

TOPOLOGY I

Exercise sheet no.8

23.06.2005

Exercise 1: Let $A = \{a_{ij}\}_{1 \leq i,j \leq 3}$ be a 3×3 -matrix of strictly positive real numbers, i.e. $a_{ij} > 0$ for each $1 \leq i, j \leq 3$. Then A has a positive real eigenvalue (characteristic value). Hint: Show first:

- (a) If B is homeomorphic to D^2 and $f : B \rightarrow B$ is continuous, then f has a fixed-point.
- (b) Consider the map $x \mapsto \frac{A(x)}{|A(x)|}$, on $B := S^2 \cap \{(x_1, x_2, x_3) | x_1 \geq 0, x_2 \geq 0, x_3 \geq 0\}$. Has it a fixed-point?

Exercise 2: Calculate explicitly $\partial_1 \partial_2(\delta_2)$ without using Lemma 1.4. of the lecture.

Exercise 3: (*Reduced homology*) Using the homomorphism

$$\partial^\# : S_0(X) \rightarrow \mathbb{Z}; \quad \partial^\#(\Sigma_x \nu_x x) = \Sigma_x \nu_x$$

one defines the 0-th reduced homology group $H_0^\#(X) := \ker(\partial^\#)/\text{im}(\partial_1)$.

Show that:

- (a) $\partial^\# \circ \partial_1 = 0$
- (b) $H_0^\#(X)$ is a free abelian group of $r - 1$ generators, where r is the number of path-connected components of X , so that the term "reduced" is justified.

For $q > 0$ we define $H_q^\#(X) = H_q(X)$.

Exercise 4: Show that the homology groups are topological invariants, i.e. if $f : X \rightarrow X'$ is a homeomorphism, then $H_q(f) : H_q(X) \rightarrow H_q(X')$ is an isomorphism.