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Abstract. We prove an equivalence between certain null form estimates for the wave

equation in Rn+1 and the mixed norm bilinear restriction estimates for the paraboloid

in Rn. By constructing a counterexample and improving the positive results, we also fill

the gap between the necessary and sufficient conditions when n = 3.

1. Introduction

Let φ, ψ be solutions of the homogeneous wave equation in Rn+1;

¤φ = 0, ¤ψ = 0; ¤ = ∆x − ∂2
t , x ∈ Rn, t ∈ R.

We will mainly be concerned with null form estimates, which take the form

‖Dβ0
0 D

β+
+ D

β−
− (φψ)‖Lq

t Lr
x
≤ C(‖φ(0)‖Ḣα1 + ‖∂tφ(0)‖Ḣα1−1)(1.1)

× (‖ψ(0)‖Ḣα2 + ‖∂tψ(0)‖Ḣα2−1).

Here Ḣα is the homogeneous L2-Sobolev space with α derivatives, D0, D+, D− denote the
Fourier multiplier operators defined by

D̂0f(ξ, τ) = |ξ|f̂(ξ, τ),

D̂+f(ξ, τ) = (|ξ|+ |τ |)f̂(ξ, τ),

D̂−f(ξ, τ) = ||ξ| − |τ ||f̂(ξ, τ),

and ξ, τ are the Fourier variables corresponding to x, t respectively.
This can be thought of as a bilinear generalization of the well known Strichartz’s esti-

mates (see [4]). The additional multiplier weights Dβ0
0 D

β+
+ D

β−
− compensate the interaction

between two waves making it possible to get further estimates which are not allowed in
the linear setting.

These estimates were first considered by Beals [1], and by Klainerman and Machedon
[5, 6, 7], who used them in their study of nonlinear wave equations. This work was
furthered by Klainerman and Selberg [8], Klainerman and Tataru [9], and Foschi and
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Klainerman [3] who determined the whole range of α1, α2, β0, β+, β− for which (1.1) holds
when q = r = 2.

By considering the various interactions between two waves it can be shown that for
(1.1) to hold, the following conditions are necessary:

• Scaling invariance:

(1.2) β0 + β+ + β− = α1 + α2 +
1
q
− n(1− 1

r
).

• Geometry of the cones:

(1.3)
1
q
≤ n + 1

2
(1− 1

r
),

1
q
≤ n + 1

4
.

• Concentration near null directions:

(1.4) β− ≥ 1
q
− n− 1

2
(1− 1

r
).

• Low frequency interactions (++):

β0 ≥ 1
q
− n(1− 1

r
),(1.5)

β0 ≥ 2
q
− (n + 1)(1− 1

r
),(1.6)

β0 ≥ 2
q
− n(1− 1

r
)− 1

2
.(1.7)

• Low frequency interactions (+−):

α1 + α2 ≥ 1
q
,(1.8)

α1 + α2 ≥ 3
q
− n(1− 1

r
).(1.9)

• Interaction between high and low frequency:

αi ≤ β− +
n

2
,(1.10)

αi ≤ β− +
n

2
− 1

q
+

n− 1
2

(
1
2
− 1

r
),(1.11)

αi ≤ β− +
n

2
− 1

q
+ n(

1
2
− 1

r
),(1.12)

αi ≤ β− +
n

2
− 1

q
+ n(

1
2
− 1

r
) + (

1
2
− 1

q
),(1.13)

αi ≤ β− +
n

2
− 1

q
+

1
2
,(1.14)

αi ≤ β− +
n

2
− 1

q
+ n(

1
2
− 1

r
) +

1
r
− 1

q
.(1.15)

These were proven in [3], except for (1.7), (1.14) and (1.15) that were subsequently proven
in [11].

The first estimates for q = r < 2 are due to Bourgain [2], who considered bilinear
estimates with separated frequency supports, but without the multiplier weights. Tao,
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Vargas and Vega [16, 17] improved these results, and the sharp Lp-estimates were obtained
by Wolff [19] and Tao [12] (also see [10] for some generalizations).

Estimates for q = r < 2 that included the multiplier weights were proven by Tao and
Vargas [16], and some sharp Lp-estimates were subsequently obtained by Tao [12]. This
was extended to hyperbolic equations with rough coefficients by Tataru [18].

Recently, two of the authors [11] obtained the sharp null form estimates up to endpoints
when n ≥ 4. In lower dimensions, gaps remain between the necessary and sufficient
conditions; in particular when

4
n + 1

≤ q ≤ 4
n

and 2 < r ≤ ∞.

This is related to the low frequency interactions (+−); where φ and ψ are frequency
supported in {(ξ, +|ξ|) : |ξ| ∼ 1} and {(ξ,−|ξ|) : |ξ| ∼ 1}, respectively.

We will prove the following extra necessary conditions:

• Low frequency interactions (+−):

α1 + α2 ≥ 3
q

+
1
r
− 2, n = 3(1.16)

α1 + α2 ≥ 3
q

+
1
2r
− 5

4
, n = 2.(1.17)

We will also fill the gap when n = 3, yielding estimates which are sharp up to endpoints.

Theorem 1.1. Let n = 3. If (1.2) holds and (1.3)-(1.16) are satisfied with strict inequal-
ities, then (1.1) holds for all 1 < r, q ≤ ∞.

Mixed-norm bilinear restriction estimates for the paraboloid in Rn (which corresponds
to the Schrödinger equation in Rn−1 × R) were also obtained in [11] that are sharp up
to endpoints when n ≥ 4. We will make reductions to show that when q, r ≥ r′, these
estimates are essentially equivalent to certain null form estimates. Thus, we will see that
the mixed-norm estimates for the paraboloid in R3 are also sharp up to endpoints. We
note that in the remaining unsettled cases, when n = 2, the condition q, r ≥ r′ is satisfied.

2. The necessary conditions (1.16) and (1.17)

Let c be a small positive constant to be chosen at the end. In order to prove the necessity
of (1.16), we take φ̂(0) to be a nonzero smooth function adapted to the set

{
ξ ∈ R3 : 1 ≤ ξ3 ≤ 1 + cε,

∣∣∣∣
ξ2

ξ3
− ε

∣∣∣∣ ≤ ε2,

∣∣∣∣
ξ1

ξ3

∣∣∣∣ ≤ ε2
}

,

so that ‖φ̂(0)‖2
2 ≤ cε5. One can also calculate that

|φ(x, t)| = 1
(2π)n

∣∣∣∣
∫

ei(xξ+t|ξ|)φ̂(0)(ξ) dξ

∣∣∣∣ ≥ cε5

in the parallelepiped

R =
{

(x, t) : |x1| ≤ ε−2, |x2 + εt| ≤ ε−2,

∣∣∣∣x3 +
(

1− ε2

2

)
t

∣∣∣∣ ≤ ε−1, |t| ≤ ε−4

}
.
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To see this, we note that by Taylor’s expansion,

|ξ| = ξ3

√
1 +

(
ξ1

ξ3

)2

+
(

ξ2

ξ3
− ε + ε

)2

= ξ3

√
1 + 2ε

(
ξ2

ξ3
− ε

)
+

(
ξ1

ξ3

)2

+
(

ξ2

ξ3
− ε

)2

+ ε2

= ξ3

(
1− ε2

2

)
+ εξ2 + 0(ε2).

On the other hand, if we take ψ̂0(0) to be a nonzero smooth function adapted to the set
{

ξ ∈ R3 : 1− (1 + c)ε ≤ −ξ3 ≤ 1− ε,

∣∣∣∣
ξ2

ξ3

∣∣∣∣ ≤ ε3/2,

∣∣∣∣
ξ1

ξ3

∣∣∣∣ ≤ ε3/2

}
,

then ‖ψ0(0)‖2
2 ≤ cε4, and by a similar calculation we have

|ψ0(x, t)| = 1
(2π)n

∣∣∣∣
∫

ei(xξ−t|ξ|)ψ̂(0)(ξ) dξ

∣∣∣∣ ≥ cε4

in the parallelepiped

R0 =
{

(x, t) : |x1| ≤ ε−3/2, |x2| ≤ ε−3/2,

∣∣∣∣x3 +
(

1− ε2

2

)
t

∣∣∣∣ ≤ ε−1, |t| ≤ ε−3

}
.

Note that R0 is contained in R, and the angle between the two is approximately ε.
Now, for all k = 1, . . . , bε−1c we define ψk and ψ by

ψk(x, t) = ψ0

(
x1, x2 − kε−2, x3 − kε−3

(
1− ε2

2

)
, t + kε−3

)
,

ψ(x, t) =
bε−1c∑

k=0

ωkψk(x, t),

where ωk are random variables taking values in {−1, 1} with equal probability. Indepen-
dent of the choice of ωk, we have that |ψk(x, t)| ≥ cε4 on the set Rk given by
{

(x, t) : |x1| ≤ ε−3/2, |x2 − kε−2| ≤ ε−3/2,

∣∣∣∣x3 +
(

1− ε2

2

)
t

∣∣∣∣ ≤ ε−1, |t + kε−3| ≤ ε−3

}
.

Integrating by parts, one can calculate that

|ψk(x, t)| ≤ CN ε4(1 + ε3/2|x2 − kε−2|)−N ,

so that
∑

k 6=k′ |ψk(x, t)| ≤ CεN on Rk′ . Thus, |ψ(x, t)| ≥ cε4/2 in the union of the
parallelepipeds Rk which are contained in the parallelepiped R.

In order to calculate D0, D+, and D−, we consider ξ, ξ′ in the frequency supports of φ

and ψ respectively. We see that

ξ1 + ξ′1 = O(ε3/2), ξ2 + ξ′2 = ε + O(ε3/2), ξ3 + ξ′3 = ε + O(cε).
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From here it is easy to see that D0, D+ ∼ ε. To calculate D−, we note that |ξ + ξ′| =
21/2ε + O(cε), and that

|τ + τ ′| = ∣∣|ξ| − |ξ′|∣∣
=

∣∣|ξ3| − |ξ′3|
∣∣ + O(cε) ≤ ε + O(cε).

Thus, provided c is small enough, D− ∼ ε.
Now, one can calculate that

‖Dβ0
0 D

β+
+ D

β−
− (ψφ)‖LqLr(

⋃
Rj) ≥ Cε9ε−4/rε−4/qεβ0+β++β− ,

so that by Khintchin’s inequality and (1.1), we have

ε9ε−4/rε−4/qεβ0+β++β− ≤ Cε4

for all ε > 0. This yields
β0 + β+ + β− ≥ 4/q + 4/r − 5,

which combined with the scaling relation (1.2), gives the condition (1.16).
To prove the condition (1.17), we simply kill the x1 variable and repeat the calculation.

3. Null form estimates imply bilinear restriction for the paraboloid

By an affine change of variables, we will consider the phase

|ξ| − ξn = ξn(
√

1 + |ξ′/ξn|2 − 1), ξ′ = (ξ1, ξ2, . . . , ξn−1).

As was pointed out in [11, 12], the null form estimates are closely related to the bilinear
adjoint restriction estimates to the paraboloid. Indeed, after scaling we will consider

θa(ξ′) = a−2(
√

1 + |aξ′|2 − 1),

where 0 < a ¿ 1, so that by Taylor’s expansion

(3.1) θa(ξ′) =
|ξ′|2
2

+ O(a2).

Define the extension operator f̂dσ by

f̂dσ(x, t) =
∫ 1+a

1

∫

[−1,1]n−1

ei(x′·ξ′+xnξn+tξnθa(ξ′/ξn))f(ξ′, ξn)dξ′dξn.

and the angular support of f by

Θ(f) =
{
ξ′/ξn : (ξ′, ξn) ∈ supp f ∩ (

[−1, 1]n−1 × [1, 1 + a]
)}

.

In the case of low frequency interaction (+−), the estimate (1.1) for given q, r, α1, α2, β0,

β+, β− is essentially equivalent to

(3.2) ‖
2∏

j=1

f̂jdσ‖Lq
t Lr

x
≤ Ca

1− 1
r
+ 1

q
−α1−α2

2∏

j=1

‖fj‖2

whenever dist (Θ(f1),Θ(f2)) ∼ 1. One half of this equivalence is presented in the following
proposition. Later we will see that the converse is also essentially true.
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Proposition 3.1. If (1.1) holds for some q, r, α1, α2, β0, β+, β−, then (3.2) holds for
q, r, α1, α2 whenever dist (Θ(f1), Θ(f2)) ∼ 1.

Proof. If we set F̂1(ξ′, ξn) = f1(ξ′/a, ξn) and F̂2(ξ′, ξn) = f2(−ξ′/a,−ξn), then by dilation
and rotation we can suppose that supp F̂1 and supp F̂2 are respectively contained in

{(ξ′, ξn) ∈ Rn : 1 ≤ ξn ≤ (1 + a), |ξ′/ξn − ae′n−1| ≤ a/2},
{(ξ′, ξn) ∈ Rn : −(1 + a) ≤ ξn ≤ −1, |ξ′/ξn + ae′n−1| ≤ a/2};

here e′n−1 = (0, . . . , 0, 1) ∈ Rn−1. Let φ, ψ be frequency supported in the forward, back-
ward light cones with initial data F1, F2, respectively. The frequency support of φψ is
contained in

{(ξ′, ξn, τ) ∈ Rn+1 : |ξn| ≤ a, |ξ′ − 2ae′n−1| ≤ 3a/2, |τ | ≤ 4a},
so it is easy to see that the multiplier weight Dβ0

0 D
β+−β−
+ ∼ aβ0+β+−β− . One can also

calculate that |¤|β− ≡ D
β−
+ D

β−
− ∼ a2β− and

aβ0+β+−β−a2β−‖φψ‖Lq
xLr

t
≤ C‖Dβ0

0 D
β+
+ D

β−
− (φψ)‖Lq

xLr
t
.

(This is made rigorous by rescaling and Fourier series expansion; see [11, Lemma 2.6]).
Now, assuming (1.1), by Plancherel’s theorem, we have

‖φψ‖Lq
xLr

t
≤ Ca−β0−β+−β−+n−1‖f1‖2‖f2‖2.

By the change of variables xn → xn − t, x′ → a−1x′ and t → a−2t and ξ′ → aξ′, we see
that

‖φψ‖Lq
xLr

t
= a−2/q+(n−1)(2−1/r)‖

2∏

j=1

f̂jdσ‖Lq
xLr

t
.

Combining this with the previous estimate, and using the condition (1.2) which is necessary
for (1.1) to hold, we obtain (3.2). ¤

We define the extension operator E by

Eg(x′, t) =
∫

[−1,1]n−1

ei(x′ξ′+t|ξ′|2/2))g(ξ′)dξ′,

and note that when supp ĝ ⊂ [−1, 1]n−1,

e−i t
2
∆g(x′) = (2π)−nE ĝ(x′, t),

where e−it∆ is the Schrödinger operator. This is also the adjoint restriction operator to the
paraboloid, which is why we often refer to the following estimates as restriction estimates.

Proposition 3.2. Suppose that

‖
2∏

j=1

f̂jdσ‖Lq
t Lr

x
≤ Ca1− 1

r

2∏

j=1

‖fj‖2
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holds whenever dist (Θ(f1),Θ(f2)) ∼ 1 . Then

‖
2∏

j=1

Egj‖Lq
t Lr

x′
≤ C

2∏

j=1

‖gj‖2

holds whenever dist (supp g1, supp g2) ∼ 1.

Proof. By Fatou’s lemma and (3.1),

‖
2∏

j=1

Egj‖Lq
t Lr

x′
≤ lim inf

a→0
a−2‖

2∏

j=1

f̂jdσ(·, 0, ·)‖Lq
t Lr

x′
,

where fj(ξ′, ξn) = χ[1,1+a](ξn)gj(ξ′). Note that there is no dependence on xn. By integrat-
ing,

(3.3) a−
1
r ‖

2∏

j=1

Egj‖Lq
t Lr

x′
≤ Ca−2‖

2∏

j=1

f̂jdσ(·, 0, ·)‖Lq
t (R, Lr

x(Rn−1×[−a−1,a−1]).

Now, as a function of ξn, the phase is almost stationary when xn ∈ [−a−1, a−1], so that,
essentially

|f̂jdσ(·, 0, ·)| ≤ C|f̂jdσ(·, xn, ·)|.
To make this inequality rigorous, write

f̂jdσ(x′, 0, t) = eixn

∫ 1+a

1
e−ixn(ξn−1)

∫

[−1,1]n−1

ei(x′·ξ′+xnξn+tξnθa(ξ′/ξn)) fj(ξ′, ξn) dξ′dξ,

and using Taylor’s expansion of the exponential this is equal to

eixn

∞∑

k=0

ik

k!

∫ 1+a

1
(xn(ξn − 1))k

∫

[−1,1]n−1

ei(x′·ξ′+xnξn+tξnθa(ξ′/ξn)) fj(ξ′, ξn) dξ′dξn.

Defining fk
j (ξ′, ξn) = (ξn − 1)kfj(ξ′, ξn), we may write

f̂jdσ(x′, 0, t) = eixn

∞∑

k=0

ik

k!
xk

n f̂k
j dσ(x′, xn, t)

for all xn. Substituting into (3.3), we see that

‖
2∏

j=1

Egj‖Lq
t Lr

x′
≤ Ca−2+ 1

r

∞∑

k1=0

∞∑

k2=0

1
k1!

1
k2!
‖

2∏

j=1

x
kj
n f̂

kj

j dσ‖Lq
t (R, Lr

x(Rn−1×[−a−1,a−1])

≤ Ca−2+ 1
r

∞∑

k1=0

∞∑

k2=0

1
k1!

1
k2!

a−k1−k2‖
2∏

j=1

f̂
kj

j dσ‖Lq
t (R, Lr

x(Rn−1×[−a−1,a−1]),

and using the hypothesis, we obtain

‖
2∏

j=1

Egj‖Lq
t Lr

x′
≤ Ca−1

∞∑

k1=0

∞∑

k2=0

1
k1!

1
k2!

a−k1−k2

2∏

j=1

‖fkj

j ‖L2(Rn).
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Finally, since ‖fk
j ‖L2(Rn) ≤ ak‖fj‖L2(Rn), we conclude that

‖
2∏

j=1

Egj‖Lq
t Lr

x′
≤ Ca−1

∞∑

k1=0

∞∑

k2=0

1
k1!

1
k2!

2∏

j=1

‖fj‖L2(Rn)

≤ Ca−1
2∏

j=1

‖gjχ[1,1+a]‖L2(Rn) ≤ C
2∏

j=1

‖gj‖L2(Rn−1),

as desired. ¤

Remark 3.3. Combining Propositions 3.1 and 3.2, we see that null form estimates with
α1 + α2 = 1/q imply mixed norm bilinear restriction estimates for the paraboloid. For
q = r = (n + 2)/n, such an implication had already been observed in [12].

4. Bilinear restriction for the paraboloid implies null form estimates

In this section, a, b, h and ρ will be variables satisfying 0 < h < a ¿ 1 and |b|, |ρ| ∼ 1.
For the converse, we need to consider small perturbations of the previous operators, and
we will require the estimates to be uniform in these perturbations. Define f̂dσh

b by

f̂dσh
b (x, t) =

∫ b+a

b

∫

[−1,1]n−1

ei(x′·ξ′+xnξn+tξnθh(ξ′/ξn))f(ξ′, ξn)dξ′dξn.

and Eh
ρ by

Eh
ρ g(x′, t) =

∫

[−1,1]n−1

ei(x′ξ′+tρθh(ξ′/ρ))g(ξ′)dξ′.

Proposition 4.1. Let q, r ≥ r′, and suppose that

‖
2∏

j=1

Eh
ρj

gj‖Lq
t Lr

x′
≤ C

2∏

j=1

‖gj‖2

holds uniformly in ρ1, ρ2, a, h whenever dist (supp g1, supp g2) ∼ 1. Then

‖
2∏

j=1

f̂jdσh
bj
‖Lq

t Lr
x
≤ Ca1− 1

r

2∏

j=1

‖fj‖2

holds uniformly in b1, b2, a, h whenever dist (Θ(f1), Θ(f2)) ∼ 1.

Proof. By the Hausdorff-Young inequality with respect to xn, we get

‖
2∏

j=1

f̂jdσh
bj
‖Lq

t Lr
x
≤

∥∥∥∥
∫

Eh
ρ−ρ′g1(·, ρ− ρ′)Eh

ρ′g2(·, ρ′)dρ′
∥∥∥∥

Lq
t Lr

x′L
r′
ρ

,

where gj(·, ρ) = χ[bj ,bj+a](ρ)fj(·, ρ). Note that we can suppose that |ρ| ∼ 1 and |ρ−ρ′| ∼ 1,
as gj ≡ 0 otherwise. Now as q, r ≥ r′, by Minkowski’s inequality, the left hand side is
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bounded by ‖ · ‖Lr′
ρ Lq

t Lr
x′

. Thus, by hypothesis, we have

‖
2∏

j=1

f̂jdσbj‖Lq
t Lr

x
≤ C

∥∥∥∥
∫
‖g1(·, ρ− ρ′)‖2‖g2(·, ρ′)‖2dρ′

∥∥∥∥
Lr′

ρ

.

Finally, by Young’s inequality the left side is bounded by ‖g1‖Lp
ρL2

ξ′
‖g2‖Lp

ρL2
ξ′

where

1/p = 1− 1/2r, and the desired bound follows by Hölder’s inequality. ¤

Proposition 4.2. Suppose that (1.2) is satisfied, (1.4) is satisfied with strict inequality,
and for some ε > 0,

(4.1) ‖
2∏

j=1

f̂jdσh
bj
‖Lq

t Lr
x
≤ Ca

1− 1
r
+ 1

q
−α1−α2+ε

2∏

j=1

‖fj‖2

holds uniformly in b1, b2, a, h whenever dist (Θ(f1),Θ(f2)) ∼ 1. Then (1.1) holds for low
frequency interactions (+−).

Proof. We follow the argument of Section 3 in [11]. By spatial rotation and dilation it is
enough to show that for 0 ≤ m ≤ l and some ε0 > 0,

(4.2) ‖Dβ0
0 D

β+
+ D

β−
− (φψ)‖Lq

xLr
t
≤ C2−ε0l2−ε0m‖φ(0)‖2‖ψ(0)‖2

whenever φ̂(0) and ψ̂(0) are supported in

{ ξ ∈ Rn : b ≤ ξn ≤ (b + 2m−l), |ξ′/ξn − 2−le′n−1| ≤ 2−l/2 },
{ ξ ∈ Rn : −(b + 3 · 2m−l) ≤ ξn ≤ −(b + 2 · 2m−l), |ξ′/ξn + 2−le′n−1| ≤ 2−l/2 },

respectively, where b ∼ 1.
As before, one can calculate that Dβ0

0 D
β+−β−
+ ∼ 2(m−l)(β0+β+−β−), and |¤|β− ∼ 2−2lβ−

on the frequency support of φψ. Hence, by the rescaling argument of Lemma 2.6 in [11],

‖Dβ0
0 D

β+−β−
+ |¤|β−(φψ)‖Lq

t Lr
x
≤ C2(m−l)(β0+β+−β−)2−2β−l

× 2l(2/q−(n−1)(1−1/r))‖
2∏

j=1

f̂jdσh
bj
‖Lq

xLr
t
,

where the f̂jdσh
bj

are defined with a = 2m−l, b1 = b, b2 = −(b + 3a), h = 2−l, and the
functions f1, f2 are defined by

f1(ξ′, ξn) = 2−
(n−1)l

2 φ̂(0)(2−lξ′, ξn) and f2(ξ′, ξn) = 2−
(n−1)l

2 ψ̂(0)(2−lξ′, ξn).

It is easy to see that ‖f1‖2 = ‖φ(0)‖2, ‖f2‖ = ‖ψ(0)‖2 and dist (Θ(f1),Θ(f2)) ∼ 1. Using
the assumption (4.1) with a = 2m−l and the condition (1.2) we get

‖Dβ0
0 D

β+−β−
+ |¤|β−(φψ)‖Lq

t Lr
x

≤ C2−εl2m(2/q−(n−1)(1−1/r)−2β−+ε)‖φ(0)‖2‖ψ(0)‖2.

Finally, as (1.4) holds with strict inequality, we can choose ε sufficiently small to obtain
(4.2), and we are done. ¤
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Remark 4.3. Combining Propositions 4.1 and 4.2, we see that mixed norm bilinear re-
striction estimates for small perturbations of the paraboloid, where q, r ≥ r′, imply null
form estimates for low frequency interactions (+−), whenever (1.4) and (1.8) are satisfied
strictly.

5. Results for the paraboloid

In [11, Theorem 2.3] it was shown that the mixed norm bilinear restriction estimate

(5.1) ‖
2∏

j=1

Egj‖Lq
t (R,Lr

x′ (Rn−1)) ≤ C
2∏

j=1

‖gj‖L2(Rn−1)

holds whenever dist (supp g1, supp g2) ∼ 1 for q > max(1, 4/n) and 2/q < n(1 − 1/r).
These estimates are stable under small perturbations. Since the condition

(5.2)
2
q
≤ n

(
1− 1

r

)

is necessary, this gives the optimal result up to endpoints when n ≥ 4. By a similar
construction to that used to prove condition (1.16), or indeed via the equivalence, one can
calculate that

(5.3)
1
r
≤ 2

(
1− 1

q

)

is also necessary for (5.1) to hold when n = 3. We will also see that when a strict version
of condition (5.3) holds, (5.1) follows trivially, so we obtain the following result which is
sharp up to endpoints.

Theorem 5.1. Let n = 3. If (5.2) and (5.3) are satisfied with strict inequalities,
then (5.1) holds whenever dist (supp g1, supp g2) ∼ 1. Conversely, if (5.1) holds whenever
dist (supp g1, supp g2) ∼ 1, then (5.2) and (5.3) are satisfied.

Proof. When q > 1 and r = ∞, the estimate (5.1) follows from the linear Strichartz
estimates for the paraboloid by applying Cauchy-Schwarz. (In [14] it is shown that the
endpoint estimate L2 × L2 → L1

t L
∞
x fails.) In [11, Theorem 2.3], the estimates when

q > 4/3 and 2/q < 3(1 − 1/r) were obtained; in particular, for q > 4/3 and r = 2.

Interpolation yields the remaining estimates when q ≤ 4/3 and 1/r < 2(1− 1/q).
For clarity, we provide a direct proof of the necessary condition (5.3). Take η0 and g1

to be nonzero smooth functions adapted to the sets

{ ξ ∈ R2 : |ξ| ≤ ε },

{ ξ ∈ R2 : |ξ − e1| ≤ ε2 },

respectively.
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.
.

.

Figure 1. T and Tk

One can calculate that

|Eη0(x, t)| ≥ cε2 and |Eg1(x, t)| ≥ cε4

on the tubes T0 and T defined by

T0 = {(x, t) ∈ R2+1 : |x| ≤ ε−1, 0 ≤ t ≤ ε−2 },

T = {(x, t) ∈ R2+1 : |x + te1| ≤ ε−2, 0 ≤ t ≤ ε−4 }.
Now, for all k = 1, . . . , bε−2c define ηk and g2 by

ηk(ξ) = eikε−2(ξ1−|ξ|2/2)η0(ξ),

g2 =
bε−1c∑

k=0

ωkηk,

where ωk are random variables taking values in {−1, 1} with equal probability.
As in the second section, regardless of the choice of ωk, we have |Eg2(x, t)| ≥ cε2 on the

union of the tubes Tk given by

Tk = {(x, t) ∈ R2+1 : |x + kε−2e1| ≤ ε−1, kε−2 ≤ t ≤ (k + 1)ε−2 },

which are contained in the tube T . (See Figure 1.)
Now, assuming (5.1), by Khintchin’s inequality, one can calculate that

ε−4/qε−2/rε6 ≤ Cε2

for all ε > 0, and the condition follows. ¤

Finally, when n = 2, by killing the x2 variable in the previous construction, one can
calculate that the condition

(5.4)
2
q

+
1
2r
≤ 5

4

is necessary in order for (5.1) to hold. This is stronger than 1/q ≤ (1− 1/r) when r > 2.
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1/q

1

11/2(0, 0) 1/r

3/4

(1.8)

(1.16)

(1.9)

Figure 2. The regions obtained by comparing the conditions (1.8), (1.9) and (1.16)
when n = 3. The marked condition is strongest in each divided region.

6. Results for null forms

Only a small modification of the proof of the higher dimensional result in [11] is required
to prove Theorem 1.1. The estimate is obtained by combining the bilinear estimates for
the paraboloid of the previous section with Propositions 4.1 and 4.2.

Proof of Theorem 1.1. The estimate (1.1) is shown by considering the various interactions
between waves of different frequencies and decomposing the waves accordingly. In [11] the
sharp estimates were obtained for all the cases apart from the low frequency interactions
(+−); where φ and ψ are frequency supported in {(ξ, +|ξ|) : |ξ| ∼ 1} and {(ξ,−|ξ|) : |ξ| ∼
1}, respectively. By Proposition 4.2 it will suffice to prove (4.1) assuming strict versions
of (1.8), (1.9) and (1.16). Comparing the three conditions (see Figure 2) it is enough to
show that whenever dist (Θ(f1), Θ(f2)) ∼ 1, we have

‖
2∏

j=1

f̂jdσh
bj
‖Lq

t Lr
x
≤ Caγ

2∏

j=1

‖fj‖2

when (1/r, 1/q, γ) = (0, 0, 1), (1, 0, 0), (0, 1− ε, 1), (1/2, 3/4− ε, 1/2), (1/2, 1− ε, 0) for all
0 < ε ¿ 1. The other estimates follow by complex interpolation.
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By Cauchy-Schwarz followed by Plancherel, it is easy to see that the estimate for
(1/r, 1/q, γ) = (1, 0, 0) holds. As the Fourier transform of f̂jdσh

bj
is contained in a slab of

thickness a, by an application of Bernstein’s inequality, (0, 0, 1) follows. By Proposition
4.1 and Cauchy-Schwarz, (0, 1−ε, 1) is a consequence of the linear Strichartz estimates for
the paraboloid in R3. Similarly, (1/2, 3/4− ε, 1/2) follows from Proposition 4.1 combined
with Theorem 5.1. Finally, the estimate for (1/2, 1− ε, 0) can be found in Proposition 2.4
in [11] (with scale h = 2−l and k = 0). It is a mixed norm generalization of the bilinear
restriction estimate for the cone. ¤

We also prove the following partial result in two spatial dimensions.

Theorem 6.1. Let n = 2. If the conditions (1.2)-(1.15) are satisfied with strict inequalities
and additionally α1 + α2 > 3/q − 1, then (1.1) holds for all 1 ≤ r, q ≤ ∞.

Proof. By (1.3) we have that q > 4/3, and as before we need only consider the low
frequency interaction (+−). We may also assume that q ≤ 2 ≤ r because the other
estimates were already obtained in [11, Theorem 1.1]. By Proposition 4.2 it will suffice to
show that for 4/3 < q ≤ 2 ≤ r

‖
2∏

j=1

f̂jdσh
bj
‖Lq

t Lr
x
≤ Ca

2− 1
r
− 2

q

2∏

j=1

‖fj‖2

whenever dist (Θ(f1),Θ(f2)) ∼ 1. Again, this follows from interpolating the estimates
corresponding to (1/r, 1/q) = (1/2, 1/2), (0, 1/2), (1/2, 3/4 − ε) and (0, 3/4 − ε) for all
ε > 0, with bounds Ca

1
2 , Ca1, Ca0, and Ca

1
2 , respectively. The estimate when (1/q, 1/r) =

(1/2, 1/2) is a consequence of the bilinear restriction estimates for the parabola combined
with Proposition 4.1. The estimate for (1/r, 1/q) = (1/2, 3/4 − ε) can be found in [11,
Proposition 2.4]. The remaining estimates follow by Bernstein’s inequality because the

Fourier transform of f̂jdσh
bj

is contained in a slab of thickness a. ¤
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