A MAXIMAL INEQUALITY ASSOCIATED TO SCHRÖDINGER TYPE EQUATION

YONGGEUN CHO, SANGHYUK LEE, AND YONGSUN SHIM

Abstract

In this note, we consider a maximal operator $\sup _{t \in \mathbb{R}}|u(x, t)|=$ $\sup _{t \in \mathbb{R}}\left|e^{i t \Omega(D)} f(x)\right|$, where u is the solution to the initial value problem $u_{t}=$ $i \Omega(D) u, u(0)=f$ for a C^{2} function Ω with some growth rate at infinity. We prove that the operator $\sup _{t \in \mathbb{R}}|u(x, t)|$ has a mapping property from a fractional Sobolev space $H^{\frac{1}{4}}$ with additional angular regularity in which the data lives to $L^{2}\left((1+|x|)^{-b} d x\right)(b>1)$. This mapping property implies the almost everywhere convergence of $u(x, t)$ to f as $t \rightarrow 0$, if the data f has an angular regularity as well as $H^{\frac{1}{4}}$ regularity.

1. Introduction

We consider the following free Schrödinger type equation:

$$
\frac{\partial}{\partial t} u(x, t)=i \Omega(D) u(x, t) \quad \text { in } \quad \mathbb{R}^{n+1}(n \geq 2), \quad u(x, 0)=f(x)
$$

where $\Omega(D)$ is a generalized differential operator defined by a C^{2} function Ω and $D=(-\Delta)^{\frac{1}{2}}$. For smooth initial data f, the solution $u(x, t)=e^{i t \Omega(D)} f$ can be written as

$$
u(x, t)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i(x \cdot \xi+t \Omega(\xi))} \widehat{f}(\xi) d \xi, \quad f \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

where $\widehat{f}(\xi)=\int e^{-i x \cdot \xi} f(x) d x$. In this note, we assume that the initial data f has H^{s} regularity for some $s>0$ as well as some regularity in the angular direction. For $\alpha, \beta \geq 0$, we define an initial data space $H_{r}^{\alpha} H_{\omega}^{\beta}$ by

$$
H_{r}^{\alpha} H_{\omega}^{\beta}=\left\{f:\|f\|_{H_{r}^{\alpha} H_{\omega}^{\beta}}:=\left\|(1-\Delta)^{\frac{\alpha}{2}} f\right\|_{L_{r}^{2} H_{\omega}^{\beta}}<\infty\right\}
$$

where $\|g\|_{L_{r}^{2}}^{2}=\int_{0}^{\infty}|g(r)|^{2} r^{n-1} d r,\|g\|_{L_{r}^{2} H_{\omega}^{\beta}}=\| \| \left\lvert\,\left(1-\Delta_{\omega}\right)^{\frac{\beta}{2}} f(r \omega)\left\|_{L_{\omega}^{2}}\right\|_{L_{r}^{2}}\right.$ (here, $(r, \omega) \in \mathbb{R}_{+} \times S^{n-1}$ is the spherical coordinates), and Δ_{ω} is the Laplace-Beltrami operator on S^{n-1}. Since Δ_{ω} commutes with Δ, one can readily check that $\|g\|_{H_{r}^{\alpha} H_{\omega}^{\beta}} \sim$ $\left\|\left(1-\Delta_{\omega}\right)^{\frac{\beta}{2}} g\right\|_{H^{\alpha}}$ (for instance, see [9]). Since not every function in $H_{r}^{\alpha} H_{\omega}^{\beta}$ has radial regularity higher than α, there is no embedding from or into a usual Sobolev

[^0]space. In particular, it should be noted that $H_{r}^{\alpha} H_{\omega}^{\beta} \nsubseteq H^{\alpha+\gamma}(0<\gamma<\beta)$ and $H_{r}^{\alpha} H_{\omega}^{\beta} \nsupseteq H^{\alpha+\gamma}(\gamma \geq \beta)$.

We also assume that $\Omega \in C^{2}\left(\mathbb{R}^{n}\right)$ is radially symmetric and satisfies

$$
c_{1}|\rho|^{a-k} \leq\left|\Omega^{(k)}(\rho)\right| \leq c_{2}|\rho|^{a-k}(k=0,1,2), \quad \text { if } \quad|\rho| \geq N
$$

for some $c_{1}, c_{2}, a>0$ with $a \neq 1$ and a large $N>0$. With the above assumptions, let us define a maximal function $u^{*}(x)$ by $u^{*}(x)=\sup _{t \in \mathbb{R}}|u(x, t)|$. We prove

Theorem 1.1. For any $\varepsilon>0$ and $b>1$, if $f \in H_{r}^{\frac{1}{4}} H_{\omega}^{\frac{n-1}{2}-\frac{1}{4}+\varepsilon}$, then there exists a constant C, depending only on $a, c_{1}, c_{2}, N, n, \varepsilon, b$, such that

$$
\left\|u^{*}\right\|_{L^{2}\left((1+|x|)^{-b} d x\right)} \leq C\|f\|_{H_{r}^{\frac{1}{4}} H_{\omega}^{\frac{n-1}{2}-\frac{1}{4}+\varepsilon}} .
$$

Now let us define a linear operator T and a maximal operator T^{*} for a fixed $s>0$ by

$$
T f(x, t)=w(|x|) \int e^{i(x \cdot \xi+t \Omega(\xi))} \widehat{f}(\xi) \frac{d \xi}{\left(1+|\xi|^{2}\right)^{\frac{s}{2}}},
$$

where $w(r)=(1+r)^{-\frac{b}{2}}, b>0$ and

$$
T^{*} f(x)=\sup _{t \in \mathbb{R}}|T f(x, t)|
$$

Then Theorem 1.1 follows immediately from
Theorem 1.2. For any $\varepsilon>0$ and $b>1$, if $f \in L_{r}^{2} H_{\omega}^{\frac{n-1}{2}-s+\varepsilon}$ for some $s \in\left[\frac{1}{4}, \frac{1}{2}\right)$, there exists a constant C, depending only on $a, c_{1}, c_{2}, N, n, s, \varepsilon, b$, such that

$$
\left\|T^{*} f\right\|_{L^{2}} \leq C\|f\|_{L_{r}^{2} H_{\omega}^{\frac{n-1}{2}-s+\varepsilon}}
$$

The maximal function u^{*} and operator T^{*} have been studied extensively by many authors ([1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 18, 19, 21]). P. Sjölin [14] and L. Vega [19] showed that for some ball B_{R} of radius R

$$
\begin{equation*}
\left\|u^{*}\right\|_{L^{2}\left(B_{R}\right)} \leq C\|f\|_{H^{s}} \tag{1.1}
\end{equation*}
$$

only if $s \geq \frac{1}{4}$. Up to now, it is known that (1.1) is true if $n=1([5,8])$ or the initial data is radial $([4,12])$, or $s>\frac{1}{2}$ and $n \geq 2([11,19])$. Recently, T. Tao [18] obtained (1.1) for $s>\frac{2}{5}$ and $n=2$. However, the sufficiency remains open widely.

On the other hand, Theorem 1.1 shows that it is true for $s=\frac{1}{4}$ if we assume the additional angular regularity. If the initial data is a finite linear combination of
radial functions and spherical harmonics such that $f=\sum_{k \leq L} f_{k} Y_{k}$, it was proved by the first and third authors in [4] that $\left\|u^{*}\right\|_{L^{\frac{4 n}{2 n-1}}} \leq C_{L}\|f\|_{H^{\frac{1}{4}}}$, where

$$
C_{L} \leq C L^{\frac{1}{2}+\varepsilon}(n+2 L)^{\frac{n+2 L}{2}} \max _{1 \leq k \leq L} \frac{\left\|Y_{k}\right\|_{L^{\frac{4 n}{2 n-1}}}^{\left\|Y_{k}\right\|_{L^{2}}} \quad(0<\varepsilon \ll 1) . ~ . ~}{0<1} .
$$

The factor $(n+2 L)^{\frac{n+2 L}{2}}$ follows from the asymptotic behavior of Bessel function $\left(J_{\nu}(t) \sim b_{+} t^{-\frac{1}{2}} e^{i t}+b_{-} t^{-\frac{1}{2}} e^{-i t}+O\left((n+2 \nu)^{\frac{n+2 \nu}{2}}\right) t^{-\frac{3}{2}}\right.$ for $\left.t>1\right)$. The tail $t^{-\frac{3}{2}}$ seems inevitable to obtain the non-weighted global $L^{\frac{4 n}{2 n-1}}\left(\frac{4 n}{2 n-1}>2\right)$ estimate for which a big cost of C_{L} is paid. In this connection, Theorem 1.1 improves significantly the dependency on the order of spherical harmonic up to $L^{3 / 4+\varepsilon}$ (see (2.2) below). This improvement occurs from an estimate for the tail of Bessel function $C t^{-1}$ for $t>2 \nu$, which enables us to use the L^{2} method. The weighted L^{2} estimate as in Theorem 1.1 is absolutely necessary for a global estimate in view of the negative result that the non-weighted global L^{2} estimate [11] and any local estimate in $L^{p}(p>2)$ [22] are impossible for the data $f \in H^{\frac{1}{4}}$.

In case that $\Omega(D)=-\Delta$, recently G. Gigante and F. Soria [6] showed a local L^{2} estimate, independently of our work, that $\left\|u^{*}\right\|_{L^{2}\left(B_{R}\right)} \leq C L^{\frac{1}{2}+\varepsilon}\|f\|_{H^{\frac{1}{4}}}$. They used a finer asymptotic behavior of Bessel function $J_{\nu}(t)$ for $\nu+\nu^{\frac{1}{3}} \leq t \leq 2 \nu$ but their method seems not to be applied directly to the general phase Ω because the power of L may depend on Ω in their argument.

From the assumption on Ω, we treat Ω not only of the form $|\xi|^{a}$ but also $\sum_{i=1}^{l} m_{i}|\xi|^{a_{i}}$ for any number $a_{l}>a_{l-1}>\cdots>a_{1}>0, a_{l} \neq 1$ and $m_{i} \in \mathbb{R}$. For the more general phase Ω, we refer the readers to [3] in which a weighted L^{2} estimate is discussed for the phase Ω with $\nabla \Omega$ having zeros or singularities. For another use of angular regularity, one can refer to [9] in which the endpoint Strichartz estimates of 3-d wave and Klein-Gordon equations are considered.

If not specified, throughout this paper, C denotes a generic constant that depends on $a, c_{1}, c_{2}, N, n, s, b, \varepsilon$. We use the notation $A \lesssim B$ and $A \sim B$ to denote $|A| \leq C B$ and $C^{-1} B \leq|A| \leq C B$ respectively.

2. Proof of Theorem 1.2

We begin with reviewing some properties of the spherical harmonic expansion. If $f(r \omega)=g(r) Y_{k}(\omega)$ for a radial function g and a spherical harmonic Y_{k} of order k, then we have

$$
\widehat{f}(\rho \theta)=G(\rho) Y_{k}(\theta), \quad\|g\|_{L_{r}^{2}}=\|G\|_{L_{r}^{2}},
$$

where

$$
G(\rho)=c_{n, k} \int_{0}^{\infty} g(r) r^{n-1}(r \rho)^{-\frac{n-2}{2}} J_{\nu}(r \rho) d r,\left|c_{n, k}\right| \leq C, \nu=\frac{2 k+n-2}{2}
$$

For the representation of G, see e.g. [16] or [22]. Since $-\Delta_{\omega} Y_{k}=k(k+n-2) Y_{k}$, we also have $\|f\|_{L_{r}^{2} H_{\omega}^{\beta}} \sim\left(1+k^{2}\right)^{\frac{\beta}{2}}\|g\|_{L_{r}^{2}}\left\|Y_{k}\right\|_{L_{\omega}^{2}}$. Furthermore, if $h \in L_{r}^{2} H_{\omega}^{\beta}$, then there exist radial functions $\left\{h_{k}^{l}\right\}$ and spherical harmonics $\left\{Y_{k}^{l}\right\}$ such that

$$
h(r \omega)=\sum_{k \geq 0} \sum_{1 \leq l \leq d(k)} h_{k}^{l}(r) Y_{k}^{l}(\omega) \quad \text { in } \quad L_{r}^{2} H_{\omega}^{\beta}
$$

where $d(k)$ is the dimension of the space of spherical harmonics of degree k, and

$$
\begin{equation*}
\|h\|_{L_{r}^{2} H_{\omega}^{\beta}}^{2} \sim \sum_{k \geq 0} \sum_{1 \leq l \leq d(k)}\left(1+k^{2}\right)^{\beta}\left\|h_{k}^{l}\right\|_{L_{r}^{2}}^{2}\left\|Y_{k}^{l}\right\|_{L_{\omega}^{2}}^{2} . \tag{2.1}
\end{equation*}
$$

Thus for the proof of theorem, we have only to consider the case that $f(r \omega)=$ $g(r) Y_{k}(\omega)$ and to show that for large k

$$
\begin{equation*}
\left\|T^{*} f\right\|_{L^{2}} \lesssim k^{\frac{1}{2}-s}\|g\|_{L_{r}^{2}}\left\|Y_{k}\right\|_{L_{\omega}^{2}} \tag{2.2}
\end{equation*}
$$

since for the function $h(r \omega)=\sum_{k \geq 0} \sum_{1 \leq l \leq d(k)} h_{k}^{l}(r) Y_{k}^{l}(\omega)$ in $L_{r}^{2} H_{\omega}^{\beta}$, we have from (2.2)

$$
\begin{aligned}
\left\|T^{*} h\right\|_{L^{2}} & \lesssim \sum_{k} \sum_{1 \leq l \leq d(k)} k^{\frac{1}{2}-s}\left\|h_{k}^{l}\right\|_{L_{r}^{2}}\left\|Y_{k}^{l}\right\|_{L_{\omega}^{2}} \\
& \lesssim \sum_{k} k^{\frac{1}{2}-s} d(k)^{\frac{1}{2}}\left(\sum_{1 \leq l \leq d(k)}\left\|h_{k}^{l}\right\|_{L_{r}^{2}}^{2}\left\|Y_{k}^{l}\right\|_{L_{\omega}^{2}}^{2}\right)^{\frac{1}{2}} \\
& \lesssim \sum_{k} k^{\frac{n-1}{2}-s}\left(\sum_{1 \leq l \leq d(k)}\left\|h_{k}^{l}\right\|_{L_{r}^{2}}^{2}\left\|Y_{k}^{l}\right\|_{L_{\omega}^{2}}^{2}\right)^{\frac{1}{2}} \\
& \lesssim\left(\sum_{k} \sum_{1 \leq l \leq d(k)} k^{n-1-2 s+\varepsilon}\left\|h_{k}^{l}\right\|_{L_{r}^{2}}^{2}\left\|Y_{k}^{l}\right\|_{L_{\omega}^{2}}^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

where we used the estimate $d(k)=\frac{n+2 k-2}{k}\binom{n+k-3}{k-1} \lesssim k^{n-2}$ for the third inequality (see [16]).

Now if $\widehat{f}(\rho \omega)=G(\rho) Y_{k}(\omega)$, from the definition of T, it follows that

$$
\begin{aligned}
T f(r \omega, t) & =w(r) \int_{S^{n-1}} \int_{0}^{\infty} e^{i(r \omega \cdot \rho \theta+t \Omega(\rho))} G(\rho) Y_{k}(\theta) \rho^{n-1} \frac{d \rho}{\left(1+\rho^{2}\right)^{\frac{s}{2}}} d \theta \\
& =c_{n, k} w(r) \int_{0}^{\infty} e^{i t \Omega(\rho)}(r \rho)^{-\frac{n-2}{2}} J_{\nu}(r \rho) \rho^{n-1} G(\rho) \frac{d \rho}{\left(1+\rho^{2}\right)^{\frac{s}{2}}} Y_{k}(-\omega)
\end{aligned}
$$

Let us define an operator S by

$$
S G(r, t)=c_{n, k} r^{\frac{n-1}{2}} w(r) \int_{0}^{\infty} e^{i t \Omega(\rho)}(r \rho)^{-\frac{n-2}{2}} J_{\nu}(r \rho) \rho^{\frac{n-1}{2}} G(\rho) \frac{d \rho}{\left(1+\rho^{2}\right)^{\frac{s}{2}}}
$$

Let us denote by $\|F\|_{L^{p} L^{q}}$ the mixed norm $\left\|\left(\|F(r, t)\|_{L^{q}(d t)}\right)\right\|_{L^{p}(d r)}$. Here we use the notation $\|F\|_{L^{p}(d r)}^{p}$ for $\int|F(r)|^{p} d r$ to avoid the confusion with $\|F\|_{L_{r}^{p}}$. To prove (2.2) it suffices to show that

$$
\begin{equation*}
\|S \tilde{G}\|_{L^{2} L^{\infty}} \lesssim k^{\frac{1}{2}-s}\|\tilde{G}\|_{L^{2}(d r)} \tag{2.3}
\end{equation*}
$$

where $\tilde{G}(\rho)=\rho^{\frac{n-1}{2}} G(\rho)$. Now we define the dual operator S^{d} of S by

$$
S^{d} F(\rho)=\frac{c_{n, k}}{\left(1+\rho^{2}\right)^{\frac{s}{2}}} \int_{\mathbb{R}} \int_{0}^{\infty} e^{-i t \Omega(\rho)}(r \rho)^{\frac{1}{2}} J_{\nu}(r \rho) w(r) F(r, t) d r d t
$$

for $F \in C_{0}^{\infty}\left(\mathbb{R}_{+} \times \mathbb{R}\right)$. Then, by duality (2.3) follows from

$$
\begin{equation*}
\left\|S^{d} F\right\|_{L^{2}(d r)} \leq C k^{\frac{1}{2}-s}\|F\|_{L^{2} L^{1}} \tag{2.4}
\end{equation*}
$$

Choose smooth cut-off functions ϕ_{0}, ϕ_{1} and ϕ_{3} so that $\phi_{0}=1$ on $\left\{|s|<\frac{1}{4}\right\}$, $\phi_{0}=0$ on $\left\{|s|>\frac{1}{2}\right\}, \phi_{1}=1$ on $\{|s| \sim 1\}, \phi_{1}=0$ otherwise, $\phi_{2}=0$ on $\{|s|<2\}$, $\phi_{2}=1$ on $\{|s|>3\}$, and $\phi_{0}+\phi_{1}+\phi_{2}=1$. Then we decompose S^{d} as

$$
S^{d} F(\rho)=S_{0} F+S_{1} F+S_{2} F,
$$

where for $i=0,1,2$,

$$
S_{i} F(\rho)=\frac{c_{n, k}}{\left(1+\rho^{2}\right)^{\frac{s}{2}}} \int_{\mathbb{R}} \int_{0}^{\infty} e^{-i t \Omega(\rho)}(r \rho)^{\frac{1}{2}} J_{\nu}(r \rho) \phi_{i}\left(\frac{r \rho}{\nu}\right) w(r) F(r, t) d r d t
$$

Now we need to show each S_{i} satisfies (2.4) in the place of S^{d}. Each estimate is to be shown using the following asymptotic behavior of Bessel functions:

$$
\begin{align*}
& \left|J_{\nu}(t)\right| \leq C \exp (-C \nu), \quad \text { if } \quad t \leq \frac{\nu}{2} \tag{2.5}\\
& \frac{1}{r} \int_{0}^{r}\left|J_{\nu}(t)\right|^{2} t d t \leq C \quad \text { for all } r>0 \tag{2.6}\\
& J_{\nu}(t) \phi_{2}\left(\frac{t}{\nu}\right)=t^{-\frac{1}{2}}\left(b_{+} e^{i t}+b_{-} e^{-i t}\right) \phi_{2}\left(\frac{t}{\nu}\right)+\Phi_{\nu}(t) \phi_{2}\left(\frac{t}{\nu}\right) \tag{2.7}
\end{align*}
$$

where $\left|\Phi_{\nu}(t)\right| \leq \frac{C}{t},\left|b_{ \pm}\right| \leq C$ and the constant C is independent of ν. For the proof of (2.5), see [17]. The mean value estimate (2.6) can be found in Section 4.10 of [20]. Invoking the Schläfli's integral representation (see p. 176 in [23]):

$$
J_{\nu}(t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i(t \sin \theta-\nu \theta)} d \theta-\frac{\sin (\nu \pi)}{\pi} \int_{0}^{\infty} e^{-\nu \tau-t \sinh \tau} d \tau
$$

the last two asymptotic behavior (2.7) follow from the easy estimate

$$
\left|\frac{\sin (\nu \pi)}{\pi} \int_{0}^{\infty} e^{-\nu \tau-t \sinh \tau} d \tau\right| \leq \frac{C}{\nu+t}
$$

and the method of stationary phase such that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i(t \sin \theta-\nu \theta)} d \theta=\left(b_{+} e^{i t}+b_{-} e^{-i t}\right) t^{-\frac{1}{2}}+O\left(t^{-\frac{3}{2}}\right) \quad \text { for } \quad t>2 \nu
$$

Using (2.5), we now see

$$
\begin{aligned}
&\left|S_{0} F(\rho)\right| \lesssim \nu^{\frac{1}{2}} e^{-C \nu}\left(1+\rho^{2}\right)^{-\frac{s}{2}} \int_{0}^{\frac{\nu}{\rho}} w(r)\|F(r, \cdot)\|_{L^{1}} d r \\
&=\nu^{\frac{1}{2}} e^{-C \nu}\left(1+\rho^{2}\right)^{-\frac{s}{2}}\left(\int_{0}^{\min \left(\frac{\nu}{\rho}, 2\right)}\|F(r, \cdot)\|_{L^{1}} d r\right. \\
&\left.\quad+\int_{0}^{\frac{\nu}{\rho}} \chi_{[2, \infty)}(r) w(r)\|F(r, \cdot)\|_{L^{1}} d r\right) \\
& \lesssim \nu^{\frac{1}{2}} e^{-C \nu}\left(1+\rho^{2}\right)^{-\frac{s}{2}}\left(\left(\min \left(\frac{\nu}{\rho}, 2\right)\right)^{\frac{1}{2}}+\chi_{\left[0, \frac{\nu}{2}\right](\rho)}\right)\|F\|_{L^{2} L^{1}} .
\end{aligned}
$$

Thus we have

$$
\begin{align*}
& \left\|S_{0} F\right\|_{L^{2}(d r)} \\
& \lesssim \nu^{\frac{1}{2}} e^{-C \nu}\left(\int_{0}^{\infty}\left(1+\rho^{2}\right)^{-s}\left(\min \left(\frac{\nu}{\rho}, 2\right)+\chi_{\left[0, \frac{\nu}{2}\right]}(\rho)\right) d \rho\right)^{\frac{1}{2}}\|F\|_{L^{2} L^{1}} \tag{2.8}\\
& \lesssim \nu^{1-s} e^{-C \nu}\|F\|_{L^{2} L^{1}}
\end{align*}
$$

For S_{1}, we have

$$
\begin{aligned}
\left|S_{1} F(\rho)\right| & \lesssim\left(1+\rho^{2}\right)^{-\frac{s}{2}}\left(\int_{0}^{\infty} J_{\nu}^{2}(r \rho) r \rho \phi_{1}^{2}\left(\frac{r \rho}{\nu}\right) w(r)^{2} d r\right)^{\frac{1}{2}}\|F\|_{L^{2} L^{1}} \\
& \lesssim\left(1+\rho^{2}\right)^{-\frac{s}{2}}\left(\int_{0}^{2}+\int_{2}^{\infty}\right)^{\frac{1}{2}}\|F\|_{L^{2} L^{1}}
\end{aligned}
$$

Using the change of variable $r \mapsto r / \rho$, the first part in the middle parenthesis is bounded by $\chi_{\left[\frac{\nu}{4}, \infty\right)}(\rho) \frac{1}{\rho} \int_{0}^{2 \rho} J_{\nu}^{2}(r) r \phi_{1}^{2}(r / \nu) d r$. By (2.6), it follows that

$$
\int_{0}^{2} \lesssim \nu \rho^{-1} \chi_{\left[\frac{\nu}{4}, \infty\right)}(\rho)
$$

For the second part, we also use the change of variable $r \mapsto r / \rho$ and then by (2.6) have that

$$
\int_{2}^{\infty} \lesssim \rho^{b-1} \int_{\max \left(2 \rho, \frac{\nu}{2}\right)}^{3 \nu} J_{\nu}^{2}(r) r^{1-b} d r \lesssim \nu \rho^{b-1}\left(\max \left(2 \rho, \frac{\nu}{2}\right)\right)^{-b}
$$

We thus obtain

$$
\left\|S_{1} F\right\|_{L^{2}(d r)}
$$

$$
\begin{align*}
& \lesssim\left(\int_{0}^{\infty}\left(1+\rho^{2}\right)^{-s}\left(\nu \rho^{-1} \chi_{\left[\frac{\nu}{4}, \infty\right)}(\rho)+\nu \rho^{b-1}\left(\max \left(2 \rho, \frac{\nu}{2}\right)\right)^{-b}\right) d \rho\right)^{\frac{1}{2}}\|F\|_{L^{2} L^{1}} \tag{2.9}\\
& \lesssim \nu^{\frac{1}{2}-s}\|F\|_{L^{2} L^{1}}
\end{align*}
$$

Now we estimate $S_{2} F$. Let us set $S_{2} F=S_{+} F+S_{-} F+S_{3} F$, where

$$
\begin{aligned}
& S_{ \pm} F(\rho)=\frac{c_{n, k} b_{ \pm}}{\left(1+\rho^{2}\right)^{\frac{s}{2}}} \int_{\mathbb{R}} \int_{0}^{\infty} e^{i(\pm r \rho-t \Omega(\rho))} \phi_{2}\left(\frac{r \rho}{\nu}\right) w(r) F(r, t) d r d t \\
& S_{3} F(\rho)=\frac{c_{n, k}}{\left(1+\rho^{2}\right)^{\frac{s}{2}}} \int_{\mathbb{R}} \int_{0}^{\infty} e^{-i t \Omega(\rho)}(r \rho)^{\frac{1}{2}} \Phi_{\nu}(r \rho) \phi_{2}\left(\frac{r \rho}{\nu}\right) w(r) F(r, t) d r d t
\end{aligned}
$$

For the estimate $S_{ \pm} F$, it suffices to consider $S_{+} F$. We decompose it into two parts as follows:

$$
S_{+} F(\rho)=I+I I
$$

where

$$
\begin{aligned}
& I=\frac{c_{n, k} b_{+}}{\left(1+\rho^{2}\right)^{\frac{s}{2}}} \int_{\mathbb{R}} \int_{0}^{\infty} e^{i(r \rho-t \Omega(\rho))} w(r) F(r, t) d r d t \\
& I I=\frac{c_{n, k} b_{+}}{\left(1+\rho^{2}\right)^{\frac{s}{2}}} \int_{\mathbb{R}} \int_{0}^{\infty} e^{i(r \rho-t \Omega(\rho))}\left(\phi_{2}\left(\frac{r \rho}{\nu}\right)-1\right) w(r) F(r, t) d r d t
\end{aligned}
$$

For $I I$, we have

$$
\begin{aligned}
|I I(\rho)| & \lesssim\left(1+\rho^{2}\right)^{-\frac{s}{2}} \int_{0}^{\frac{3 \nu}{\rho}} w(r)\|F(r, \cdot)\|_{L^{1}} d r \\
& \lesssim\left(1+\rho^{2}\right)^{-\frac{s}{2}}\left(\int_{0}^{\frac{3 \nu}{\rho}} w(r)^{2} d r\right)^{\frac{1}{2}}\|F\|_{L^{2} L^{1}}
\end{aligned}
$$

and hence by the similar estimate to (2.8) for $S_{0} F$

$$
\begin{equation*}
\|I I\|_{L^{2}(d r)} \lesssim \nu^{\frac{1}{2}-s}\|F\|_{L^{2} L^{1}} \tag{2.10}
\end{equation*}
$$

Now we estimate I. Since F is in $C_{0}^{\infty}\left(\mathbb{R}_{+} \times \mathbb{R}\right)$, obviously we may assume

$$
I=\frac{c_{n, k} b_{+}}{\left(1+\rho^{2}\right)^{\frac{s}{2}}} \int_{\mathbb{R}^{2}} e^{i(r \rho-t \Omega(\rho))} w(|r|) F(r, t) d r d t
$$

Squaring and integrating I over $\{|\rho| \leq N\}$, where N is the number in the condition of Ω, we have

$$
\begin{equation*}
\int_{|\rho|<N}|I|^{2} d \rho \leq C\|F\|_{L^{2} L^{1}}^{2} \tag{2.11}
\end{equation*}
$$

Now it is easy to see

$$
\begin{aligned}
& \int_{|\rho|>N}|I|^{2} d \rho \\
& \leq C \iiint \int\left|K\left(r-r^{\prime}, t-t^{\prime}\right) w(|r|)\right| F(r, t)\left|w\left(\left|r^{\prime}\right|\right)\right| F\left(r^{\prime}, t^{\prime}\right) \mid d r d r^{\prime} d t d t^{\prime}
\end{aligned}
$$

where

$$
K(r, t)=\int_{|\rho|>N} e^{i(r \rho-t \Omega(\rho))} \frac{d \rho}{|\rho|^{2 s}}
$$

For the kernel estimate, we introduce a lemma which shows uniform bound of kernel K on t.

Lemma 2.1 (see Lemma 2.3 in [4]). For any real number $A, B(A \neq 0)$ and $s \in$ $\left[\frac{1}{2}, 1\right)$, there exists a constant C independent of A and B such that

$$
\left|\int_{|\rho|>N} e^{i(A \Omega(\rho)+B \rho)} \frac{d \rho}{|\rho|^{s}}\right| \leq C|B|^{-(1-s)}
$$

Applying Lemma 2.1 with $2 s\left(\frac{1}{4} \leq s<\frac{1}{2}\right)$ and $B=r-r^{\prime}$, from fractional integration and Hölder inequality it follows

$$
\begin{align*}
& \int_{|\rho|>N}|I|^{2} d \rho \\
& \lesssim \iint\left|r-r^{\prime}\right|^{-(1-2 s)} w(|r|)\|F(r, \cdot)\|_{L^{1}} w\left(\left|r^{\prime}\right|\right)\left\|F\left(r^{\prime}, \cdot\right)\right\| d r d r^{\prime} \\
& \lesssim\left\|\mathcal{I}_{2 s}\left(w\|F\|_{L^{1}}\right)\right\|_{L^{p}}\|w\| F\left\|_{L^{1}}\right\|_{L^{p^{\prime}}} \quad\left(\frac{1}{p}=\frac{1}{p^{\prime}}-2 s\right) \tag{2.12}\\
& \lesssim\|w F\|_{L^{\frac{2}{1+2 s}}}^{2} \lesssim\|w\|_{L^{1}}^{2}\|F\|_{L^{2} L^{1}}^{2} \quad\left(\frac{b}{2} \cdot \frac{1}{s}>1\right) \\
& \lesssim\|F\|_{L^{2} L^{1}}^{2},
\end{align*}
$$

where $\mathcal{I}_{2 s}$ is the Riesz potential of order $2 s$.
Finally, we estimate $S_{3} F$. From the uniform bound of Φ_{ν} on ν, for small $\varepsilon>0$, we have

$$
\begin{aligned}
& \left|S_{3} F(\rho)\right| \\
& \lesssim \frac{1}{\left(1+\rho^{2}\right)^{\frac{s}{2}}} \int(r \rho)^{-\frac{1}{2}} \phi_{2}\left(\frac{r \rho}{\nu}\right) w(r)\|F(r, \cdot)\|_{L^{1}} d r \\
& \lesssim \rho^{-s-\frac{1}{2}} \chi_{[\nu, \infty)}(\rho) \int_{\frac{2 \nu}{\rho}}^{2} r^{-\frac{1}{2}}\|F(r, \cdot)\|_{L^{1}} d r+\rho^{-s-\frac{1}{2}} \int_{\max \left(2, \frac{2 \nu}{\rho}\right)} r^{-\frac{1}{2}-\frac{b}{2}}\|F(r, \cdot)\|_{L^{1}} d r \\
& \lesssim \nu^{-\delta} \rho^{-s-\frac{1}{2}+\delta} \chi_{[\nu, \infty)}(\rho) \int_{\frac{2 \nu}{\rho}}^{2} r^{-\frac{1}{2}+\delta}\|F(r, \cdot)\|_{L^{1}} d r+\rho^{-s-\frac{1}{2}}\left(\max \left(2, \frac{2 \nu}{\rho}\right)\right)^{-\frac{b}{2}}\|F\|_{L^{2} L^{1}} \\
& \lesssim\left(\nu^{-\delta} \rho^{-s-\frac{1}{2}+\delta} \chi_{[\nu, \infty)}(\rho)+\rho^{-s-\frac{1}{2}}\left(\max \left(2, \frac{2 \nu}{\rho}\right)\right)^{-\frac{b}{2}}\right)\|F\|_{L^{2} L^{1}}
\end{aligned}
$$

Choosing δ as $\frac{1}{8}$, we obtain

$$
\begin{equation*}
\left\|S_{3} F\right\|_{L^{2}(d r)} \lesssim \nu^{-s}\|F\|_{L^{2} L^{1}} \tag{2.13}
\end{equation*}
$$

Combining all the estimates (2.8) to (2.13) and recalling $\nu=\frac{2 k+n-2}{2}$, we get (2.4) and hence Theorem 1.2.

Acknowledgement. The authors thank the referees so much for their kind and valuable comments, which improve the presentation of the paper.

References

[1] J. Bourgain, A remark on Schrödinger operators, Israel J. Math. 77 (1992), 1-16.
[2] L. Carleson, Some analytical problems related to statistical mechanics, Euclidean Harmonic Analysis, Lecture Notes in Math. 779 (1979), 5-45.
[3] Y. Cho and Y. Shim, Weighted L^{2} estimates for maximal operators associated to dispersive equation, Illinois J. Math. 48 (2004), 1081-1092.
[4] Y. Cho and Y. Shim, Global estimates of maximal operators generated by dispersive equations, Hokkaido Univ. Preprint Series in Mathematics $\sharp 704$, (http://eprints.math.sci.hokudai.ac.jp/archive/00000883/).
[5] B. E. J. Dahlberg and C. E. Kenig, A note on almost everywhere behavior of solutions to the Schrödinger equation, Harmonic Analysis, Lecture Notes in Math. 908 (1982), 205-209.
[6] G. Gigante and F. Soria, On the boundedness in $H^{\frac{1}{4}}$ of the maximal square function associated with the Schrödinger equation, in preprint.
[7] H. P. Heinig and S. Wang, Maximal function estimates of solutions to general dispersive partial differential equations, Trans. Amer. Math. Soc. (1) 351 (1999), 79-108.
[8] C. E. Kenig and A. Ruiz, A strong type (2,2) estimate for a maximal oprerator associated to the Schrödinger equation, Trans. Amer. Math. Soc. 280 (1983), 239-246.
[9] S. Machihara, M. Nakamura, K. Nakanishi and T. Ozawa, Endpoint Strichartz estimates and global solutions for the noninear Dirac equation, J. Func. Anal. 219 (2005), 1-20.
[10] A. Moyua, A. Vargas and L. Vega, Restriction theorems and Maximal operators related to oscillatory integrals in \mathbb{R}^{3}, Duke Math. J. (3) 96 (1999), 547-574.
[11] P. Sjölin, Global maximal estimates for solutions to the Schrödinger equation, Studia. Math. (2) 110 (1994), 105-114.
[12] P. Sjölin, Radial functions and maximal estimates for solutions to the Schrödinger equation, J. Austral. Math. Soc. (Series A) 59 (1995), 134-142.
[13] P. Sjölin, L^{p} Maximal estimates for solutions to the Schrödinger equation, Math. Scand. 81 (1997), 35-68.
[14] P. Sjölin, A Counter-example Concerning Maximal Estimates for Solutions to Equations of Schrödinger Type, Indiana Univ. Math. J. (2) 47 (1998), 593-599.
[15] E. M. Stein, Harmonic Analysis:Real-Varialble Methods, Orthogonality,and Oscillatory Integrals, Princeton Univ. Press, Princeton, N.J., (1993).
[16] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, (1971).
[17] K. Stempak, A weighted uniform L^{p} - estimate of Bessel functions: a note on a paper of Guo, Proc. Amer. Math. Soc. 128 (2000), 2943-2945.
[18] T. Tao, A sharp bilinear restriction estimate for paraboloids, Geom. Funct. Anal. 13 (2003), 1359-1384.
[19] L. Vega, Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc. 102 (1988),874-878.
[20] B. G. Walther, Homogeneous estimates for oscillatory integrals, Acta Math. Univ. Comenianae, 9 (2000), 151-171.
[21] B. G. Walther, Higher integrability for maximal oscillatory Fourier integrals, Annales Academiæ Scientiarum Fennicæ Mathematica 26 (2001), 189-204.
[22] S. Wang, On the maximal operator associated with the free Schrödinger equation, Studia Math. 122 (1997), 167-182.
[23] G. Watson, A treatise on the theory of Bessel functions, Reprint of the second (1944) edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1995.

Yonggeun Cho:
Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan
E-mail address: ygcho@math.sci.hokudai.ac.jp

Sanghyuk Lee:

Department of Mathematics, University of Wisconsin-Madison, Wi 53706-1388, USA
E-mail address: slee@math.wisc.edu
Yongsun Shim:
Department of Mathematics, Pohang University of Science and Technology, Pohang 790-784, Korea

E-mail address: shim@postech.ac.kr

[^0]: 2000 Mathematics Subject Classification. Primary 42B25; Secondary 42A45.
 Keywords and phrases. Schrödinger type equation, maximal operator, angular regularity.
 The first author was supported by JSPS and the second author is partially supported by the Post-doctoral Fellowship Program of Korea Science \& Engineering Foundation (KOSEF).

