Financial Mathematics 2 - Fall term 2015

Exercise sheet no. 8 (12.11.2015)

Exercise 1: Show that

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B) \quad \forall A \in \mathcal{A}_{0}, B \in \mathcal{B}_{0} .
$$

where $\mathcal{A}_{0}, \mathcal{B}_{0}$, are as on page 141 of the lecture notes implies (116) of the lecture notes. Hint: You may use Proposition 11.4 on page 62 of the lecture notes from TIM 1.

Exercise 2: Show that

$$
\mathbb{P}\left(\left\{U_{N_{s}+j} \in \tilde{H}\right\} \cap\left\{d \leq N_{s}\right\}\right)=\mathbb{P}\left(U_{j} \in \tilde{H}\right) \mathbb{P}\left(d \leq N_{s}\right) \text { for any } j \geq 1, d \geq 1,
$$

as seen on page 142 of the lecture notes implies that $U_{N_{s}+j}$ and U_{j} have same law for any $j \geq 1$.

Exercise 3: Show that

$$
\mathbb{E}\left[e^{\sigma\left(W_{t}-W_{s}\right)+\left(\mu-r-\frac{\sigma^{2}}{2}\right)(t-s)}\left(\prod_{j=1}^{N_{t}-N_{s}}\left(1+U_{j}\right)\right)\right]=e^{(\mu-r)(t-s)} \mathbb{E}\left[\prod_{j=N_{s}+1}^{N_{t}}\left(1+U_{j}\right)\right]
$$

as seen on page 143 of the lecture notes.

Exercise 4: Let $\left(V_{j}\right)_{j \geq 1}$ be a sequence of non-negative, independent and identically distributed random variables. Let N be a Poisson distributed random variable with parameter $\lambda>0$, and independent of the sequence $\left(V_{j}\right)_{j \geq 1}$. Show that

$$
\mathbb{E}\left[\Pi_{j=1}^{N} V_{j}\right]=\exp \left(\lambda\left(\mathbb{E}\left[V_{1}\right]-1\right)\right) .
$$

Please drop the solutions into the homework box of the lecture until 19.11.2015, 6 pm

