

Topics in Mathematics 1 - Spring term 2017

Exercise sheet no.1 (9.3.2017)

Exercise 1: (Sylvester's formula) Let (Ω, \mathcal{A}, P) be a probability space, I a finite index set, and $A_i \in \mathcal{A}$, $i \in I$. Show that

$$P\left(\bigcup_{i \in I} A_i\right) = \sum_{\substack{J \subset I \\ J \neq \emptyset}} (-1)^{|J|-1} \cdot P\left(\bigcap_{j \in J} A_j\right),$$

i.e. show that

$$P\left(\bigcup_{i \in I} A_i\right) = \sum_{k=1}^n (-1)^{k-1} \cdot \sum_{1 \leq i_1 < \dots < i_k \leq n} P(A_{i_1} \cap \dots \cap A_{i_k}),$$

if $I = \{1, \dots, n\}$ for some $n \in \mathbb{N}$.

Exercise 2: Let (Ω, \mathcal{A}) be a measurable space, and $P : \mathcal{A} \rightarrow [0, \infty)$ a map with $P(\Omega) = 1$. Show that the following are equivalent:

- (i) P is a probability measure.
- (ii) P is additive, i.e. $A, B \in \mathcal{A}, A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$, and monotone continuous from above, i.e. for any sequence $A_n \in \mathcal{A}$, $n \in \mathbb{N}$, with $A_{n+1} \subset A_n$ for all n , we have $P(\bigcap_{n \in \mathbb{N}} A_n) = \lim_{n \rightarrow \infty} P(A_n)$.
- (iii) P is additive and monotone continuous from below, i.e. for any sequence $A_n \in \mathcal{A}$, $n \in \mathbb{N}$, with $A_n \subset A_{n+1}$ for all n , we have $P(\bigcup_{n \in \mathbb{N}} A_n) = \lim_{n \rightarrow \infty} P(A_n)$.

Exercise 3: Let (Ω, \mathcal{A}) be a measurable space and $A_n \in \mathcal{A}$, $n \in \mathbb{N}$. Show that

$$\limsup_{n \rightarrow \infty} A_n := \bigcap_{n \in \mathbb{N}} \bigcup_{m \geq n} A_m = \{\omega \in \Omega \mid \omega \in A_n \text{ for infinitely many } n\},$$

$$\liminf_{n \rightarrow \infty} A_n := \bigcup_{n \in \mathbb{N}} \bigcap_{m \geq n} A_m = \{\omega \in \Omega \mid \omega \in A_n \text{ for all but finitely many } n\},$$

and $\liminf_{n \rightarrow \infty} A_n, \limsup_{n \rightarrow \infty} A_n \in \mathcal{A}$ with $\liminf_{n \rightarrow \infty} A_n \subset \limsup_{n \rightarrow \infty} A_n$.

Please drop the solutions into the homework box for the lecture until 16.3.2017, 6 pm