

TOPOLOGY I

Exercise sheet no.3

02.05.2005

Exercise 1: Denote by $\text{int}(C)$ the interior of C . Let $A, B \subset X$, A connected. Let $A \cap \text{int}(B) \neq \emptyset$, and $A \cap (X \setminus B) \neq \emptyset$. Show that $A \cap \partial B \neq \emptyset$.

Exercise 2: Show that a connected space needs not necessarily be path-connected.

Exercise 3: Show that \mathbb{R} is not homeomorphic to \mathbb{R}^2 .

Exercise 4: Let X be a Hausdorff space. Let $x, y \in X$ be a limit of the sequence $(x_n)_{n \in \mathbb{N}}$ in X . Show that $x = y$.

Exercise 5: Let $f : X \rightarrow Y$ be a continuous map. Show that the graph $G = \{(x, y) \in X \times Y \mid y = f(x)\}$ of f is homeomorphic to X .

Exercise 6: Show that a topological space X is T_4 if and only if for every closed subset A of X and every neighborhood U_A of A there is a neighborhood V_A of A with $\overline{V_A} \subset U_A$.