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1. Introduction

In this paper we consider a maximal inequality associated with filtra-

tion on Lorentz spaces and Orlicz spaces. Let (X, µ), (Y, ν) be arbitrary

measure spaces and let T be a bounded linear operator from a function

space defined on (Y, ν) to a function space on (X,µ). Let En be a

sequence of measurable subsets of Y which are nested: En ⊂ En+1 for

all n. Such a sequence is called a filtration of Y . Denote by χE the

characteristic function of E. M. Christ and A. Kiselev in [2] considered

the maximal operator

T ∗f(x) = sup
n
|T (fχEn)(x)|,

which was studied to obtain the a.e. convergence of an integral operator

[3]. They obtained the following result.

Theorem 1.1. Let 1 ≤ p, q < ∞, and suppose that T : Lp(Y ) →
Lq(X) is a bounded linear operator. Then for any nested sequence of

measurable subsets {En} ⊂ Y , the maximal operator T ∗ is a bounded

operator from Lp(Y ) to Lq(X) provided p < q. Moreover,

‖T ∗‖p,q ≤ (1− 2−( 1
p
− 1

q
))−1‖T‖p,q

where ‖T‖p,q denotes the operator norm of T from Lp(Y ) to Lq(X).

It should be noted that the phenomena for the maximal inequality

occur because of the strict difference of convexivity between two func-

tions (tp, tq) generating the function spaces (Lp and Lq). Based on this

fact, we extend the theorem above to some different function spaces

which naturally contain the Lebesgue spaces. Especially, we thus show
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a version of Theorem 1.1 still holds on Lorentz spaces and Orlicz spaces

reflecting the difference of convexivity. For another reference concern-

ing the Lorentz space, see the paper [4].

Let Lp,r(X) = Lp,r(X, dµ) denote the space of all measurable func-

tions satisfying

‖f‖p,q =

(
q

p

∫ ∞

0

[t
1
p f ∗(t)]q

dt

t

) 1
q

< ∞

where f ∗ is the decreasing rearrangement of f (see [5]). Then we first

have the following result:

Theorem 1.2. Let 1 ≤ p ≤ r < s ≤ q < ∞, and suppose T :

Lp,r(Y ) → Lq,s(X) is a bounded linear operator. Then T ∗ is bounded

from Lp,r(Y ) to Lq,s(X). Moreover,

(1.1) ‖T ∗‖Lp,r→Lq,s ≤ q

q − 1
(1− 2−( 1

r
− 1

s
))−1‖T‖Lp,r→Lq,s

where ‖T‖Lp,r→Lq,s denotes the operator norm of T from Lp,r to Lq,s.

Now we consider a generalization to Orlicz spaces. The Young func-

tion Φ is given by Φ(s) =
∫ s

0
φ(t)dt for an increasing left continuous

function φ with φ(0) = 0. For the Young function, the Luxemburg

norm is defined by

ρΦ(f) = inf

{
k :

∫
Φ

( |f(y)|
k

)
dν(y) ≤ 1

}
.

Then the Orlicz space LΦ(Y ) = LΦ(Y, dν) is the function space with

the norm ‖ · ‖LΦ = ρΦ(·). For further details, see p.265 - 280 in [1].

Next, we consider a pair of Young functions Φ and Ψ. We impose

several assumptions on Φ, Ψ. For any s, t ≥ 0, let us assume

(1.2) Ψ(st) ∼ Ψ(s)Ψ(t).

Here A ∼ B means that there is a constant C > 0 such that

C−1A ≤ B ≤ CA.

For the function Φ, we assume that there is a strictly convex function

Φ̃ such that for any α ≥ 1,

Φ(αt) ≤ CΦ̃(α)Φ(t) and Φ̃(α) ∼ Φ̃(1/α)−1.(1.3)

Then the second result is the following:
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Theorem 1.3. Let T be a bounded linear operator from LΦ(Y ) to

LΨ(X). Assume Φ and Ψ satisfy (1.3) and (1.2), respectively, and

further assume

(1.4)

∫ 1

0

Φ−1(t)Ψ−1(t−1)
dt

t
< ∞.

Then there is a constant C such that ‖T ∗f‖LΨ ≤ C‖f‖LΦ .

Compared with the result in [2] where Φ(t) = tp and Ψ(t) = tq,

the result above is more general. For this particular example, the

conditions (1.3) and (1.2) are satisfied and
∫ 1

0

Φ−1(t)Ψ−1(t−1)
dt

t
=

∫ 1

0

t
1
p
− 1

q
dt

t
< ∞,

provided p < q. We obtain another example if we set Ψ(t) = tq,

Φ(t) = tp(log(2 + t))β with β > 0. The condition (1.2) is clearly

satisfied. It is easily verified that for any α ≥ 1, there exists ε > 0

such that Φ(αt) . αpεΦ(t) with pε = p + εβ. So if we set Φ̃(t) = tpε ,

then (1.3) is satisfied and we can find ε so that Φ̃ satisfies the condition

(1.4) for p < q.

The proof of these theorems follows the line of argument in [2]. But

some technical difficulties arising in the consideration of Lorentz and

Orlicz spaces will be settled by introducing several lemmas.

2. Proof of Theorem 1.2

We begin by proving an elementary but crucial lemma concerning

Lorentz space.

Lemma 2.1. Let F , G be disjoint measurable sets in Y and let f , g

be measurable functions on X. If r ≤ p < ∞, then

(2.1) ‖fχF + gχG‖r
p,r ≤ ‖fχF‖r

p,r + ‖gχG‖r
p,r

and if p ≤ r, then

(2.2) ‖fχF + gχG‖r
p,r ≥ ‖fχF‖r

p,r + ‖gχG‖r
p,r.

Proof. By a limiting argument, we may assume that f and g are sim-

ple functions. Without loss of generality, we may write fχF , gχG as



4 YONGGEUN CHO, EUN-HEE KOH AND SANGHYUK LEE

fχF =
∑n

i=1 ciχFi
, gχG =

∑n
i=1 ciχGi

respectively, where Fi, Gi are

measurable sets contained in F , G respectively. We may also assume

|c1| ≥ |c2| ≥ · · · ≥ |ci| ≥ |ci+1| ≥ · · · .

Set ai = ν(Fi), bi = ν(Gi). Also for 1 ≤ i ≤ n, set Ai =
∑i

k=1 ak,

Bi =
∑i

k=1 bk. Then the decreasing rearrangements of fχF , gχG are

given by

(fχF )∗(t) =

{
|ci| if Ai−1 ≤ t < Ai

0 if An ≤ t
,

(gχG)∗(t) =

{
|ci| if Bi−1 ≤ t < Bi

0 if Bn ≤ t.

Since the supports of f and g are disjoint, we have f +g =
∑

i ciχFi∪Gi
.

Thus we have

(fχF + gχG)∗(t) =

{
|ci| if Ai−1 + Bi−1 ≤ t < Ai + Bi

0 if An + Bn ≤ t.

Now for i = 1, . . . n, let us set

Si = (Ai + Bi)
r
p − (Ai−1 + Bi−1)

r
p − A

r
p

i + A
r
p

i−1 −B
r
p

i + B
r
p

i−1.

Then a simple computation shows that

‖f + g‖r
Lp,r − ‖f‖r

Lp,r − ‖g‖r
Lp,r =

n∑
i

|ci|rSi.

Finally, we only need to observe that Si ≤ 0 if 0 < r
p
≤ 1 and Si ≥ 0

if r
p
≥ 1. This completes the proof of Lemma 2.1. ¤

Now we prove Theorem 1.2. Fix p, r, q, s so that 1 ≤ p ≤ r < s ≤
q < ∞. Without loss of generality, we may assume ‖f‖Lp,r(Y ) = 1.

Define a function M from measurable sets of (Y, ν) to R by

M(S) = ‖fχS‖r
Lp,r(Y ).

As mentioned in [2], we may assume that for λ > 0 and for any

measurable set E, if λ ≤ M(E), then there is a measurable subset S

such that S ⊂ E and M(S) = λ. This can be achieved by replacing Y

by Y × [0, 1], ν by the product of ν and Lebesgue measure on [0, 1], T

by T ◦π where πf(y) =
∫ 1

0
f(y, s)ds, and En by En×[0, 1]. Then we see

that the boundedness of T ∗ is implied by the boundedness of (T ◦ π)∗.
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Indeed, assume that (T ◦π)∗ is bounded from Lp,r(Y × [0, 1]) to Lq,s(X)

and (1.1) holds for (T ◦ π)∗ instead of T ∗. Given f ∈ Lp,r(Y ), apply

the above assumption to f ⊗ χ[0,1]. Since

(T ◦ π)∗f ⊗ χ[0,1] = sup
n

T

(∫ 1

0

χEn×[0,1](f ⊗ χ[0,1])ds

)
= T ∗f

and since ‖f ⊗ χ[0,1]‖Lp,r(Y×[0,1]) = ‖f‖Lp,r(Y ), (1.1) follows.

We also need the following lemma which is a modification of the one

in [2].

Lemma 2.2. Let f be a measurable function with ‖f‖Lp, r(Y ) = 1.

Then there is a collection {Bl
k} of measurable subsets of Y , with l ∈

{0, 1, 2, · · · } and 1 ≤ k ≤ 2l, satisfying the following conditions.

1. {Bl
k : 1 ≤ k ≤ 2l} is a partition of Y into disjoint measurable

subsets.

2. ‖χBl
k
f‖r

Lp,r(Y ) ≤ 2−l for 1 ≤ k ≤ 2l.

3. For each n, En can be decomposed as an empty, finite or count-

able union such that for some sequences lni , kn
i ,

En =

(⋃
i≥1

B
lni
kn

i

)⋃
Dn with ln1 < ln2 < ln3 < · · ·

where Dn is a measurable set for which M(Dn) = 0.

Proof of Lemma 2.2. Define for 1 ≤ k ≤ 2l − 1,

N l
k = min{n ∈ N : M(En) ≥ 2−lk}.

By the divisibility assumption for 1 ≤ k ≤ 2l − 1, we can choose a

subset Al
k of EN l

k
in such a way that M(Al

k) = k2−l and Al
2l = Y .

Since En is increasing, we may assume that Al
i ⊂ Al

i+1 and Al−1
k = Al

2k.

Now we define Bl
k by

Bl
1 = Al

1,

Bl
2 = (Al

2 \ Al
1), · · · , Bl

k = (Al
k \ Al

k−1),

· · · , Bl
2l = (Al

2l \ Al
2l−1).

Since p ≤ r, by (2.2) in Lemma 2.1 M(S1 ∪ S2) ≥ M(S1) +M(S2) if

S1 and S2 are disjoint. So for all 1 ≤ k ≤ 2l, we have

M(Bl
k) = M(Al

k \ Al
k−1) ≤M(Al

k)−M(Al
k−1) = 2−l.
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Form the construction, it follows that for each n, there are sequences

{lni }, {mn
i } so that

A
lni
mn

i
⊂ En, A

lni
mn

i
⊂ A

lni+1

mn
i+1

, lim
i→∞

M(A
lni
mn

i
) = M(En)

and lni is strictly increasing as i increase. Indeed, using binary expan-

sion, we can writeM(En) =
∑∞

j=1 2−lnj where lnj is strictly increasing as

j increases. By our construction of the sets {Al
k}, we see that for each

i ∈ N, there is a A
lni
mn

i
such that A

lni
mn

i
⊂ En and M(A

lni
mn

i
) =

∑i
j=1 2−lnj .

Since Al
i ⊂ Al

i+1 and Al−1
k = Al

2k, we have A
lni
kn

i
⊂ A

lni+1

kn
i+1

.

Now observe
(
A

lni+1

mn
i+1
\ A

lni
mn

i

)
= B

lni+1

kn
i

for some sequence {kn
i }. Since

⋃
i A

lni
kn

i
=

⋃
i B

lni
kn

i
, by the monotone convergence theorem, we have

M(En \
⋃

i B
lni
kn

i
) = 0. Now we set Dn = En \

⋃
i B

lni
kn

i
. This completes

the proof of lemma 2.2. ¤

Let N : X → Z be a measurable function. Define an operator

TNf(x) = T (fχEN(x)
)(x). To prove Theorem 1.2, it is sufficient to

show that

‖TNf‖Lq,s(X) ≤ C‖f‖Lp,r(Y )

where C is independent of N . Set An = {x : N(x) = n} and define Rl,k

to be the index set {n : Bl
k appears in the decomposition of En}.

Define measurable sets Dl
j by Dl

j =
⋃

n∈Rl
j
An. Observe Dl

i ∩ Dl
j = ∅

if i 6= j. Suppose not. Then there is an An such that An ⊂ Dl
i ∩ Dl

j

because An is pair-wise disjoint. So Bl
i and Bl

j appear in the decom-

position of En. But scale-2l element is contained at most once in En.

It is a contradiction.

Note fχEn =
∑

(l,j):En=∪Bl
j

fχBl
j∪Dn

. We write

TNf =
∑

n

χAnT (fχEn) =
∑

n

∑

(l,j):En=∪Bl
j

χAnT (fχBl
j∪Dn

)

=
∑

l

∑
j

χDl
j
T (fχBl

j∪Dn
).

Since T is bounded from Lp,r(Y ) to Lq,s(X), we may drop Dn in the

above expression. Since q > 1, the Lorentz space Lq,s is a normed space
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(see [5] p. 204). Thus we have

‖TNf‖q,s ≤ q

q − 1

∞∑

l=0

‖
∑

j

χDl
j
T (fχBl

j
)‖q,s.

Now fix l and note that q ≥ s and {Dl
j} are disjoint. By (2.1) in

Lemma 2.1, we have the following.

‖
∑

j

χDl
j
T (fχBl

j
)‖s

q,s ≤
∑

j

‖χDl
j
T (fχBl

j
)‖s

q,s

≤
∑

j

(‖T‖Lp,r→Lq,r)s‖fχBl
j
‖s

p,r.

The second inequality is trivial. By the decomposition in Lemma 2.2,

the last in the above inequality is bounded by∑
j

(‖T‖Lp,r→Lq,r)s2−( s
r
−1)l‖fχBl

j
‖r

p,r.

Since p ≤ r and for each l, Bl
j are disjoint, another application of

Lemma 2.1 implies
∑

j ‖fχBl
j
‖r

p,r ≤ ‖f‖r
p,r. Putting all things together,

we have

‖TNf‖q,s ≤ q

q − 1

∞∑

l=0

2−l(r−1−s−1)(‖T‖Lp,r→Lq,r)‖f‖p,r

≤ q

q − 1
(1− 2−( 1

r
− 1

s
))−1(‖T‖Lp,r→Lq,r)

since r < s and ‖f‖Lp,r = 1. This completes the proof of Theorem 1.2.

3. Proof of Theorem 1.3

We begin with making several observations. Since Ψ is strictly in-

creasing, its inverse Ψ−1 satisfies

(3.1) Ψ−1(s)Ψ−1(t) ≤ Ψ−1(Cst), Ψ−1(st/C) ≤ Ψ−1(s)Ψ−1(t).

Let LΩ be an Orlicz space with Young’s function Ω. If Ω(st) ≥
CΩ(s)Ω(t) for some C, then by the definition of Orlicz space norm,

we have
∫

Ω(|f(x)|/‖f‖LΩ) dx = 1. The condition on Ω implies 1 ≤
C

∫
Ω(|f(x)|)/Ω(‖f‖LΩ)dx and hence Ω(‖f‖LΩ) ≤ C

∫
Ω(|f(x)|)dx.

Conversely if we assume Ω(st) ≤ CΩ(s)Ω(t) for some C, then we have

Ω(‖f‖LΩ) ≥ C
∫

Ω(|f(x)|)dx. By the assumptions (1.2) on Ψ we have

Ψ(‖f‖LΨ) ∼
∫

Ψ(|f(x)|)dx.
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In the similar way it is easy to see that for f satisfying ‖f‖LΦ ≤ 1,

Φ̃(‖f‖LΦ) ≤ C

∫
Φ̃(|f(x)|)dx.

As before, it is sufficient to show for all measurable N : X → Z, the

operator TN given by

TNf(x) = T (fχEN(x)
)(x)

is bounded from LΦ to LΨ. Without loss of generality we may assume

‖f‖LΦ = 1.

Now we introduce a decomposition for functions which is similar to

Lemma 2.2.

Lemma 3.1. Let f be a measurable function with ‖f‖LΦ = 1. Then

there is a collection {Bl
j} of measurable sets in X, indexed by l ∈

{0, 1, 2, . . . } and 1 ≤ j ≤ 2l, satisfying the following conditions:

1. {Bl
j : 1 ≤ j ≤ 2l} is a partition of X into disjoint measurable

subsets.

2.
∫

Φ(|f |χBl
j
) dx = 2−l for all 1 ≤ j ≤ 2l.

3. For each n, En can be decomposed as an empty, finite or count-

able union such that for some sequences lni , kn
i ,

En =

(⋃
i≥1

B
lni
kn

i

)⋃
Dn with ln1 < ln2 < ln3 < · · · ,

where M(Dn) = 0.

The proof of the above lemma can be obtained by following the same

line of argument as in [2]. So we omit the detailed proof. According to

Lemma 3.1, we decompose f with the same notations for An, Rl
j, Dl

j

as in the proof of Theorem 1.2. We write

TNf(x) =
∞∑

n=1

T (fχEn)(x)χAn(x)

=
∑
n=1

∑

j,l

T (fχBl
j∪Dn

)(x)χAn(x) =
∑

j,l

T (fj,l)(x)χDl
j
(x),

where fj,l = fχBl
j
. By the condition (1.2) on Ψ and the fact that Dl

i

are mutually disjoint for each fixed l, we have

Ψ(‖
∑

j

T (fj,l)χDl
j
‖LΨ) ≤ C

∑
j

∫
Ψ(|T (fj,l)(x)|χDl

j
(x))dx.
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On the other hand, using the boundedness of T from LΦ to LΨ, we

have

Ψ(‖fj,l‖LΦ) ≥ Ψ(‖Tfj,l‖LΨ) ∼
∫

Ψ(|Tfj,l|)dx.

By the decomposition and the condition (1.3) on Φ, we see that

Φ̃(‖fj,l‖LΦ) ≤
∫

Φ(|fj,l|)dx ∼ 2−l.

Hence we have

Ψ(‖
∑

j

T (fj,l)χDl
j
‖LΨ) ≤ C

∑
j

Ψ(‖Tfj,l‖LΨ)

≤ C
∑

j

Ψ(Φ̃(2−l)) ≤ C2lΨ(Φ̃(2−l))

since the number of j is not greater than 2l for each l. By the triangle

inequality, we have

‖TNf‖LΨ ≤
∑

l

‖
∑

j

T (fj,l)χDl
j
‖LΨ .

Summing with respect to l we get

‖TNf‖LΨ ≤ C
∑

l

Φ̃(2−l) Ψ(2l).(3.2)

Finally, (1.4) implies the left hand side of the above is finite. This

completes the proof of Theorem 1.3.

Remark 1. In Theorem 1.3, if we set Φ(t) = tp(log(2 + t))β ( β > 0)

and Ψ(t) = tq, then the inequality (3.2) can be expressed as

‖TNf‖LΨ ≤ C
∑

l

2−(1/pε−1/q)l = C(1− 2−(1/pε−1/q))−1.

Thus we have the similar result as in Theorem 1.1. It is interesting to

prove Theorem 1.3 for the case Ψ(t) = tp(log(2 + t))β and Φ(t) = tp

where the convexivity difference between Ψ and Φ is logarithmic. But

the lack of convexivity difference causes a difficulty in controlling the

inequality (3.2).

Remark 2. Theorem 1.1 can be easily extended to the vector valued

function spaces (e.g. Lp
B where B is a Banach space). For example, if T

is a linear operator from Lp
A(Y, dν) to Lq

B(X, dµ) with 1 ≤ p, q ≤ ∞ and
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{En} is a nested set sequence, then the maximal operator T ∗ defined

by

T ∗F = sup
n
||T (FχEn)||B

satisfies the same inequality as in Theorem 1.1.
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