lemma with Remark 2.7 enables us to trade off the multiplier ) = Qo ;,
Q) = Q,; for sharp bounds in terms of 2F 2!, Using Lemma 3.4 one can easily
check that the arguments for the proof Theorem 1.1 in Sections 3.1, 3.2 work except
for the case 27! ~ 1° in section 3.2.2 ((++) in low frequency interaction). For the
remaining case one can use the following:

Lemma 3.5. Let A = {(¢,[¢]) : [€ —v[ < C27™} N = {(& [§]) - € +v| < €27}
for some v, |v| = 1. Suppose ¢, 1 (or ) are waves with Fourier supports in A, N\,
respectively. Then for 1 < q,r < oo, k,1 >0 and any N > 0, there is a constant C,

5We did not use Lemma 2.6 in this case.
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independent of v, such that
36)  NQui(¢ ey <C Y (LD TG el

pu=(p1,p2) EZ™ X L™

(37) 1Qii (¢, ) |zgry < C27 DD O 77 el TN [P

,LL:(,LLl 11“‘2)€Zn AL

where ¢, , Yy, are waves satisfying E(¢u,) = E(¢), E(Yy,) = E@), and ¢, Y,
(or 1, ) are Fourier supported in A, N, respectively.

After decomposing ¢o r, ¢, v into disjoint waves ¢4, ¥xs as in section 3.2.2, using
this lemma we can drop the additional weight. Then the last of argument in Section
3.2.2 works without modification.

Now we close this section with the proof of Lemma 3.4, 3.5. The proof is similar
to that of Lemma 2.6. We shall be brief.

Proof of Lemma 3.4. To begin with, we write Q(¢, 1) as

—_

(2m) / / S E )y (¢, 1) 3(0) (€)4(0) ().

—

Here, m(&,n) = &l F 1;1€], or §m; — &m; and $(0),4(0) are supported in
S ={e: 1€l ~1,l¢/lEl — v <271}, 285(27),

respectively. The — sign in the integral stands for the case that ¢ is Fourier sup-
ported in A.(27!). Obviously, we may assume k = 0 by the change of n — 2%

Following the proof Lemma 2.6, we use translation and rescaling to transform the
multiplier weight m to 27!m so that m has uniformly bounded derivatives on the
set of integration. Then, we can expand out m using Fourier series and we get the
desired by reversing the change of the variables. Hence, it is enough to show that
such transformation is possible for m.

First, we show it with m = &;|n| F n;|¢|]. We only consider m = &;|n| — n;|¢]
because the other one can be handled similarly.

Let (¢, ¢,—1, ¢n) be the coordinates of £ with respect to the (ordered) orthonormal
basis {v1,...,v,_1,v}. Similarly, let (d”,d,_1,d,) be the coordinates of n with
respect to the same basis. Then, we may assume

S@27) ={(¢" cu-1,¢0) 1 en ~ LI(¢" n)] <271

Without loss of generality we may also assume that {;-axis is contained the two
plane spanned by v,_1,v. Then, {; = cosfc,_; + sinfc, for some 6 depending the
angle between &; axis and v. Hence in the new coordinates we can write

m(c,d) = (cosOc,_1 + sinfc,)|(d", dp_1,d,)| — (cosOd,_1 + sin0d,,)|(¢", cn_1, ).

Rescaling (¢’ ¢, 1) — 274", cp_1) and (d”,d,, 1) — 274(d", d,,_,) transforms m(c, d)
to 27'm(c, d) where

m(c,d) = cosf(c,_1d, — cpdp_1) +O(27)
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because |(¢’,cn1,¢n)| = cn + (", en1)?/2¢n + O(|(”, cn1)|?). Note that the in-
tegration is now taken over S(1). Obviously, m is a smooth function with bounded
derivatives on S(1).

Now we turn to the case m(§,n) = &mn; — &mn;. Here we may assume ¢ axis
is contained in the span of v, _s,v,_1,v. Hence, & = ac, o + (¢, + v, with
(o, B,7)| = 1. Therefore m(c,d) is equal to

(aep_o+Bcn_1+7¢,)(cos0d,_1+sin0d,) — (ad, o+ Bd,—1+7yd,)(cos Oc,_1+sin b¢,,).

After rescaling (¢”,c,_1) — 274", en 1) and (d”,d,_1) — 274d",d,—1), m(c,d)
is changed to 27'm and the integration is taken over S(1) where m has bounded
derivatives. 4

Proof of Lemma 3.5. We follow the same argument in the above proof. The first (36)
is obvious because the associated multiplier &;|n| £ n;|¢| smooth if |{] ~ 1, |n| ~ 1.
For (37), after translation £ — £ — v, n — n + v and rescaling (£,1) — 27™(§,n),
the associated multiplier is given by

- 2_m€1 —a 2—m£j —-b
for some a,b, |al,|b] < C. Hence it is obvious that 2™ u(&,n) is a smooth function
with bounded derivatives in B(0, C') where the integration is taken. U

4. PROOFS OF THE BILINEAR EXTENSION ESTIMATES

As it was already seen in the proof of Proposition 3.3, the proofs of Theorem
2.1 and 2.2 are based on the so called induction on scale argument which was
used to obtain sharp bilinear restriction estimates for the cone and the paraboloid
[22, 15, 16]. We also use the crucial L? estimates in [15, 16] to get various mixed
norm generalizations. After obtaining almost sharp local estimates on a cube of side
length R, we use Lemma 4.4 to get estimates on the whole space.

4.1. Proof of Theorem 2.1. The proof is actually an adaptation of Tao’s proof
of sharp bilinear restriction for the cone [15]. The argument here is easier since we
are not trying to obtain the endpoint estimates. Various mixed norm estimates are
obtained using the basic estimates in Proposition 4.1. We begin by quoting several
notions and a proposition we need here.

Let S be a finite set. A function ® : R"™! — /5(S) is called a red wave with fre-
quency 2 if it takes values in £5(.S) and its space-time Fourier transform is supported
in the set

Tt = {(& [€]) - £(& 1) < m/8,1¢] ~ 2°}.

A function ¥ : R*™! — /5(S) is called a blue wave of frequency 2 if its space-time
Fourier transform is supported in the set

L = {(& —g]) « Z(& ex) < 7/8, €] ~ 2™}



24 SANGHYUK LEE AND ANA VARGAS

Let R > 2% and Q C R™! be the cube of side length R centered at the origin.
For each 0 < j, partition dyadically @ into cubes of side length 277 R and denote by
Q,(Q) the collection of these cubes. Then for 0 < ¢ < 1 set

ro@ = |J (-oe
9€Qc, (Q)

Here (1 — c¢)q is the cube having the same center as g and side length of (1 —¢) times
as long as that of ¢. A red (or blue) wave table ¢ on @ with depth j is defined to
be any red (or blue) wave having the form

¢ =: (Cb(q))quj(Q)'

If ¢ is a wave table of depth j over @, then for 1 <[ < j and ¢ € Q;(Q), we set
P\ = (¢(q/))q/egj(Q)7q/Cq. For 0 <1 < j, we also define the [-quilt [¢]; is defined by

D= > x|

9€(Q)
Then the pointwise estimate

(38) [¢]; < [¢]j—1 < - < [0l < [dlxq
follows. For a red wave ® of frequency 2%, the margin of ® is defined by
margin(®) := 2 *dist(supp®, L),

and the margin of a blue wave is similarly defined.
Proposition 4.1 (Proposition 15.1 p.245, [15]). Let m,m’ be integers and let R >
9-m gm=2m' () < ¢ < 27 Let ® be a red wave of frequency 2™ with margin
(®) > (2™R)~'/? and U be a blue wave of frequency 2™ . Then for a sufficiently large
number Cy depending only on n, there is a red wave having values in I*(Qc, (Q))

© = 0(D,¥; Qcy (Q)) = (2@, V) )geac, (@)
of frequency 2™ with margin(®) > margin(®) — C(2mR)"Y2 such that
(39) E(®) < (1+ Ce)E(®),
(10) 19| — [Bley)llpagrecoqay < ¢ C @ R) - IAB(@) 2 E(w)Y?
hold with C' independent of c.

Suppose that ¢ and v are free waves Fourier supported in subsets of the cone with
height 1,2% and O(1)-angular separation. By a finite decomposition, a mild Lorentz
transformation, we may assume that ¢ and ¢ are supported in the set Iped and
(—T%ue) respectively. Since ||¢y|| viry = |99l Lary, taking conjugate and changing

variables by reflection, we may assume that ¢ and 1 are supported in the sets T5¢
and ['%“¢ respectively and they have margin > 1/100. And we assume

E(¢), E(¢) < 1.

To show Theorem 2.1 by interpolation and using Lemma 4.4 below, we need to show
that for any € > 0 and for any @ cube of sidelenth R > C2F,

(41 60l < CREZEMA-1/254)
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Recall that
(42) g2 < CE(¢)' 2 E(1)"?

provided 1 is a blue wave of frequency 2* and ¢ is a red wave of frequency of 1.

Therefore, it is enough to obtain (41) for (¢,7) = (2, 24), (1,2), (1, 24}) when n > 3

' n—1

and for (¢,7) = (3,2), (2,3) when n = 2. First we show it when n > 3.

4.1.1. Proof (41) for (g,r) = (2,™1). For 0 < j < k which are multiple of Cp, let
¢; be the sequence of wave tables of depth j on () defined which are recursively
defined by

oY =0,
3\ = Tt (637,10 Qcy () for all ¢ € Q;(Q)

using Proposition 4.1. (Here k is also assumed to be a multiple of constant Cp;
this can be achieved by a simple re-scaling.) Note that the wave ¢;. ¢, has value
in 12(Q;4c,(Q)). By induction, margin(¢;) > 1/100 — C(277R)~*/2. So the margin
condition is satisfied for each j. Then from (39) we have

(43) E($jic,) < (1+ Ce2” "IN E(g)).
Hence E(¢;) < C for all j < k. From (40) we have for ¢ € Q,(Q)

S C*CQC(k*j)/N<2ij)f"TflE<¢§q))1/2
applying Proposition 4.1 with & = ¢§Q), U =1 and Q) = q.

Now, let us set
k
co—(k=3)/N
=17

7=Co
Since ||[¢;]; 1l r2(x(q) < 269°279/2R'Y? by the trace lemma and (43), obviously
(45) [([@5]5 = [@ir00li+co)llLzrrx @) < 20C0Q—I2R/2,
Taking squares and summing (44) over ¢ € Q;(Q) gives
(46) 1651 = [Bscol o) Pllracxiqy < 290N (2T R) ™5
(This is the estimate (79) in [15].) Then interpolation between (45) and (46) gives
| < (9C =N
(47) H([ij] [¢J+Co]j+00)¢||L2L 1(X(Q)) <C2

Applying Proposition 4.1 with ® = ¢ and ¥ = ¢y, we get ¥ = D.(1, Pr; Qe (Q))
which satisfies

(48) E(0) < (14 Ce)E(T),
(49) lorle(l1=[ley) lz2cxiey < @ R)TT
Again by trace lemma, (43) and (48) it is easy to see
(50) 1oxle (] = [Wleo)ll 2y cx @y < 20P27H2RY2.
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Interpolation between the above two estimates gives

(51) 1oxle (] = [Pleo) < 92,

L2L - (X(@)

The following is a simple modification of the averaging lemma in [15] (Lemma
6.1).

Lemma 4.2. Let R >0 and 0 < 2=C [ be a smooth function. For 1 < q,r < 00
and any R-cube Q, there is a CR-cube Q C C?Q such that

1 pay @) < (4 Cro)ll Pl ey oxe)
with Cy depending on ¢, N,q,r,n.

Proof. From Lemma 6.1 in [15], for any positive G € L' there is a C'R-cube @ such
that

/ G(z,t)dzdt < (14 C’lc)/ G(x,t)dxdt.
Q X(@)

We may assume || F|[;q;, 5y = 1. Then there are functions g and h such that

1=/@F(x,t)g(a:,t)h(t)dxdt

with |lg(-,¢)|l» = ||h|l¢ = 1. Hence from the above inequality, there is a cube @
such that

1< (14 Cie) [ (PG tg(o Ob@)ldedt < (1+ Cro) [Fllgisncan
X(Q)

This gives the required inequality by duality. U

Let (Blue)y ((Red)y resp.) be the set of blue (red resp.) waves having support in
rblue (T7ed vesp.) with energy < 1. For a cube R-cube @, let us define

Agr(R) = f{C : 9| a1z (@) < C, ¢ € (Blue)o, ¥ € (Red)y}.

By translation invariance, it is easy to see that A,, does not depend on a particular
choice of Q.

Let @ be a R-cube and () be such a C'R-cube as in Lemma 4.2. Since () is now a
C'R cube, we have to replace R by C'R in (43)-(51) but the inequalities remain valid
only with different constant C'. Then, telescoping summation of (47) and using (51)

gives
0 /
(52) ligwll , = 5 < (L COll[@nlil¥ U)cs | - L(X(Q))+(1+CC)(2CC +208Y),

By triangle inequality and (38) we see

erle[leollzorrx@y < N@lco[Pleollrorrxy < Y, 19D D 1,

q€9Qc,
Then the above, (48) and (43) give
Ay ni1(R) < (14 C¢)Ay nea (CR/2P) + (1 4 C) (29 + 20%/M),
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We can iterate this as long as R > 2*, hence we obtain
Ay nii(R) < (1+ CC)CIOgRAZLH(C?’“) + (26C0 4 2CK/NY (1 4 C¢)Clos B,

Lemma 4.3. Let n > 2. Then, for 1 <q,r<2,2/¢<(n+1)(1—1/r) and e > 0,
A, (C2F) < C20/a=1/2)k,

q,r

Proof. First we handle the case n > 3. It is needed to show the cases (q,r) =
(2,2),(1,2), (2, %), (1, 241). The case (2,2) is contained in (42). Then, the case

(1,2) follows from Holder’s inequality in ¢.
Now we consider the case (¢,7) = (2,%). Let R = C2* for some large C' > 0

and let é and () be the ones as in (52). Repeating the previous argument on
@, we consider wave tables ¢, ¥. From the trace lemma and (43) we see that
[ @x]k[¥]eoll 2oy (x (@) < €. Then by Holder’s inequality [|[dx]x[¥]e, |l Linr (x(@) <

C2%/2. From the above inequalities (including the estimates for (¢,7) = (2,2),(1,2))
we see that for 1 < ¢,r < 2,

[@x]k (Yoo I Lo (x @) < C2(1/a=1/2)k

Then by (52) we see A27L+1(C2k) < Ot by choosing sufficiently large N. And
the case (¢,r) = (1,2%7) can be similarly handed by using inequality (59) below.

When n = 2, it is enough to show the cases (¢,7) = (2, 3), (5,2). The case (¢, 7)
(2, %) is already obtained in the above reasoning. The estimate for (¢,r) = (%,
can be shown using (61) by the same argument.

0= |

Using Lemma 4.3, we get
AZL-H(R) S (Czkf(rz;lﬂ + 26’C0 + zCk/N)(l + CC)CIOgR.
Since (1 + Cc)Clo8 R < RC*¢ by choosing ¢ = ¢/C? and N = (Ce)~! we get (41) for
(%T) = (27 nT—H)

4.1.2. Proof (41) for (¢,r) = (1,51). By Hélder’s inequality and (46), we can get

i in—1 _ n—3
(53) 1([#5]5 — [Di+colirca) iz (x @y < C2C* NI R
and from (45) and Holder’s inequality it follows that

(54) 11515 = [Di+c0)ivco) Vs xiqy < 209°277°R.
Interpolation between these two estimates gives

(55) 05~ pscilyacnltl, aey < COTUDVB

Similarly from (49), (50) and Hélder’s inequality we have

—1

(56) gtk = [Pleo) i zaxy < O T R,
(57) i (le] — [‘T’]CO)HL,}L;E(X(Q)) < 20C0~R2R,

Interpolation gives
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(58) Ikl — [Pl na < 9CCagh/2
LiLE T (x(@)

Telescoping summation of (55) and using (58), we have

(59) ol < (14 CO)l[on]s[P]cy | nt1 + 200022,
Lir ” (Q) LiLy ™ (X(Q))

Hence following the same argument as before, we obtain

Ay ni(R) < (14 Ce) Ay nas (CR/27) + C2/2,

Using this iteratively for R > C2*, we see
Ay pei(R) < (14 Ce)7 B RA nit (C2°) 4 (1 4 C) o202

Finally using Lemma 4.3 and choosing suitable ¢, we get the required estimate (41)
for (¢,7) = (L, 2%5).

' n—1

4.1.3. Proof (41) for (q,r) = (1,2). By telescoping summation of (53) and using
(56) it follows that

n—3

n-1 _ n-3
(60) H¢wHL1L2 x(@) < Cll[®e[¥ ]CoHLng(X(Q))—i-QCCWk T R
It gives

Apo(R) < (14 Ce)Ay5(CR/2%) + 20002k T R="3°
Using this iteratively, we obtain
A15(R) < (14 Cc)9l8R A, 5(C2%) + (1 4 Cc)ClosiaCCk/2,

Hence using Lemma 4.3 and choosing suitable ¢ we get the required estimate.

When n = 2, the estimate (41) for (¢,7) = (2,3/2) is already obtained in the
proof of the case (¢,r) = (2, 2*). For the remaining (¢,7) = (4/3,2) observe

(61) levl, 4 < O @[ Fle | 4 1 9CCogh/A

L3 12(x(Q) LPL3(X(Q)
which follows from (46) and (49) using telescoping summation and Hélder’s inequal-
ity. Then the required estimates can be obtained repeating the previous argument.

Lemma 4.4 (Globalization lemma). Let Sy and Sy be compact surfaces with bound-
ary S; = {(&,0:(&)) : & € U;} and the induced Lebesque measures do;(§) = d&,
i = 1,2, which satisfy ||do;|| < M;, o;(B(z,p)) < Cp™~t for any z,p > 0 and

|doy(x, 1) < My(1+ || + |t])

2420
o

for some M; > 1 and 0 < o. Suppose that for some > qo,70 > 1 and some

0<exo,

2 2
(62) ITT fidoill oo 0@y < BM ][ 1 fill 2oy
=1 i=1
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for all cube Q) with side length R. Set

11 2% (1 o ) 11 2 (1 o )
@ q 2e+o\q@ 20+1)) r 1y 2e+o\rg 20+1))

Then, for all q, satisfying ¢1 < q

(63) HHdeUIHLqL” < OM'=5 (max(My, My)) =)0 H fill 22 dor)

=1

with some a > 0 depending on o.

This is a mixed norm generalization of Lemma 2.4 in [17]. We give a proof in
the Appendix. This lemma can be further strengthened in various ways by taking
account of particular situations.

Remark 4.5. The restriction > qo, 7o > 1 1s not a serious one because we can
choose any 0 < o' < o to extend the range. The range of q,r1 can be extended by in-

terpola@n\with the obvious estimates || [, fidoi|| Lo ree < (MyMy)'/? 2, | fill £2(dos)»
I H?:1 fidoi||peerr < H?Zl | fill L2(doy)- Hence if we have (62) for all € > 0, then for
any 6 > 0 we have

2420
o

I HfzdaZHLqu < C'max(M, M*~%)(max(M;, My)) H 1£ill 22 (o)

i=1
provided r/q < 1o/qo, q(1 — 1/1) > qo(1 — 1/r¢) and (1/r, l/q) is close enough to
(1/70,1/q0)-
4.2. Proof of Proposition 2.4. Taking conjugation it is enough to consider the

case (++).
For f with Fourier transform supported in {¢ : |¢'| < 100&,,1/2 < &,}, we define

e G (GT

where 6 is given by (17). Making the change of variables x,, — xz, — t, for the
proof of Proposition 2.4 it is enough to show that for 1 < ¢,r < 2 satisfying 1/q <

11y (2 —(n—1)(1—1
U fUngll g1, < €28 2F G =DU=00) £ g

provided f, g are supported in

@l = {(§1a§2a€//) : gn ~ 1, fn—l ~ 2_l7 |€N| < Q_Z},
Qk@; = 2k{(£1’§27€//) 2~ 1 G _2_17 |§”| < 2_1}7
respectively. Then by re-scaling (¢/,&,) — (27%¢',&,), (z,t) — (2, 2, 2%t), we

are reduced to showing that if the Fourier transforms of f, g are supported in Oy,
2+O), respectively, then for 1 < ¢,r < 2 satisfying 1/¢ < min(1, 24), 1/¢ < "T“(l —

v)
" 1_1.,
10Ul parr < C226249 £12lg]l2
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with C' independent of I. Since 2%0(27'n) converges to |n|*>/2 as | — oo, the conic
surface given as

(€,60) = (€60, £22%0(27'€' /£2))
is not much different from the cone (given by (£',&,) — (€,&,,€/€,)). In fact,
retracing the proof Proposition 4.1 in [15] one can see that it is valid for U; uniformly
in [. Then the crucial estimates (46) and (49) hold uniformly and so does the trace
lemma for U;. Hence we can repeat the argument used for the proof of Theorem 2.1
to obtain the required uniform estimates for U,.

4.3. Proof of Theorem 2.2. Note that the critical line 2/¢ = n(1 — 1/r) is the
border line for the bilinear restriction for the paraboloid in R™. So, from the ex-
pression (18) one might be tempted to apply directly the bilinear estimates for the
paraboloid freezing &, variables but it does not seem to work because we still have
to integrate in x,,. We again make use of the induction on scale argument and the
basic L? estimates used to prove the sharp bilinear restriction for the paraboloid

((23) in [16]).
We first prove Theorem 2.2 for the case n > 4 and later the cases n = 2,n = 3.

Let Qr C R™ be the cube of side length R centered at the origin and I =
[—R/2,R/2]. Let Q' C R"! be the cube centered at the origin with side length R
so that Qr = Q' X Ig. As before it is enough to show that for 2/¢ < n(1 — 1/r)
and € > 0,

(64) | fidos fodoall g, | @pry < Cal R fulla] ol

The R¢ can be removed by using Lemma 4.4.

By Cauchy-Schwarz’s inequality and Plancherel’s theorem, Hmﬂ reery <
C|| f1ll2]| f2||2- Hence, to prove (64) it is enough to show it for the case (¢,r) =
(I,n/(n — 2)). Then, by interpolation with the case (co0,1) we get (64) for 2/q =
n(1—1/r). Finally, since the Fourier transform of (fido; fados)(+,t) is supported in

a slab of thickness a, we get all estimate (19) for 2/¢ < n(1 — 1/r) by Bernstein’s
inequality and interpolation.

Let us set
By (R) = f{C': || Fdogdol syiamyrr,  apes < Ol lallglls}
We will show
(65) By, 2 (R) < C(RBy,_» (R"°) + a*"R?).

From Bernstein’s inequality it is easy to see By, (1) < Ca'~'/", 1 < ¢,7 < co. Hence
iterating estimate (65) with € = 6%, we get for any ¢ > 0

By, »_(R) < Ca*/"R®.

This proves the required estimate.
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Proof of (65). For i =1,2 and p € [b,b+ a], we denote by S? the surface given by

¢ ={(n.7) €ER" xR :7 = ph(n/p), (n,p) € Si}.
Also let do?(n,p) = dn be the induced Lebesgue measure on S and let f7(n) =
f(n,p). Then we may write
b+a

(66) Fidoi(et)= | Frdoy(a 1) ds.
b

For fixed s, we decompose % (in (66)) into wave packets on the R-cube Qg =
(Q)’r xIgr. They have one to one correspondence with a collection of tubes of dimension
(RY%)"=1 x R. Hence, we can write for (2/,t) € Q'

fsda ' t) Z fdea ' t)
TET?
where 7°, 7%, are the collections of tubes associated to the packet decomposition

for the extension operators %, %, respectively. Then, for each s € [b,b + a]
and any subset A C 7;° (see Lemma 4.1 in [16]),

(67) O AV < Cl N,
TEA
(68) 1Y Fedos( )l < CO DY
TEA TEA

Let {B} be a collection of R~ cubes which partition Q. Then, there are
relations ~f, ~§ between B and 7 € 7,” such that for any s, t € [b,b+a], 0 < < 1,

(69) Z 1) Fils < ORI,

T~ B
(70) > fi 03 fidob sy < CR™=2/740) oo | £,
TA$B or T'otY B

with ¢ independent of §. This is a slight modification of the inequality (23) in [16]. It
is not hard to see that the constants C' in (67), (68), (69) and (70) are independent
of s,t because the surfaces S5, Si are uniformly elliptic in s,¢ € [b,b+ a] and the
separation condition between S, S% is also satisfied uniformly.

For each B, we break

— b+a — ) b+a e .
Fdoat)= [ Frdoi s [0S Fdoi eds
b b

T~iB TEIB

For simplicity let us set F (z',t) = f7 doi(z',t) and break

m(m):// (Y S ELELE, ) dsds

r~SBand 7/~5 B T4SB or 48 B
By triangle inequality
||f1d01f2d02||L‘1 (Ir)L, , (QR*R) < Z ||f1d01f2d02HLq LY, . (B'xR):

B=B'x1



32 SANGHYUK LEE AND ANA VARGAS

Using the above decomposition

[frdos fadoallgrayer, | (@pxry < T+ 11

where

H // Z [Ff,TFQS,,T'](95/> t)ei(sﬁ/)xndeSI”Lg(I)L;,M(B/xR)’

B=B'x1I T~5B and T’NS B
s s’ / i(s+s")zn IH
H // E [FY L Fs ] (2 e dsds LI, (B/xR)’
B=B’xI OLSB or 7_/7(/5 o

For I, it is easy to see that

[ X Ol we

7~{B and T/Ns B

q7’r
T~{B T~5B

Then, using Cauchy—Schwarz’s inequality and (69) we see that
I < CRByy(R7)| fillz]| foll2-
Since the number of B is < R, for (65) it is enough to show that for B = B’ x [
i " 2/n pcd
() [ X Ol e < G Rl
795 B or 7’765 o
Using (66) we apply Plancherel’s theorem and Minkowski’s inequality to see

b+a b+a
(72) ||/ / [FIST 27”] Hots) xndeS HL2 B)L2

T3 B or 7/763

b+a
< C/ ||X[b,b+a](3, —s)( Z Ff,TFzs,T_S)HLi, t(B)Lg,dS
b 9

795 B or T’%SLSB

b+a b+a ,
< OR-nD/1s / Hfsz(/b 15~ |Bds") s

< CR™ 20 2| £ g]lo.

For the second inequality we used (70) taking 2/, t-integration first. From (72) and
Holder’s inequality in ¢, we get

|| // Z (')HL%(I)Li/‘xn(B'XR) < Cal/QR_(n_4)/4+65HfH2||gH2'
T#{B or 7’765
From Plancherel, (67) and (68) it is easy to see that

[ Ol e < CR=1fRIA]

T{B or ‘r’f;éq
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Interpolation between these two estimates gives (71). This completes the proof for
the case n > 4. O

Finally, we prove the cases n = 2,3. When n = 2, as before it is enough to show

Hm\]g < Ca'?|| f1||2]| f2||2- But this is easy to show because ||do; * dos||oe <
Ca.

When n = 3, we need to show
Bijsa(R) < C(RByjss(R'™) + a'/2R).

This can be obtained by using the estimate

[ Oluswe, . w < R flalgl

TH{B or 7"745/3
which follows from (72) by Hélder’s inequality.
4.4. Proof of Proposition 2.5. For [ > 1, we set

Uf(x,t) = /ei(ﬁg”"g”t&"?le(?lé//gn))]?(f)df.

By conjugation, change of variable z, — =z, —t and Plancherel’s theorem, it is
enough to show that for ¢, as in Proposition 2.5,

2_(n— -1 —1/r—e
Vo filofollpgr, < C2G V=N £yl foll2
if f1, fo are supported in the sets S!, Si, respectively, where
St={:b< & <b+a,[2'¢ /6 + (—1)e,| <1/2}, i=1,2.

Then by rescaling (¢,&,) — (271¢,&,),  (x,t) — (2'2', 2, 2%'t), we are reduced to
showing that

VAU ol oy < Ca' =[] fullall ol

if f1, fo are supported in the sets Sy, So, respectively. However 220(27!.) is uniformly
elliptic in [. So, it is not hard to see the estimates (67), (68), (69) and (70) are valid
with C', independent of . Then retracing the proof of Theorem 2.2, one can obtain
the required estimate.

5. THE ADDITIONAL NECESSARY CONDITIONS (13)-(15)

Here we derive the additional necessary conditions. Unlike [3] where the neces-
sary conditions obtained considering pairs of waves supported in various sets, the
additional conditions (13) and (15) are obtained by considering collections of waves,
which make it possible to capture additional concentration.

We also discuss briefly the necessary conditions for (16) with the standard null
forms @ = Qo ;, or Q;;. Taking account of the additional multiplier weights, the
necessity of the conditions (3)—(12) for (16) can be seen easily from the examples
given in [3] with minor modifications if needed. We make remarks only about the
new necessary conditions (13), (14) and (15).
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In this section, the symbol ~ denotes the spatial Fourier transform. Let ¢t
stand for a wave which is Fourier supported in the forward light cone.

5.1. Necessity of (13). Let ¢)(= ™) be the wave defined from LZJ/(H) (€) which is
a smooth Afunction supported in a small ball centered at e; € R™. To construct ¢y,
consider ¢(§) a smooth bump function, supported on a small ball centered at es.

Write
.I‘ t /¢ z xn+t\17|

Let R > 1 and define a wave ¢, by

2k /10

(z,t) = 2 Z wnF (28, 25(t — R27%m))

where w,, = +1. Since |F(z,t)| > ¢ > 0 for |(z,t)| < 1/10 and |F(z,t)| < Ct~? for
|z] < 1/10 and [t| > 10, we see that if |#| < 27%/10 and t € U,,,(27*Rm,27*Rm +
27%/10), then |¢g(x,t)| ~ 2" provided R is sufficiently large. Therefore,

(73) orthl| pagy ~ 27 F7.

Note that M(f) = Z2k110 wna(Q_kf)e_iQ_kRm‘ﬂ. Since Dy, Dy ~ 2 and D_ ~ 1

m=1

on the Fourier support of ¢,
Qk(ﬁo+ﬁ+)||¢k¢HLm < O||D€°D§+D€’(¢k¢)HL§L;.

This can be shown by the same argument in proof of Lemma 2.6. Hence if (1) is
true, using (2) we have

Can—tap(1_1
o]l oy < €252 402D 16,(0) |12 46(0) |-

Note that (73) and the above does not depend on a particular choice of w,,. Thus,
by Khintchin’s inequality

2kn7k% < C2k(67—a2—é+n(1—%)) || ( Z |$(27k.>67i2—k10m|-\ |2)1/2l|2

k(n+1)
2

< C2k(ﬁ,—a2—§+n(1—%))2
This gives (13).

The necessity of (13) for (16). To obtain the condition (13), by symmetry it is
enough to consider (g1, @12. Using the same ¢, and v as above, it is enough to
observe that

—1/2 _—1/2 _
IDGe D 2D 2Q0 1 (1, W) || gy 2 2MAF YDk gy a
— 1/2 _—1/2 —
IDG DD 72Qu o (fn, )| oy 2 28OV | o

This is easy to see because Dy, Dy ~ 2% D_ ~ 1, Qo1 ~ 2F and Q12 ~ 2* on the
Fourier supports of ¢, 1. Then the remaining details are straightforward.
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—

5.2. Necessity of (14). Let ¢ (= 1™) be the wave defined by ¥(0)(§) being the
characteristic function of the set

1
F — . _ —k .

This set has measure ~ 2% and is obtained by scaling the set called F' in Example
14.14 in [3]. Then
[%(0) |2 ~ 272
and [¢(z,t)| > 277 if |z, —t| < 1, |2/] S 1and |t| < 2% Here A < B means A < CB
for some constant C' > 0. -
Let ¢r(= ¢;) be a wave defined by ¢5(0) being the characteristic function of
the set {& : & ~ —2F €] < 1}. Then ||¢r(0)|la ~ 2%/2 and |pp(z,t)] 2 28 if

|z, —t] S 27F ]2/] S 1 and [t| < 2% because | €] + &, < 27% on the support of ¢ (0).
Note that ¢t is Fourier supported in the set {(£,7) : |¢|—7 ~ 1,|¢'| £ 1,&, ~ 28}
Hence, by a suitable affine transformation it is not hard to see

20| g gy < CDG DI DT (90) s
Hence if (1) holds, then by (2)
(74) 6wt llagry < C2 7277 0D g (0) ][ (0)
On the other hand |[¢p¢)| Lo, > C2"G=) from our choice of Y, ¢p. Hence we get
(14).

The necessity of (14) for (16). As before it is enough to consider (g1, Q1,,. Using
the same ¢, and 1, it suffices to observe that

—1/2 _—1/2 —
| D5 DI D2 Qo (00, a2 2T D2 04
“DgoflD57_++1/2D€,—1/2Q1’n(¢k7 w>||L§L§ Z Qk(ﬁo+ﬁ+fl/2)2k”Qﬁk,(b”LgL;.

This is easy to see because Dy, D ~ 28 D_ ~ 1, Qo 1] ~ 2% and |Q1,,| ~ 2* on the
Fourier supports of ¢y, 1.

5.3. Necessity of (15). For m > 0, let B, B’ be balls in R" given by
B = B(e,,2™™), B =DB(—e,+2" e, 1,27™)

and let ¢p(= ¢3%) and Y (= ¥},) be waves with m, ;(\0) supported in B, B’,
respectively. Since D_, D, ~ 1 and Dy ~ 27™ on the Fourier support of ¢pip/,
270 (¢ptbp)|lrary < CDG DY DX (St )|l oy

Hence, from (15) it is enough to show that there are ¢p and 1 such that

l¢ppllpgry = C2mE =216 (0) o[y (0)]|2-

Let 7 be a wave so that 77(0) is a smooth function supported on B. Then |n(x,t)| ~
27 if ||, |w, + t] < 2™ and |x, — t| < 2% For R > 1 we set

bp = Z n(z', x, — RE2™ ).

|k <2m
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And let ¢ be the wave with ¢ (0) = . Then [ (x, 1) ~ 27 if |2'], |2 —t| <
2™ and |z, +t| < 22™.
By routine computation it is easy to see that

650 ligr, 2 2702020, g0 2702

if R is large enough. Obviously |[1p/(0)||2 ~ 272, It gives the required lower
bound.

The necessity of (15) for (16). By symmetry it is enough to consider Qg , Qn—1,-
Using ¢p, ¥p in the above, we need only to observe that

—1/2 _—1/2 _
1Dg DI 2D 2Q (b )l rory = 27 | dsvom | s
1D D2 D20 (b )l nary 2 27 dpp || Loy -

It is easy to see since D_, D, ~ 1, Dy ~ 2™ @, ~ 1 and Qy—1, ~ 27 on the
Fourier supports of ¢, ¥p.

APPENDIX: PROOF OF GLOBALIZATION LEMMA
Set F' to be any subset of

E:{(x,t): >)\}.

Since 0;(B(z,p)) < Cp™! for any z,p > 0, following the argument [17] (see the
proof of Lemma 2.4 in that paper), we have the estimate

2 2
@) e [T Fdollr < €| max(ati, M)y 5o FIE 4 o] TSy

i=1 =1

2
R[] Fidoi(z.t)

i=1

for some C, ¢ > 0, where (5 is any constant satisfying

IxrgiG2)lzr < R Collgnl|z2]g2]] 22

for all g1, g» supported in O(R~!)-neighborhoods of S;, Sy, respectively. Here R is
assumed to be bigger than or equal to 1.

First we try to estimate Cy making use of (62). Let ¢ be a smooth function with
its fourier transform supported in B(0, 1) satisfying Y, zn+1 ¢*(- — k) = 1. Then we
set ¢, = ¢(% — k) for k € Z"t'. Since ¢, is essentially supported in a ball of radius
R, by a simple argument it is easy to see that (62) implies

1630132/ Lo ro < CM R dri |2l dr a2

provided g, g are supported in O(R™!)-neighborhoods of S;, Ss, respectively.
Hence by Schwartz inequality and Plancherel’s theorem

1332l zoorro <D 167GiG ] 0Lre < CM R |gu]lalgall2-
k
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Meanwhile from Holder’s inequality ||[xrg1z|lr < || xFl|

i 19192/ oo Lo Hence,
(76) Co < OME(IxFl a1t -
For each t, let us set E; = {x : (x,t) € F'} and for a fixed B > 0,
EB)= |J {@t:zeE}, T(B)={t:B<|E|<2B}
#:B<|E|<2B

We claim that for some ¢ > 0,

2
__2e
(77) X e |l < CAT (max(My, My)) M 757 T I1fill 2(don) -

i=1
Proof of (77). We may assume || f1||.2(doy) = || fol|22(dos) = 1. Let usset A = |T'(B)|.
Then obviously

AB ~|E(B)|, |xem o ~ BT AY
for 1 < p,r < oco. From (75) and (76)

2
(78) HXE(B) H ,@HLl S C |:<InaX(]\4'17 Mg))cRig(AB)% + MREBl/TéAl/q() .

=1
If (max(My, M) (AB)3+2 > MBY7 AV we get

2c

2
X2 H%HD < (max(M,, My))z5s M 25z AV0' gi/n’
i=1
by choosing R > 1 satisfying (max (M, Mg))CR_%(AB)% = MR<BY"0 AY%. Note
that A\AB ~ ME(B)| < ||XE(B)m||L1. So (77) follows from the above
because || xg(s)||papn ~ AY0BY™M.
If (max(My, My))(AB)3+2 < MBY"0AY4%  then we take R = 1 in (78) to get

AV pl/ro < oML

— 1
On the other hand, we have Stein-Tomas estimate || f; doi|| 2022 < CM7 || fill £2(dor)

for i = 1,2 (see [13], chapter VIII, section 4 and also [12]). Hence, by Chebychev’s
and Cauchy—Schwarz’s inequalities,

A75 B7T < OAM(max(M;, M,)) 7% .

Therefore,
AVn BUT — (AMw0 gl/royi=585 ( Az Bz ) 5eis < OA~ (max( My, M) M %5
(Here we used the fact that g, go < 2+ 2/0.) This proves (77). O

Assuming || fi||z2(s,) = 1 for [ = 1,2, we prove for ¢ > ¢; the weak type inequality
(79) ||XE||L‘1LT1 < C/\fl(maX<M1’ M2))aﬁ’(l*(h/Q)(l*l/m)leﬁ

for some a > 0. Since fi, fo € L2, H?Zl |j70-l;l| < (M, M>)"?, and we may assume
A < (M My)'2,
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For B = 2%, define E(2%) as before and decompose E = |J, E(2F). Set Ay, =
|T'(2%)]. For each fixed ¢, using the conservation of energy we have

2 2
(80) {a: R[] fidoi(z,t) > N} < XY T ] fidoi(-, )l pray < CATY
i=1 i=1

Therefore, we only need to consider the case 28 < C/\. Then,

HXE”%ELQ — / |Et|q/” dt = Z qu/nAk < Z 9k(g—aq1)/m S%p AkaQI/T’l‘
k: 2k<C/A E: 28<C/A

We use (77) to obtain

2cqqe

HXEHngLn < C’)\_q)\_(q_ql)(l/”_l)(max(Ml, My)) 2o MA-a)a

T

Since ¢ > qi, r1 > 1 and A < (M M,)"/? < max(M,, M), we get (79).

Assuming || fi|lz20) = || f2]|2(s2) = 1, We now obtain the strong type estimate.
Since [[2, | fido| < (MyMy)'/? < max(M,, My), we can write
2

H | fudai| < Z 27X po
=1 k

:27kS(M1M2)1/2

where F® = {(z,t) : [, \fidoi(z,t)| ~ 27%}. Fix p > ¢; and choose ¢ satisfying
p>q > q. Then,

2 o p/r1
7ol = [| X 2iE®] o
=1

k:27k§(M1M2)1/2
For 3 > 0, we bound this by

2
1 fidoill o < Cmax(My, My)” >, 22| (F W), P .

i=1 k:2—k <(My Ma)1/2

(Actually, if p < r1, we can take 3 = 0.) Since |(F'*®)),| < C2* for any ¢ by (80),

2
IT] fidoillto e < Cmax(My, Mp)® >~ 2o kwgkeimmalm |y |9,

i=1 k:2—k<(MyMo)t/2
By (79), the right hand side of the above is bounded by

C max(M;, M)’ Y 2Hmaa-m
k:2—k < (M Mo)t/2

(max (M, My))oeta-a)(=1/m) py(=555)a
Thus, choosing 5 < (p — ¢q)(1 — 1/r1), we get

2
| T Tl < Clmax(My, My))to=o(=1/m) p =550
i=1

This proves (63) for all ¢ > ¢;.
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