

Topics in Mathematics 1 - Spring term 2017

Exercise sheet no.4 (30.3.2017)

Exercise 1: Let (Ω, \mathcal{A}) and (Ω', \mathcal{A}') be measurable spaces, $T : \Omega \rightarrow \Omega'$ an \mathcal{A}/\mathcal{A}' -measurable map, and $\sigma(T)$ the σ -algebra on Ω that is generated by T . Show that any $\sigma(T)$ -measurable real valued random variable $X : \Omega \rightarrow \mathbb{R}$ has the form

$$X = f(T)$$

where f is some measurable function on Ω' .

(Hint: Use “measure theoretic induction”, i.e. show the statement first for simple functions, then for r.v.’s that are positive by using a monotone approximation with simple functions, and finally for general $X = X^+ - X^-$).

Exercise 2: (i) Let $(X_i)_{i \in I}$, $(Y_i)_{i \in I}$, be two uniformly integrable families of random variables on a probability space (Ω, \mathcal{A}, P) and $\alpha, \beta \in \mathbb{R}$. Show that $(\alpha X_i + \beta Y_i)_{i \in I}$ is uniformly integrable.

(ii) Let $(X_n)_{n \in \mathbb{N}}$ be a sequence of random variables on (Ω, \mathcal{A}, P) such that $X_n \rightarrow X$ in \mathcal{L}^1 . Show that then $(X_n)_{n \in \mathbb{N}}$ is uniformly integrable.

Exercise 3: Let $\Omega = (0, 1]$ and P be the Lebesgue measure on $\mathcal{B}((0, 1])$. Define

$$A_{2^i+k} := \left(\frac{k}{2^i}, \frac{k+1}{2^i} \right], \quad 0 \leq k < 2^i, \quad k, i \in \mathbb{N} \cup \{0\},$$

$$Y_n := 1_{A_n}, \quad \tilde{Y}_n := n^{\frac{1}{p}} \cdot 1_{(0, \frac{1}{n})}, \quad n \in \mathbb{N}.$$

Show that:

(i) $Y_n \rightarrow 0$ in \mathcal{L}^p for $p > 0$ ($\implies Y_n \rightarrow 0$ in probability).

(ii) $Y_n \not\rightarrow 0$ P -a.s.

(iii) $\tilde{Y}_n \rightarrow 0$ P -a.s. ($\implies \tilde{Y}_n \rightarrow 0$ in probability).

(iv) $\tilde{Y}_n \not\rightarrow 0$ in \mathcal{L}^p for $p > 0$.

Please drop the solutions into the homework box for the lecture at the basement of building no. 25 until 6.4.2017, 6 pm