

# TOPOLOGY I

Exercise sheet no.4

13.05.2005

**Exercise 1:** (Heine-Borel) Show that a subset of  $\mathbb{R}^d$  is compact, iff it is closed and bounded.

**Exercise 2:** Let  $X$  be an infinite set. Consider the family  $\mathcal{T}$  of those sets, which consist of  $\emptyset$  and all complements of finite subsets in  $X$  (cofinite Topology). Show that  $X$  is compact.

**Exercise 3:** Let  $\mathcal{M}$  be the set of all bounded sequences  $(x_n)_{n \in \mathbb{N}}$  in  $\mathbb{R}$ . Show that:

- (a)  $d((x_n), (y_n)) := \sup_{n \in \mathbb{N}} |x_n - y_n|$  is a metric on  $\mathcal{M}$ .
- (b)  $(\mathcal{M}, d)$  is not compact.

**Exercise 4:** Let  $K, L \subset \mathbb{R}^d$  be compact. Show that also  $K + L := \{x + y \mid x \in K, y \in L\}$  is compact.

**Exercise 5:** Let  $(X, d)$  be a metric space,  $A \subset X$ ,  $x \in X \setminus A$  with  $d(x, A) = \inf\{d(x, y) \mid y \in A\} = 0$ . Show that  $x \in \partial A$ .

**Exercise 6:** (Banach fixed-point theorem) Let  $(X, d)$  be a compact metric space,  $f : X \rightarrow X$  a contraction, i.e. there is  $\gamma \in (0, 1)$  with  $d(f(x), f(y)) \leq \gamma d(x, y)$  for every  $x, y \in X$ . Show that  $f$  admits exactly one fixed point. Hint: Start with  $x_0 \in X$  arbitrary and consider the sequence  $x_i = f(x_{i-1})$ .