

Financial Mathematics 1 - Spring term 2015

Exercise sheet no. 10 (21.5.2015)

Exercise 1: Write the following processes as Itô processes and precise their drift and diffusion coefficients ((B_t) is a standard 1-dimensional BM):

- (i) $X_t = t + e^{B_t}$
- (ii) $X_t = B_t^3 - 3tB_t$
- (iii) $X_t = (B_t + t) \exp(-B_t - \frac{1}{2}t)$

Exercise 2: Let $(\Omega, (\mathcal{F}_t)_{t \geq 0}, (B_t)_{t \geq 0}, P)$ be a standard BM.

- (i) Let $(L_t)_{t \in [0, T]}$ be a $(\mathcal{F}_t)_{t \in [0, T]}$ -martingale. Show that the probability measures $dP^{L_T} := L_T dP$ and $dP^{L_t} := L_t dP$ coincide on \mathcal{F}_t , $t \in [0, T]$.
- (ii) Let ϑ_s be bounded and deterministic, i.e. $\vartheta_s = f(s)$ for some bounded measurable function f . Calculate

$$E_P \left[B_t \exp \left(\int_0^T \vartheta_s dB_s - \frac{1}{2} \int_0^T \vartheta_s^2 ds \right) \right], \quad t \geq 0.$$

Exercise 3: Let $(H_t)_{t \in [0, T]}$ be adapted, measurable, and such that $\int_0^T H_s^2 ds < \infty$ P -a.s. Consider the stochastic integral $M_t := \int_0^t H_s dW_s$. Show that if $E[\sup_{t \in [0, T]} |M_t|^2] < \infty$, then $E[\int_0^T H_s^2 ds] < \infty$ (i.e. $H \in \mathcal{H}$ and therefore (M_t) is a martingale).

Hint: Consider the stopping times

$$T_n := \inf \left\{ s \in [0, T] \mid \int_0^s H_u^2 du \geq n \right\}, \quad n \geq 1,$$

and show that $E[M_{t \wedge T_n}^2] = E[\int_0^{t \wedge T_n} H_s^2 ds]$. For this, you may have a look at the proof of Proposition 3.21 of the lecture.

Please drop the solutions into the homework box for the lecture until 28.5.2015, 6 pm