

TOPOLOGY I

Exercise sheet no.1

15.04.2005

Exercise 1: Let S denote the class of all the topological spaces with three elements. Decompose S into its homeomorphism classes.

Exercise 2: Let $f : \mathbb{R} \rightarrow \mathbb{R}$ strictly monotone and surjective. Show that f is a homeomorphism.

Exercise 3: A topological space (X, \mathcal{T}) is said to be *metrizable* if \mathcal{T} is induced by some metric d .

- (i) Show that a metrizable space is first countable.
- (ii) Let (X, \mathcal{T}) be a discrete topological space, i.e. \mathcal{T} is the discrete topology. Show that X is metrizable. Show further that: X is countable $\iff (X, \mathcal{T})$ is second countable
- (iii) Use (i) and (ii) to give an example of a first countable space which is not second countable.

Exercise 4: Let $X = \{f : \mathbb{R} \rightarrow \mathbb{R} \mid f \text{ continuous and bounded}\}$ with the usual sup norm, i.e. $\|f\| := \sup_{x \in X} |f(x)|$. Show that X is not second countable but first countable as a metric space.

Hint: It is enough to find an uncountable discrete subset of X . (A discrete subset A of a topological space X is a set with the following property: $\forall x, y \in A, x \neq y$ there exist neighborhoods U_x of x , and U_y of y with $U_x \cap U_y = \emptyset$.)

Exercise 5: (*French railway metric*) Let $P \in \mathbb{R}^2$ be an arbitrary point (P=Paris). For $Q_1, Q_2 \in \mathbb{R}^2$, define $d(Q_1, Q_2)$ as follows: If P, Q_1 , and Q_2 lie on the same line, then $d(Q_1, Q_2) = |Q_1 - Q_2|$, otherwise $d(Q_1, Q_2) = |Q_1 - P| + |Q_2 - P|$ (here $|\cdot|$ is the euclidean norm). Show that (\mathbb{R}^2, d) is a metric space. Is (\mathbb{R}^2, d) complete? Describe the open sets.