Financial Mathematics 2 - Fall term 2015

Exercise sheet no.9 (19.11.2015)

Exercise 1: Let $(V_n)_{n\geq 1}$ be a sequence independent, identically distributed, integrable random variables. Let N be a random variable taking values in $\mathbb{N} \cup \{0\}$, integrable and independent of the sequence $(V_n)_{n\geq 1}$. Let

$$S = \sum_{n=1}^{N} V_n$$

- (i) Prove that S is integrable and that $\mathbb{E}[S] = \mathbb{E}[N]\mathbb{E}[V_1]$.
- (ii) Assume N and V_1 are square-integrable. Then show that S is square-integrable and that its variance is $\operatorname{var}(S) = \mathbb{E}[N]\operatorname{var}(V_1) + \operatorname{var}(N)(\mathbb{E}[V_1])^2$.
- (iii) Deduce that if N follows a Poisson law with parameter λ , $\mathbb{E}[S] = \lambda \mathbb{E}[V_1]$ and $\operatorname{var}(S) = \lambda \mathbb{E}[V_1^2]$.

Exercise 2: The hypotheses and notations are those of Exercise 4, Exercise sheet no.8. Suppose that the V_j 's take values in $\{\alpha, \beta\}$, with $\alpha, \beta \in \mathbb{R}$, and let $p = P(V_1 = \alpha) = 1 - P(V_1 = \beta)$. Prove that S has the same law as $\alpha N_1 + \beta N_2$, where N_1 and N_2 are two independent random variables with Poisson distributions with respective parameters λp and $\lambda(1-p)$.

Exercise 3: The hypotheses and notations are those of Chapter 7 of the lecture notes. For $\theta \in \mathbb{R}$ and u > -1 define

$$Z_t^{\theta, u} := e^{\theta W_t - \frac{\theta^2}{2}t} (1+u)^{N_t} e^{-\lambda u t}.$$

- (i) Prove that $(Z_t^{\theta,u})_{t\in[0,T]}$ is a martingale.
- (ii) Define the probability \hat{P} with density $d\hat{P}/dP = Z_T^{\theta,u}$. Prove that under \hat{P} , the σ algebras generaterd by (W_t) , (N_t) , (U_j) remain independent, and that the process $(N_t)_{t \in [0,T]}$ is a Poisson process with intensity $\hat{\lambda} = \lambda(1+u)$.
- (iii) In the jump-diffusion model, the discounted price at time t is given by $\tilde{X}_t = X_0 \left(\prod_{j=1}^{N_t} (1+U_j)\right) e^{\sigma W_t + \left(\mu r \frac{\sigma^2}{2}\right)t}$. Prove that $(\tilde{X}_t)_{t \in [0,T]}$ is a \hat{P} -martingale, if and only if

$$\mu + \sigma\theta = r - \lambda(1+u)\mathbb{E}[U_1]$$

If $\sigma > 0$ and $\mathbb{E}[U_1] \neq 0$, this equality is satisfied for infinitely many pairs (θ, u) . Therefore, the set of risk neutral probability measures is infinite.

Please drop the solutions into the homework box of the lecture until 26.11.2015, 6 pm