Financial Mathematics 2 - Fall term 2015

Exercise sheet no. 7 (26.10.2015)

Exercise 1: Let $r(\theta)$ be as at the end of Section 6.1.2 of the lecture notes. Calculate the law of $r(\theta)$ under P^{θ}, and the law of $r(\theta)$ under $P^{\theta, T}$ using Proposition 6.15.

Exercise 2: ("Stochastic Fubini") Let $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \in[0, T]}, \mathbb{P}\right)$ be a filtered probability space and let $\left(W_{t}\right)_{t \in[0, T]}$ be a standard Brownian motion with respect to $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$. Consider a process with two indices $(H(t, s))_{t, s \in[0, T]}$ satisfying the following properties: for any ω, the map $(t, s) \mapsto H(t, s)(\omega)$ is continuous and for any $s \in[0, T]$, the process $(H(t, s))_{t \in[0, T]}$ is adapted. We would like to justify the equality

$$
\int_{0}^{T}\left(\int_{0}^{T} H(t, s) d W_{t}\right) d s=\int_{0}^{T}\left(\int_{0}^{T} H(t, s) d s\right) d W_{t}
$$

For simplicity, we assume that $\int_{0}^{T} \mathbb{E}\left[\int_{0}^{T} H^{2}(t, s) d t\right] d s<\infty$ (which is sufficient to justify (108) of the lecture notes).
(i) Prove that

$$
\int_{0}^{T} \mathbb{E}\left[\left|\int_{0}^{T} H(t, s) d W_{t}\right|\right] d s \leq \int_{0}^{T} \mathbb{E}\left[\int_{0}^{T} H^{2}(t, s) d t\right]^{1 / 2} d s
$$

Deduce that the integral $\int_{0}^{T}\left(\int_{0}^{T} H(t, s) d W_{t}\right) d s$ exists.
(ii) Let $0=t_{0}<t_{1}<\ldots<t_{N}=T$ be a partition of [$\left.0, T\right]$. Explain why

$$
\int_{0}^{T}\left(\sum_{i=0}^{N-1} H\left(t_{i}, s\right)\left(W_{t_{i+1}}-W_{t_{i}}\right)\right) d s=\sum_{i=0}^{N-1}\left(\int_{0}^{T} H\left(t_{i}, s\right) d s\right)\left(W_{t_{i+1}}-W_{t_{i}}\right)
$$

and justify why one can take the linit to obtain the desired equality.

Exercise 3: In the HJM-model assume the the function σ is a positive constant.
(i) Show that the solution of (111) of the lecture notes is given by

$$
f(t, T)=f(0, T)+\sigma^{2} t(T-t / 2)+\sigma \tilde{W}_{t} .
$$

(ii) Compute the volatilities of the zero-coupon bonds $\left(\sigma_{t}^{T}\right)_{t \in[0, T]}$.
(iii) Find the price at time 0 of a call with maturity θ and strike price K, on a zerocoupon bond with maturity $T>\theta$.

Please drop the solutions into the homework box of the lecture until 12.11.2015, 6 pm

