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Abstract. In this note, we consider a maximal operator supt∈R |u(x, t)| =

supt∈R |eitΩ(D)f(x)|, where u is the solution to the initial value problem ut =

iΩ(D)u, u(0) = f for a C2 function Ω with some growth rate at infinity.
We prove that the operator supt∈R |u(x, t)| has a mapping property from a

fractional Sobolev space H
1
4 with additional angular regularity in which the

data lives to L2((1 + |x|)−bdx) (b > 1) . This mapping property implies the
almost everywhere convergence of u(x, t) to f as t → 0, if the data f has an

angular regularity as well as H
1
4 regularity.

1. Introduction

We consider the following free Schrödinger type equation:
∂

∂t
u(x, t) = iΩ(D)u(x, t) in Rn+1(n ≥ 2), u(x, 0) = f(x),

where Ω(D) is a generalized differential operator defined by a C2 function Ω and

D = (−∆)
1
2 . For smooth initial data f , the solution u(x, t) = eitΩ(D)f can be

written as

u(x, t) =
1

(2π)n

∫

Rn

ei(x·ξ+tΩ(ξ))f̂(ξ) dξ, f ∈ S(Rn),

where f̂(ξ) =
∫

e−ix·ξf(x) dx. In this note, we assume that the initial data f has

Hs regularity for some s > 0 as well as some regularity in the angular direction.

For α, β ≥ 0, we define an initial data space Hα
r Hβ

ω by

Hα
r Hβ

ω =
{

f : ‖f‖Hα
r Hβ

ω
:= ‖(1−∆)

α
2 f‖L2

rHβ
ω

< ∞
}

,

where ||g||2L2
r

=
∫∞
0
|g(r)|2rn−1 dr, ||g||L2

rHβ
ω

= ||||(1 − ∆ω)
β
2 f(rω)||L2

ω
||L2

r
(here,

(r, ω) ∈ R+×Sn−1 is the spherical coordinates), and ∆ω is the Laplace-Beltrami op-

erator on Sn−1. Since ∆ω commutes with ∆, one can readily check that ||g||Hα
r Hβ

ω
∼

||(1−∆ω)
β
2 g||Hα (for instance, see [9]). Since not every function in Hα

r Hβ
ω has ra-

dial regularity higher than α, there is no embedding from or into a usual Sobolev
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space. In particular, it should be noted that Hα
r Hβ

ω * Hα+γ (0 < γ < β) and

Hα
r Hβ

ω + Hα+γ (γ ≥ β).

We also assume that Ω ∈ C2(Rn) is radially symmetric and satisfies

c1|ρ|a−k ≤ |Ω(k)(ρ)| ≤ c2|ρ|a−k (k = 0, 1, 2), if |ρ| ≥ N

for some c1, c2, a > 0 with a 6= 1 and a large N > 0. With the above assumptions,

let us define a maximal function u∗(x) by u∗(x) = sup
t∈R

|u(x, t)|. We prove

Theorem 1.1. For any ε > 0 and b > 1, if f ∈ H
1
4
r H

n−1
2 − 1

4+ε
ω , then there exists a

constant C, depending only on a, c1, c2, N, n, ε, b, such that

||u∗||L2((1+|x|)−bdx) ≤ C||f ||
H

1
4

r H
n−1

2 − 1
4 +ε

ω

.

Now let us define a linear operator T and a maximal operator T ∗ for a fixed

s > 0 by

Tf(x, t) = w(|x|)
∫

ei(x·ξ+tΩ(ξ))f̂(ξ)
dξ

(1 + |ξ|2) s
2
,

where w(r) = (1 + r)−
b
2 , b > 0 and

T ∗f(x) = sup
t∈R

|Tf(x, t)|.

Then Theorem 1.1 follows immediately from

Theorem 1.2. For any ε > 0 and b > 1, if f ∈ L2
rH

n−1
2 −s+ε

ω for some s ∈ [ 14 , 1
2 ),

there exists a constant C, depending only on a, c1, c2, N, n, s, ε, b, such that

||T ∗f ||L2 ≤ C||f ||
L2

rH
n−1

2 −s+ε
ω

.

The maximal function u∗ and operator T ∗ have been studied extensively by

many authors ([1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 18, 19, 21]). P. Sjölin [14] and

L. Vega [19] showed that for some ball BR of radius R

(1.1) ‖u∗‖L2(BR) ≤ C‖f‖Hs ,

only if s ≥ 1
4 . Up to now, it is known that (1.1) is true if n = 1 ([5, 8]) or the

initial data is radial ([4, 12]), or s > 1
2 and n ≥ 2 ([11, 19]). Recently, T. Tao [18]

obtained (1.1) for s > 2
5 and n = 2. However, the sufficiency remains open widely.

On the other hand, Theorem 1.1 shows that it is true for s = 1
4 if we assume

the additional angular regularity. If the initial data is a finite linear combination of
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radial functions and spherical harmonics such that f =
∑

k≤L fkYk, it was proved

by the first and third authors in [4] that ‖u∗‖
L

4n
2n−1

≤ CL‖f‖
H

1
4
, where

CL ≤ CL
1
2+ε(n + 2L)

n+2L
2 max

1≤k≤L

‖Yk‖
L

4n
2n−1

‖Yk‖L2
(0 < ε ¿ 1).

The factor (n + 2L)
n+2L

2 follows from the asymptotic behavior of Bessel function

(Jν(t) ∼ b+t−
1
2 eit +b−t−

1
2 e−it +O((n+2ν)

n+2ν
2 )t−

3
2 for t > 1). The tail t−

3
2 seems

inevitable to obtain the non-weighted global L
4n

2n−1 ( 4n
2n−1 > 2) estimate for which

a big cost of CL is paid. In this connection, Theorem 1.1 improves significantly the

dependency on the order of spherical harmonic up to L3/4+ε (see (2.2) below). This

improvement occurs from an estimate for the tail of Bessel function Ct−1 for t > 2ν,

which enables us to use the L2 method. The weighted L2 estimate as in Theorem

1.1 is absolutely necessary for a global estimate in view of the negative result that

the non-weighted global L2 estimate [11] and any local estimate in Lp(p > 2) [22]

are impossible for the data f ∈ H
1
4 .

In case that Ω(D) = −∆, recently G. Gigante and F. Soria [6] showed a local L2

estimate, independently of our work, that ‖u∗‖L2(BR) ≤ CL
1
2+ε‖f‖

H
1
4
. They used

a finer asymptotic behavior of Bessel function Jν(t) for ν + ν
1
3 ≤ t ≤ 2ν but their

method seems not to be applied directly to the general phase Ω because the power

of L may depend on Ω in their argument.

From the assumption on Ω, we treat Ω not only of the form |ξ|a but also
∑l

i=1 mi|ξ|ai for any number al > al−1 > · · · > a1 > 0, al 6= 1 and mi ∈ R.

For the more general phase Ω, we refer the readers to [3] in which a weighted L2

estimate is discussed for the phase Ω with ∇Ω having zeros or singularities. For an-

other use of angular regularity, one can refer to [9] in which the endpoint Strichartz

estimates of 3-d wave and Klein-Gordon equations are considered.

If not specified, throughout this paper, C denotes a generic constant that depends

on a, c1, c2, N, n, s, b, ε. We use the notation A . B and A ∼ B to denote |A| ≤ CB

and C−1B ≤ |A| ≤ CB respectively.

2. Proof of Theorem 1.2

We begin with reviewing some properties of the spherical harmonic expansion.

If f(rω) = g(r)Yk(ω) for a radial function g and a spherical harmonic Yk of order

k, then we have

f̂(ρθ) = G(ρ)Yk(θ), ||g||L2
r

= ||G||L2
r
,
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where

G(ρ) = cn,k

∫ ∞

0

g(r)rn−1(rρ)−
n−2

2 Jν(rρ) dr, |cn,k| ≤ C, ν =
2k + n− 2

2
.

For the representation of G, see e.g. [16] or [22]. Since −∆ωYk = k(k + n − 2)Yk,

we also have ||f ||L2
rHβ

ω
∼ (1 + k2)

β
2 ||g||L2

r
||Yk||L2

ω
. Furthermore, if h ∈ L2

rH
β
ω , then

there exist radial functions {hl
k} and spherical harmonics {Y l

k} such that

h(rω) =
∑

k≥0

∑

1≤l≤d(k)

hl
k(r)Y l

k(ω) in L2
rH

β
ω ,

where d(k) is the dimension of the space of spherical harmonics of degree k, and

(2.1) ||h||2
L2

rHβ
ω
∼

∑

k≥0

∑

1≤l≤d(k)

(1 + k2)β ||hl
k||2L2

r
||Y l

k ||2L2
ω
.

Thus for the proof of theorem, we have only to consider the case that f(rω) =

g(r)Yk(ω) and to show that for large k

||T ∗f ||L2 . k
1
2−s||g||L2

r
||Yk||L2

ω
,(2.2)

since for the function h(rω) =
∑

k≥0

∑
1≤l≤d(k) hl

k(r)Y l
k(ω) in L2

rH
β
ω , we have from

(2.2)

‖T ∗h‖L2 .
∑

k

∑

1≤l≤d(k)

k
1
2−s‖hl

k‖L2
r
‖Y l

k‖L2
ω

.
∑

k

k
1
2−sd(k)

1
2


 ∑

1≤l≤d(k)

‖hl
k‖2L2

r
‖Y l

k‖2L2
ω




1
2

.
∑

k

k
n−1

2 −s


 ∑

1≤l≤d(k)

‖hl
k‖2L2

r
‖Y l

k‖2L2
ω




1
2

.


∑

k

∑

1≤l≤d(k)

kn−1−2s+ε‖hl
k‖2L2

r
‖Y l

k‖2L2
ω




1
2

,

where we used the estimate d(k) = n+2k−2
k

(
n + k − 3

k − 1

)
. kn−2 for the third

inequality (see [16] ).

Now if f̂(ρω) = G(ρ)Yk(ω), from the definition of T , it follows that

Tf(rω, t) = w(r)
∫

Sn−1

∫ ∞

0

ei(rω·ρθ+tΩ(ρ))G(ρ)Yk(θ)ρn−1 dρ

(1 + ρ2)
s
2
dθ

= cn,kw(r)
∫ ∞

0

eitΩ(ρ)(rρ)−
n−2

2 Jν(rρ)ρn−1G(ρ)
dρ

(1 + ρ2)
s
2
Yk(−ω).

Let us define an operator S by

SG(r, t) = cn,kr
n−1

2 w(r)
∫ ∞

0

eitΩ(ρ)(rρ)−
n−2

2 Jν(rρ)ρ
n−1

2 G(ρ)
dρ

(1 + ρ2)
s
2
.
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Let us denote by ||F ||LpLq the mixed norm ‖(‖F (r, t)‖Lq(dt))‖Lp(dr). Here we

use the notation ||F ||pLp(dr) for
∫ |F (r)|p dr to avoid the confusion with ||F ||Lp

r
. To

prove (2.2) it suffices to show that

‖SG̃‖L2L∞ . k
1
2−s||G̃||L2(dr),(2.3)

where G̃(ρ) = ρ
n−1

2 G(ρ). Now we define the dual operator Sd of S by

SdF (ρ) =
cn,k

(1 + ρ2)
s
2

∫

R

∫ ∞

0

e−itΩ(ρ)(rρ)
1
2 Jν(rρ)w(r)F (r, t) drdt

for F ∈ C∞0 (R+ × R). Then, by duality (2.3) follows from

||SdF ||L2(dr) ≤ Ck
1
2−s||F ||L2L1 .(2.4)

Choose smooth cut-off functions φ0, φ1 and φ3 so that φ0 = 1 on {|s| < 1
4},

φ0 = 0 on {|s| > 1
2}, φ1 = 1 on {|s| ∼ 1}, φ1 = 0 otherwise, φ2 = 0 on {|s| < 2},

φ2 = 1 on {|s| > 3}, and φ0 + φ1 + φ2 = 1. Then we decompose Sd as

SdF (ρ) = S0F + S1F + S2F,

where for i = 0, 1, 2,

SiF (ρ) =
cn,k

(1 + ρ2)
s
2

∫

R

∫ ∞

0

e−itΩ(ρ)(rρ)
1
2 Jν(rρ)φi

(rρ

ν

)
w(r)F (r, t) drdt.

Now we need to show each Si satisfies (2.4) in the place of Sd. Each estimate is to

be shown using the following asymptotic behavior of Bessel functions:

|Jν(t)| ≤ C exp(−Cν), if t ≤ ν

2
,(2.5)

1
r

∫ r

0

|Jν(t)|2t dt ≤ C for all r > 0,(2.6)

Jν(t)φ2(
t

ν
) = t−

1
2 (b+eit + b−e−it)φ2(

t

ν
) + Φν(t)φ2(

t

ν
),(2.7)

where |Φν(t)| ≤ C
t , |b±| ≤ C and the constant C is independent of ν. For the proof

of (2.5), see [17]. The mean value estimate (2.6) can be found in Section 4.10 of

[20]. Invoking the Schläfli’s integral representation (see p.176 in [23]):

Jν(t) =
1
2π

∫ 2π

0

ei(t sin θ−νθ) dθ − sin(νπ)
π

∫ ∞

0

e−ντ−t sinh τ dτ,

the last two asymptotic behavior (2.7) follow from the easy estimate
∣∣∣∣
sin(νπ)

π

∫ ∞

0

e−ντ−t sinh τ dτ

∣∣∣∣ ≤
C

ν + t

and the method of stationary phase such that

1
2π

∫ 2π

0

ei(t sin θ−νθ) dθ = (b+eit + b−e−it)t−
1
2 + O(t−

3
2 ) for t > 2ν.
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Using (2.5), we now see

|S0F (ρ)| . ν
1
2 e−Cν(1 + ρ2)−

s
2

∫ ν
ρ

0

w(r)||F (r, ·)||L1 dr

= ν
1
2 e−Cν(1 + ρ2)−

s
2

(∫ min( ν
ρ ,2)

0

||F (r, ·)||L1 dr

+
∫ ν

ρ

0

χ[2,∞)(r)w(r)||F (r, ·)||L1 dr

)

. ν
1
2 e−Cν(1 + ρ2)−

s
2

(
(min(

ν

ρ
, 2))

1
2 + χ[0, ν

2 ](ρ)

)
||F ||L2L1 .

Thus we have
||S0F ||L2(dr)

. ν
1
2 e−Cν

(∫ ∞

0

(1 + ρ2)−s(min(
ν

ρ
, 2) + χ[0, ν

2 ](ρ)) dρ

) 1
2

||F ||L2L1

. ν1−se−Cν ||F ||L2L1 .

(2.8)

For S1, we have

|S1F (ρ)| . (1 + ρ2)−
s
2

(∫ ∞

0

J2
ν (rρ)rρφ2

1

(rρ

ν

)
w(r)2 dr

) 1
2

||F ||L2L1

. (1 + ρ2)−
s
2

(∫ 2

0

+
∫ ∞

2

) 1
2

‖F‖L2L1 .

Using the change of variable r 7→ r/ρ, the first part in the middle parenthesis is

bounded by χ[ ν
4 ,∞)(ρ) 1

ρ

∫ 2ρ

0
J2

ν (r)rφ2
1(r/ν) dr. By (2.6), it follows that

∫ 2

0

. νρ−1χ[ ν
4 ,∞)(ρ).

For the second part, we also use the change of variable r 7→ r/ρ and then by (2.6)

have that ∫ ∞

2

. ρb−1

∫ 3ν

max(2ρ, ν
2 )

J2
ν (r)r1−b dr . νρb−1(max(2ρ,

ν

2
))−b.

We thus obtain
||S1F ||L2(dr)

.
(∫ ∞

0

(1 + ρ2)−s(νρ−1χ[ ν
4 ,∞)(ρ) + νρb−1(max(2ρ,

ν

2
))−b) dρ

) 1
2

||F ||L2L1

. ν
1
2−s||F ||L2L1 .

(2.9)

Now we estimate S2F . Let us set S2F = S+F + S−F + S3F , where

S±F (ρ) =
cn,kb±

(1 + ρ2)
s
2

∫

R

∫ ∞

0

ei(±rρ−tΩ(ρ))φ2(
rρ

ν
)w(r)F (r, t) drdt

S3F (ρ) =
cn,k

(1 + ρ2)
s
2

∫

R

∫ ∞

0

e−itΩ(ρ)(rρ)
1
2 Φν(rρ)φ2

(rρ

ν

)
w(r)F (r, t) drdt.
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For the estimate S±F , it suffices to consider S+F . We decompose it into two parts

as follows:

S+F (ρ) = I + II

where

I =
cn,kb+

(1 + ρ2)
s
2

∫

R

∫ ∞

0

ei(rρ−tΩ(ρ))w(r)F (r, t) drdt,

II =
cn,kb+

(1 + ρ2)
s
2

∫

R

∫ ∞

0

ei(rρ−tΩ(ρ))(φ2(
rρ

ν
)− 1)w(r)F (r, t) drdt.

For II, we have

|II(ρ)| . (1 + ρ2)−
s
2

∫ 3ν
ρ

0

w(r)||F (r, ·)||L1 dr

. (1 + ρ2)−
s
2

(∫ 3ν
ρ

0

w(r)2 dr

) 1
2

||F ||L2L1

and hence by the similar estimate to (2.8) for S0F

||II||L2(dr) . ν
1
2−s||F ||L2L1 .(2.10)

Now we estimate I. Since F is in C∞0 (R+ × R), obviously we may assume

I =
cn,kb+

(1 + ρ2)
s
2

∫

R2
ei(rρ−tΩ(ρ))w(|r|)F (r, t) drdt.

Squaring and integrating I over {|ρ| ≤ N}, where N is the number in the condition

of Ω, we have ∫

|ρ|<N

|I|2 dρ ≤ C||F ||2L2L1 .(2.11)

Now it is easy to see∫

|ρ|>N

|I|2dρ

≤ C

∫∫∫∫
|K(r − r′, t− t′)w(|r|)|F (r, t)|w(|r′|)|F (r′, t′)| drdr′dtdt′,

where

K(r, t) =
∫

|ρ|>N

ei(rρ−tΩ(ρ)) dρ

|ρ|2s
.

For the kernel estimate, we introduce a lemma which shows uniform bound of kernel

K on t.

Lemma 2.1 (see Lemma 2.3 in [4]). For any real number A,B(A 6= 0) and s ∈
[ 12 , 1), there exists a constant C independent of A and B such that

∣∣∣∣∣
∫

|ρ|>N

ei(AΩ(ρ)+Bρ) dρ

|ρ|s

∣∣∣∣∣ ≤ C|B|−(1−s).
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Applying Lemma 2.1 with 2s (1
4 ≤ s < 1

2 ) and B = r − r′, from fractional

integration and Hölder inequality it follows
∫

|ρ|>N

|I|2dρ

.
∫∫

|r − r′|−(1−2s)w(|r|)||F (r, ·)||L1w(|r′|)||F (r′, ·)|| drdr′

. ||I2s(w||F ||L1)||Lp ||w||F ||L1 ||Lp′

(
1
p

=
1
p′
− 2s

)

. ||wF ||2
L

2
1+2s L1

. ‖w‖2
L

1
s
‖F‖2L2L1

(
b

2
· 1
s

> 1
)

. ‖F‖2L2L1 ,

(2.12)

where I2s is the Riesz potential of order 2s.

Finally, we estimate S3F . From the uniform bound of Φν on ν, for small ε > 0,

we have

|S3F (ρ)|

. 1
(1 + ρ2)

s
2

∫
(rρ)−

1
2 φ2

(rρ

ν

)
w(r)||F (r, ·)||L1 dr

. ρ−s− 1
2 χ[ν,∞)(ρ)

∫ 2

2ν
ρ

r−
1
2 ||F (r, ·)||L1 dr + ρ−s− 1

2

∫

max(2, 2ν
ρ )

r−
1
2− b

2 ‖F (r, ·)‖L1 dr

. ν−δρ−s− 1
2+δχ[ν,∞)(ρ)

∫ 2

2ν
ρ

r−
1
2+δ||F (r, ·)||L1 dr + ρ−s− 1

2

(
max(2,

2ν

ρ
)
)− b

2

‖F‖L2L1

.
(

ν−δρ−s− 1
2+δχ[ν,∞)(ρ) + ρ−s− 1

2

(
max(2,

2ν

ρ
)
)− b

2
)
||F ||L2L1 .

Choosing δ as 1
8 , we obtain

||S3F ||L2(dr) . ν−s||F ||L2L1 .(2.13)

Combining all the estimates (2.8) to (2.13) and recalling ν = 2k+n−2
2 , we get

(2.4) and hence Theorem 1.2.

Acknowledgement. The authors thank the referees so much for their kind and

valuable comments, which improve the presentation of the paper.

References

[1] J. Bourgain, A remark on Schrödinger operators, Israel J. Math. 77 (1992), 1-16.

[2] L. Carleson, Some analytical problems related to statistical mechanics, Euclidean Harmonic

Analysis, Lecture Notes in Math. 779 (1979), 5-45.

[3] Y. Cho and Y. Shim, Weighted L2 estimates for maximal operators associated to dispersive

equation, Illinois J. Math. 48 (2004), 1081-1092.



MAXIMAL INEQUALITY 9

[4] Y. Cho and Y. Shim, Global estimates of maximal operators generated by

dispersive equations, Hokkaido Univ. Preprint Series in Mathematics ]704,

(http://eprints.math.sci.hokudai.ac.jp/archive/00000883/).

[5] B. E. J. Dahlberg and C. E. Kenig, A note on almost everywhere behavior of solutions to the

Schrödinger equation, Harmonic Analysis, Lecture Notes in Math. 908 (1982), 205-209.

[6] G. Gigante and F. Soria, On the boundedness in H
1
4 of the maximal square function associ-

ated with the Schrödinger equation, in preprint.

[7] H. P. Heinig and S. Wang, Maximal function estimates of solutions to general dispersive

partial differential equations, Trans. Amer. Math. Soc. (1) 351 (1999), 79-108.

[8] C. E. Kenig and A. Ruiz, A strong type (2,2) estimate for a maximal oprerator associated

to the Schrödinger equation, Trans. Amer. Math. Soc. 280 (1983), 239-246.

[9] S. Machihara, M. Nakamura, K. Nakanishi and T. Ozawa, Endpoint Strichartz estimates and

global solutions for the noninear Dirac equation, J. Func. Anal. 219 (2005), 1-20.

[10] A. Moyua, A. Vargas and L. Vega, Restriction theorems and Maximal operators related to

oscillatory integrals in R3, Duke Math. J. (3) 96 (1999), 547-574.
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