

Topics in Mathematics 1 - Spring term 2017

Exercise sheet no.5 (6.4.2017)

Exercise 1: Let $\sum_{n=1}^{\infty} \frac{d_n(x)}{2^n}$ be the binary expansion of $x \in [0, 1]$. x is called *normal*, if the sequence of relative frequencies of “ones” in the binary expansion converges to $\frac{1}{2}$, i.e.

$$\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^n d_i(x) = \frac{1}{2}.$$

Show with the help of the strong law of large numbers that the set N of normal numbers in $[0, 1]$ has Lebesgue measure one.

Exercise 2: Let $\Omega = \{\omega = (x_1, \dots, x_N) \mid x_i \in \{-1, +1\}\}$, P the uniform distribution on Ω , and $X_i(\omega) = x_i$. We interpret

$$S_n = X_1 + \dots + X_n \quad (n = 0, 1, \dots, N)$$

as the random motion of a particle on \mathbb{Z} with start in 0 (*random walk*). For $0 < a \in \mathbb{N}$ let

$$T_a = \min\{n > 0 \mid S_n = a\}$$

the time of the first visit in a . Show:

(i) (*Reflection principle*) For any $c > 0$ we have:

$$P(S_n = a - c, T \leq n) = P(S_n = a + c)$$

(ii) For the distribution of T we have:

$$\begin{aligned} P(T_a \leq n) &= P(S_n \notin [-a, a - 1]) \\ P(T_a = n) &= \frac{P(S_{n-1} = a - 1) - P(S_{n-1} = a + 1)}{2} = \frac{a}{n} \cdot P(S_n = a). \end{aligned}$$

Please turn the page !

Exercise 3: Let S_n ($n = 1, 2, \dots, 2N$) be the *random walk* from Exercise 2. Let

$$T_0(\omega) = \min\{n > 0 \mid S_n(\omega) = 0\}$$

be the time of the first return to 0 and

$$L(\omega) = \max\{0 \leq n \leq 2N \mid S_n(\omega) = 0\}$$

be the time of the last visit in 0.

(i) Show:

$$P(T_0 > 2n) = P(S_{2n} = 0)$$

and

$$P(L = 2n) = P(S_{2n} = 0) \cdot P(S_{2N-2n} = 0) = 2^{-2N} \binom{2n}{n} \binom{2N-2n}{N-n}$$

(“*discrete arcsine distribution*”)

(ii) Show that the distribution μ_N of $\frac{L}{2N}$ converges weakly as $N \uparrow \infty$ towards the distribution with density

$$f(x) = \frac{1}{\pi \sqrt{x(1-x)}} \quad (0 < x < 1)$$

and distribution function

$$F(x) = \frac{2}{\pi} \arcsin \sqrt{x}$$

(“*arcsine distribution*”).

Exercise 4: Let μ_n , $n \geq 1$, μ be probability measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Suppose that the sequence $(\mu_n)_{n \geq 1}$ converges vaguely to μ . Show that then $(\mu_n)_{n \geq 1}$ also converges weakly to μ (cf. lecture I. Corollary 10.5 (i) \Rightarrow (ii)).

Please drop the solutions into the homework box for the lecture at the basement of building no. 25 until 20.4.2017, 6 pm