LOGARITHMIC TREE-NUMBERS FOR ACYCLIC COMPLEXES

H. KIM* AND W. KOOK

Abstract

For a d-dimensional cell complex Γ with $\tilde{H}_{i}(\Gamma)=0$ for $-1 \leq i<d$, an i-dimensional tree is a non-empty collection B of i-dimensional cells in Γ such that $\tilde{H}_{i}\left(B \cup \Gamma^{(i-1)}\right)=0$ and $w(B):=\left|\tilde{H}_{i-1}\left(B \cup \Gamma^{(i-1)}\right)\right|$ is finite, where $\Gamma^{(i)}$ is the i-skeleton of Γ. Define the i-th tree-number to be $k_{i}:=\sum_{B} w(B)^{2}$, where the sum is over all i-dimensional trees. In this paper, we will show that if Γ is acyclic and $k_{i}>0$ for $-1 \leq i \leq d$, then k_{i} and the combinatorial Laplace operators Δ_{i} are related by $\sum_{i=-1}^{\bar{d}} \omega_{i} x^{i+1}=(1+x)^{2} \sum_{i=0}^{d-1} \kappa_{i} x^{i}$, where $\omega_{i}=\log \operatorname{det} \Delta_{i}$ and $\kappa_{i}=\log k_{i}$. We will discuss various applications of this equation.

1. Introduction

In this paper, we will extend Temperley's tree-number formula for finite graphs [10] to a class of cell complexes, called γ-complexes, and show interesting applications to acyclic complexes. We will review this formula shortly.

A γ-complex is a non-empty finite cell complex Γ whose integral cellular chain complex $\left\{C_{i}, \partial_{i}\right\}_{i \geq-1}$ with $C_{-1}=\mathbb{Z}$ satisfies the following conditions:
$(\gamma 1) \operatorname{rk} \partial_{i}>0$ (equivalently, $\partial_{i} \neq 0$) for $0 \leq i \leq \operatorname{dim} \Gamma$, and
$(\gamma 2)$ the reduced integral homology $\tilde{H}_{i}(\Gamma)=0$ for $i<\operatorname{dim} \Gamma$.
This definition is intended as a generalization of connected finite graphs. Other examples of γ-complexes are matroid complexes, standard simplexes, and cubical complexes [3] with the latter two being acyclic. However, the n-dimensional sphere S^{n} made of one 0 -cell and one n-cell is not a γ-complex for $n \geq 2$ because it violates condition ($\gamma 1$).

We will define high-dimensional spanning trees for a γ-complex extending the ideas in [1]. Given a γ-complex Γ, let Γ_{i} be the set of all i-dimensional cells, and $\Gamma^{(i)}$ the i-skeleton of Γ. Given a subset $S \subset \Gamma_{i}$, define $\Gamma_{S}=S \cup \Gamma^{(i-1)}$ as a subcomplex of Γ. An i-dimensional spanning tree of Γ (or simply, an i-tree) is a non-empty subset $B \subset \Gamma_{i}$ such that $\tilde{H}_{i}\left(\Gamma_{B}\right)=0$ and $w(B):=\left|\tilde{H}_{i-1}\left(\Gamma_{B}\right)\right|$ is finite. Define the i-th tree-number of Γ by

$$
k_{i}(\Gamma)=k_{i}=\sum_{B} w(B)^{2},
$$

where the sum is over all i-trees in Γ. We will see that $k_{i}>0$ for all $-1 \leq i \leq \operatorname{dim} \Gamma$ where we define $k_{-1}=1$. If Γ is a connected graph, then k_{0} is the number of vertices and k_{1} is the number of graph theoretic spanning trees in Γ. Note that S^{n} with one 0 -cell and one n-cell has no i-tree for $i \geq 1$: it is an n-dimensional "loop".

[^0]An important method for computing the tree-numbers for Γ is given by the combinatorial Laplacians $\Delta_{i}\left([1],[3]\right.$, and [10]). For example, let $\Delta_{0}=L+J$, where L is the Laplacian matrix of a finite graph G of order n, and J is the all 1's matrix. Temperley [10] showed that $\operatorname{det} \Delta_{0}=n^{2} k_{1}$ for G (refer to Corollary 7). This method is more efficient than the matrix-tree theorem for certain graphs. Indeed, for $\Gamma=K_{n}$ the complete graph on n vertices, we have $\Delta_{0}=n I$ and $\operatorname{det} \Delta_{0}=n^{n}$, from which the Cayley's Theorem $k_{1}\left(K_{n}\right)=n^{n-2}$ is immediate.

We will show that Temperley's formula can be extended to any γ-complex Γ (refer to Theorem 6). Also, if Γ is acyclic of dimension d, then each Δ_{i} is positive-definite, and the following polynomials are well-defined: $D(x)=\sum_{i=-1}^{d}\left(\log \operatorname{det} \Delta_{i}\right) x^{i+1}$ and $K(x)=\sum_{i=0}^{d-1}\left(\log k_{i}\right) x^{i}$. The main result of the paper will show that

$$
\begin{equation*}
D(x)=(1+x)^{2} K(x) . \tag{1.1}
\end{equation*}
$$

This paper is organized as follows. Section 2 is a review of useful facts from matrix theory and combinatorial Laplacians for γ-complexes. In section 3, we will describe high-dimensional spanning trees for a γ-complex via the boundary operators of its chain complex. In section 4, we will prove the main results of the paper which consist of a generalization of Temperley's tree-number formula and a logarithmic version (1.1) of this result for acyclic γ-complexes. In section 5 , we will discuss a new method for computing tree-numbers for certain planar graphs. We will also discuss applications of the main results to standard simplexes [6] and the cubical complexes [3].

2. Preliminaries

2.1. Matrix Theory. We will review several important facts about symmetric matrices. For all definitions and basic facts from matrix theory, one may refer to [5]. All matrices are assumed to have real entries. For a square matrix M, let P_{M} denote the multiset of all non-zero eigenvalues of M, and let $\pi_{M}=\prod_{\lambda \in P_{M}} \lambda$.

Lemma 1. Let A and B be $n \times n$ symmetric matrices such that $A B=B A=0$. Then, we have $P_{A+B}=P_{A} \cup P_{B}$ as multisets. In particular, if $A+B$ is non-singular,

$$
\begin{equation*}
\operatorname{det}(A+B)=\pi_{A} \pi_{B} \tag{2.1}
\end{equation*}
$$

Proof. Since A and B commute, there is a basis of common eigenvectors $\left\{v_{1}, \ldots, v_{n}\right\}$. For each $1 \leq i \leq n$, let λ_{i} and μ_{i} be the eigenvalues of A and B corresponding to v_{i} so that the collection $\left\{\lambda_{i}+\mu_{i} \mid 1 \leq i \leq n\right\}$ is the multiset of all eigenvalues of $A+B$. Since $A B=0$, we have $\lambda_{i} \mu_{i}=0$, i.e., either $\lambda_{i}=0$ or $\mu_{i}=0$ for each i. Therefore $\alpha=\lambda_{i}+\mu_{i} \in P_{A+B}$ if and only if $\alpha=\lambda_{i} \in P_{A}$ or $\alpha=\mu_{i} \in P_{B}$.

Lemma 2. Let M be a rectangular matrix of rank $r(r>0)$. Let $\mathcal{B}(M)$ be the collection of all non-singular $r \times r$ submatrices of M. If $A=M M^{t}$, or $M^{t} M$, then

$$
\begin{equation*}
\pi_{A}=\sum_{B \in \mathcal{B}(M)}(\operatorname{det} B)^{2} . \tag{2.2}
\end{equation*}
$$

Proof. This result follows from Binet-Cauchy theorem and the fact that the product of all non-zero eigenvalues of a diagonalizable matrix of rank r equals the sum of all principal minors of order r. Equation (2.2) holds for both $M M^{t}$ and $M^{t} M$ because they have the same multiset of non-zero eigenvalues. Details will be omitted.
2.2. Combinatorial Laplacians for γ-complexes. We will assume familiarity with basic definitions concerning finite cell complexes and reduced homology groups. Refer to [8] for details. Let X be a finite cell complex of dimension d. For $-1 \leq i \leq$ d, we will let X_{i} denote the set of all i-dimensional cells where we define $X_{-1}=\{\emptyset\}$, and $X^{(i)}$ the i-skeleton $X_{-1} \cup X_{0} \cup \cdots \cup X_{i}$ as a subcomplex of X. Also we define X_{-2} and $X^{(-2)}$ to be the void set.

Let $\left\{C_{i}, \partial_{i}\right\} \quad(-1 \leq i \leq d)$ be the integral cellular chain complex of X where $C_{-1}=\mathbb{Z}$ and ∂_{0} the usual augmentation. Define $\partial_{-1}=0$, and we have $\partial_{i-1} \partial_{i}=0$. The i-th reduced homology group of X is defined by $\tilde{H}_{i}(X)=\operatorname{Ker} \partial_{i} / \operatorname{Im} \partial_{i+1}$. Define $\tilde{H}_{i}(X)=0$ for $i \leq-1$. Note that $\tilde{H}_{d}(X)=\operatorname{Ker} \partial_{d}$ is free abelian. Recall that $\operatorname{rk} \tilde{H}_{i}(X)=0$ iff $\tilde{H}_{i}(X)$ is finite. X is acyclic if $\tilde{H}_{i}(X)=0$ for all i.

Suppose that $\partial_{i} \neq 0$ for $0 \leq i \leq d$. Then, we have $X_{i} \neq \emptyset$ and $C_{i} \cong \mathbb{Z}^{\left|X_{i}\right|}$. Regard the boundary map $\partial_{i}: C_{i} \rightarrow C_{i-1}$ as a $\left|X_{i-1}\right| \times\left|X_{i}\right|$ matrix whose rows and columns are indexed by X_{i-1} and X_{i}. The coboundary map $\partial_{i}^{t}: C_{i-1} \rightarrow C_{i}$ is the transpose of ∂_{i}. For $-1 \leq i \leq d$, the combinatorial Laplacian $\Delta_{i}: C_{i} \rightarrow C_{i}$ for X is defined by

$$
\Delta_{i}=\partial_{i+1} \partial_{i+1}^{t}+\partial_{i}^{t} \partial_{i}
$$

where we define ∂_{d+1} to be the zero map. Denote $L_{i}=\partial_{i+1} \partial_{i+1}^{t}$ and $J_{i}=\partial_{i}^{t} \partial_{i}$. Then, L_{i} and J_{i} are non-zero, symmetric, non-negative definite, and $L_{i} J_{i}=J_{i} L_{i}=$ 0 . Hence Δ_{i} is non-zero, symmetric, and non-negative definite by Lemma 1.

An important property of the combinatorial Laplacians is that the 0-eigenspace of Δ_{i} regarded as a matrix over \mathbb{Q} is isomorphic to the rational homology group $\tilde{H}_{i}(X ; \mathbb{Q})$ [4, Proposition 2.1]. Therefore, if $\partial_{i} \neq 0$ for $0 \leq i \leq d$, then we have

$$
\begin{equation*}
\operatorname{det} \Delta_{i}>0 \quad \text { if and only if } \operatorname{rk} \tilde{H}_{i}(X)=0 \tag{2.3}
\end{equation*}
$$

Note that $\Delta_{-1}=L_{-1}: \mathbb{Z} \rightarrow \mathbb{Z}$ is a multiplication by $\left|\Gamma_{0}\right|$. Now the following lemma is immediate from the definition of γ-complex and (2.3).

Lemma 3. If Γ is a γ-complex of dimension d, then we have $\operatorname{det} \Delta_{i}>0$ for $-1 \leq i<d$. Moreover, if Γ is acyclic, then we also have $\operatorname{det} \Delta_{d}>0$.

3. High-dimensional trees for γ-Complexes

In this section, Γ will denote a γ-complex of dimension d. For a non-empty subset $S \subset \Gamma_{i}$, define $\Gamma_{S}:=S \cup \Gamma^{(i-1)}$ as an i-dimensional subcomplex of Γ. For $-1 \leq i \leq d$, a non-empty subset $B \subset \Gamma_{i}$ is an i-dimensional spanning tree (or simply, i-tree) if
(1) $\tilde{H}_{i}\left(\Gamma_{B}\right)=0$,
(2) $w(B):=\left|\tilde{H}_{i-1}\left(\Gamma_{B}\right)\right|$ is finite, and
(3) $\tilde{H}_{j}\left(\Gamma_{B}\right)=0$ for $j \leq i-2$.

Note that (3) is a consequence of the fact $\Gamma_{B}^{(i-1)}=\Gamma^{(i-1)}$. We see that $B \subset \Gamma_{i}$ is an i-tree iff Γ_{B} is \mathbb{Q}-acyclic. We will denote the set of all i-trees in Γ by $\mathcal{B}_{i}=\mathcal{B}_{i}(\Gamma)$ with $\mathcal{B}_{-1}=\{\emptyset\}$. It is clear that \mathcal{B}_{0} is the set of all single 0 -cells in Γ and \mathcal{B}_{1} is the set of all graph theoretic spanning trees of $\Gamma^{(1)}$ as a finite graph.

Define the i-th tree-number of Γ to be

$$
k_{i}=k_{i}(\Gamma)=\sum_{B \in \mathcal{B}_{i}} w(B)^{2} .
$$

We have $k_{-1}=1$ by definition, and $k_{0}=\left|\Gamma_{0}\right|$. If Γ is a connected graph, then k_{1} is the number of spanning trees in Γ because $w(B)=1$ for $B \in \mathcal{B}_{1}$. However, $w(B)$ may not equal 1 for $B \in \mathcal{B}_{i}$ when $i>1$. (See [6].)

Next, we will describe i-trees via the boundary operator ∂_{i} of Γ, which will show that $k_{i}>0$ for $i \geq 0$. Denote $r_{i}=\operatorname{rk} \partial_{i}$. Recall that $r_{i}>0$ for $0 \leq i \leq d$, which also implies that both Γ_{i-1} and Γ_{i} are non-empty. Given a non-empty subset $T \subset \Gamma_{i}$, define ∂_{T} to be the $\left|\Gamma_{i-1}\right| \times|T|$ submatrix of ∂_{i} consisting of the columns of ∂_{i} indexed by T. Recall that if Γ is a connected finite graph of order n with the incidence matrix ∂_{1}, then $T \subset \Gamma_{1}$ is a spanning tree of $\Gamma \mathrm{iff}|T|=\operatorname{rk} \partial_{T}=\operatorname{rk} \partial_{1}=n-1$. (Refer to [2] for details.) More generally, we have the following useful fact.
Proposition 4. Let Γ be a γ-complex of dimension d. Let $r_{i}=\operatorname{rk} \partial_{i}$ for $0 \leq i \leq d$. Then \mathcal{B}_{i} is non-empty, and it is given by

$$
\begin{equation*}
\mathcal{B}_{i}=\left\{B \subset \Gamma_{i}| | B \mid=\operatorname{rk} \partial_{B}=r_{i}\right\} . \tag{3.1}
\end{equation*}
$$

Moreover, we have $r_{i}=\left|\Gamma_{i-1}\right|-r_{i-1}$, where $r_{-1}=0$.
Proof. Suppose $B \in \mathcal{B}_{i}$. Since $\operatorname{Ker} \partial_{B}=\tilde{H}_{i}\left(\Gamma_{B}\right)=0$, we have $\operatorname{rk} \partial_{B}=|B|$. Since $\Gamma_{B}^{(i-1)}=\Gamma^{(i-1)}$ and $\tilde{H}_{i-1}\left(\Gamma_{B}\right)$ is finite, we must have $\operatorname{rk} \partial_{B}=n_{i-1}$ the rank of Ker ∂_{i-1}. However, $\tilde{H}_{i-1}(\Gamma)=0$ implies $r_{i}=n_{i-1}$, and we have $|B|=\operatorname{rk} \partial_{B}=r_{i}$. The inclusion of the right-hand side of (3.1) in \mathcal{B}_{i} is proved similarly. The second statement follows from $n_{i-1}=\left|\Gamma_{i-1}\right|-r_{i-1}$.

Remarks 1. In matroid theoretic terms, \mathcal{B}_{i} is the set of all bases of a matroid whose ground set is Γ_{i} and the independent sets are the subsets $I \subset \Gamma_{i}$ such that Ker $\partial_{I}=0$ or $I=\emptyset$. (Refer to [9] for the definition of a matroid.)
2. If Γ is also acyclic, then there is exactly one d-tree, namely $B=\Gamma_{d}$. Since Ker $\partial_{d}=\tilde{H}_{d}(\Gamma)=0$, the only base of the matroid just mentioned is Γ_{d}. In this case, it also follows that $k_{d}=1$ because $\tilde{H}_{d-1}\left(\Gamma_{B}\right)=\tilde{H}_{d-1}(\Gamma)=0$.
3. We also remark that if X is a cell complex satisfying $(\gamma 2)$ but $r_{i}=0$ for some i, then $\underset{\sim}{X}$ has no i-tree. Indeed, for any non-empty subset $S \subset \Gamma_{i}$, if any, we would have $\tilde{H}_{i}\left(\Gamma_{S}\right)=\mathbb{Z}^{|S|} \neq 0$.

The following theorem will play an essential role in section 3. Given non-empty subsets $S \subset \Gamma_{i-1}$ and $T \subset \Gamma_{i}$, let $\partial_{S, T}$ be the $|S| \times|T|$ submatrix of ∂_{i} whose rows and columns are indexed by S and T, respectively. Denote $\bar{S}=\Gamma_{i-1} \backslash S$.
Theorem 5. Let Γ be a γ-complex of dimension d. Let $r_{i}=\operatorname{rk} \partial_{i}$ for $0 \leq i \leq d$. Then the set of all $r_{i} \times r_{i}$ non-singular submatrices of ∂_{i} is given by

$$
\mathcal{B}\left(\partial_{i}\right):=\left\{\partial_{\bar{A}, B} \mid A \in \mathcal{B}_{i-1} \text { and } B \in \mathcal{B}_{i}\right\} .
$$

Moreover, we have $\left|\operatorname{det} \partial_{\bar{A}, B}\right|=w(A) w(B)$ for $\partial_{\bar{A}, B} \in \mathcal{B}\left(\partial_{i}\right)$.
Proof. Let $S \subset \Gamma_{i-1}$ with $|S|=r_{i-1}$ and let $T \subset \Gamma_{i}$ with $|T|=r_{i}$. Then $\partial_{\bar{S}, T}$ is a square submatrix of ∂_{i} of order r_{i} by Prop. 4. First, we will show that $\partial_{\bar{S}, T}$ is singular if $S \notin \mathcal{B}_{i-1}$ or $T \notin \mathcal{B}_{i}$. Regard $\partial_{\bar{S}, T}$ as the top boundary operator for the relative complex $\left(\Gamma_{T}, \Gamma_{S}\right)$. Note that $\tilde{H}_{i}\left(\Gamma_{T}\right)=\operatorname{Ker} \partial_{T}, \tilde{H}_{i}\left(\Gamma_{T}, \Gamma_{S}\right)=\operatorname{Ker} \partial_{\bar{S}, T}$, and $\tilde{H}_{i-1}\left(\Gamma_{S}\right)=\operatorname{Ker} \partial_{S}$. Since $\tilde{H}_{i}\left(\Gamma_{S}\right)=0$, we obtain the following exact sequence from the long exact homology sequence of the pair $\left(\Gamma_{T}, \Gamma_{S}\right)$:

$$
0 \rightarrow \operatorname{Ker} \partial_{T} \rightarrow \operatorname{Ker} \partial_{\bar{S}, T} \rightarrow \operatorname{Ker} \partial_{S} \rightarrow \tilde{H}_{i-1}\left(\Gamma_{T}\right)
$$

If $T \notin \mathcal{B}_{i}$, then $\operatorname{Ker} \partial_{T} \neq 0$ by Remark 1 above. Hence, we have $\operatorname{Ker} \partial_{\bar{S}, T} \neq 0$. Similarly, if $S \notin \mathcal{B}_{\tilde{H}_{i-1}}$, then $\operatorname{rk}\left(\operatorname{Ker} \partial_{S}\right) \neq 0$. If $T \notin \mathcal{B}_{i}$, we are done. If $T \in \mathcal{B}_{i}$, then $\operatorname{Ker} \partial_{T}=0$ and $\tilde{H}_{i-1}\left(\Gamma_{T}\right)$ is finite. Therefore, it is clear that $\operatorname{Ker} \partial_{\bar{S}, T} \neq 0$.

Now we proceed to prove the second statement, which will also complete the proof of the first statement. Consider the following portion of the long exact homology sequence of the pair $\left(\Gamma_{B}, \Gamma_{A}\right)$ with $A \in \mathcal{B}_{i-1}$ and $B \in \mathcal{B}_{i}$:

$$
\tilde{H}_{i-1}\left(\Gamma_{A}\right) \rightarrow \tilde{H}_{i-1}\left(\Gamma_{B}\right) \rightarrow \tilde{H}_{i-1}\left(\Gamma_{B}, \Gamma_{A}\right) \rightarrow \tilde{H}_{i-2}\left(\Gamma_{A}\right) \rightarrow \tilde{H}_{i-2}\left(\Gamma_{B}\right) .
$$

Since $\tilde{H}_{i-1}\left(\Gamma_{A}\right)=\tilde{H}_{i-2}\left(\Gamma_{B}\right)=0$, it follows that

$$
\left|\tilde{H}_{i-1}\left(\Gamma_{B}, \Gamma_{A}\right)\right|=\left|\tilde{H}_{i-2}\left(\Gamma_{A}\right)\right| \cdot\left|\tilde{H}_{i-1}\left(\Gamma_{B}\right)\right|=w(A) w(B) .
$$

Note that $C_{j}\left(\Gamma_{B}, \Gamma_{A}\right)=\mathbb{Z}^{r_{i}}$ if $j=i-1$, and 0 if $j<i-1$. Therefore, we have $\left|\tilde{H}_{i-1}\left(\Gamma_{B}, \Gamma_{A}\right)\right|=\left|\mathbb{Z}^{r_{i}} / \operatorname{Im} \partial_{\bar{A}, B}\right|=\left|\operatorname{det} \partial_{\bar{A}, B}\right|$.

4. Main Results

The main results will consist of a generalization of Temperley's tree-number formula for γ-complexes and its logarithmic version for acylic γ-complexes.
Proposition 6. Let Γ be a γ-complex of dimension d, and let Δ_{i} be its combinatorial Laplacians for $-1 \leq i \leq d$. Then
(1) $\operatorname{det} \Delta_{-1}=k_{0}$,
(2) $\operatorname{det} \Delta_{i}=k_{i-1} k_{i}^{2} k_{i+1}$ for $0 \leq i \leq d-1$, and
(3) $\operatorname{det} \Delta_{d}=k_{d-1}$ if Γ is acyclic, and 0 otherwise.

Proof.(1) In section 2, we noted that $\Delta_{-1}=L_{-1}: \mathbb{Z} \rightarrow \mathbb{Z}$ is a multiplication by $\left|\Gamma_{0}\right|$. In section 3, we also saw that $k_{0}=\left|\Gamma_{0}\right|$. Hence det $\Delta_{-1}=k_{0}$.
(2) Note that we have $\operatorname{rk} \partial_{i} \partial_{i}^{t}=\operatorname{rk} \partial_{i}>0$ for $0 \leq i \leq d$. Therefore, $\partial_{i} \partial_{i}^{t}$ has non-zero eigenvalues. Let π_{i} denote the product of all non-zero eigenvalues of $\partial_{i} \partial_{i}^{t}$. By Lemma 2 and Theorem 5, we have

$$
\pi_{i}=\sum_{\substack{A \in \mathcal{B}_{i-1} \\ B \in \mathcal{B}_{i}}}\left(\operatorname{det} \partial_{\bar{A}, B}\right)^{2}=\sum_{\substack{A \in \mathcal{B}_{i-1} \\ B \in \mathcal{B}_{i}}} w(A)^{2} w(B)^{2}=k_{i-1} k_{i}
$$

Now recall that $\partial_{i}^{t} \partial_{i}$ and $\partial_{i} \partial_{i}^{t}$ have the same multiset of non-zero eigenvalues. Therefore, for $0 \leq i \leq d-1$, Lemma 1 and Lemma 3 imply

$$
\operatorname{det} \Delta_{i}=\operatorname{det}\left(\partial_{i}^{t} \partial_{i}+\partial_{i+1} \partial_{i+1}^{t}\right)=\pi_{i} \pi_{i+1}=k_{i-1} k_{i}^{2} k_{i+1}
$$

(3) If Γ is acyclic, then $k_{d}=1$ because Γ_{d} is the only d-tree in Γ. Therefore

$$
\operatorname{det} \Delta_{d}=\operatorname{det}\left(\partial_{d}^{t} \partial_{d}\right)=\pi_{d}=k_{d-1} k_{d}=k_{d-1} .
$$

If Γ is not acyclic, then $\operatorname{rk} \tilde{H}_{d}(\Gamma)>0$ and $\operatorname{det} \Delta_{d}=0$ by (2.3).
Recall that the Matrix-Tree theorem states that for a finite graph G, every cofactor of its Laplacian matrix equals the number of spanning trees in G ([7]). The following corollary is an analogue of this theorem by Temperley [10].

Corollary 7. (Temperley) Given a finite graph G with n vertices, let L be its Laplacian matrix, $k(G)$ the number of spanning trees in G, and J the $n \times n$ all 1 's matrix. Then,

$$
\begin{equation*}
\operatorname{det}(L+J)=n^{2} k(G) . \tag{4.1}
\end{equation*}
$$

Proof. Regarding G as a γ-complex, we have $L=\partial_{1} \partial_{1}^{t}, J=\partial_{0}^{t} \partial_{0}$, and $L+J=\Delta_{0}$. Since $k_{-1}=1, k_{0}=n$, and $k_{1}=k(G)$, the result follows from Proposition 6 (2).

The following theorem, which is the main result of the paper, is a logarithmic version of Proposition 6 for acyclic complexes.

Theorem 8. Let Γ be an acyclic complex of dimension d such that $\partial_{i} \neq 0$ for $0 \leq i \leq d$. Let $D(x)=\sum_{i=-1}^{d} \omega_{i} x^{i+1}$ and $K(x)=\sum_{i=0}^{d-1} \kappa_{i} x^{i}$, where $\omega_{i}=\log \operatorname{det} \Delta_{i}$ and $\kappa_{i}=\log k_{i}$. Then we have

$$
D(x)=(1+x)^{2} K(x) .
$$

Proof. Since Γ is a γ-complex, we have $\mathcal{B}_{i} \neq \emptyset$ and $k_{i} \geq 1$ for $0 \leq i \leq d$. Hence $K(x)$ is well defined. By Proposition 6 , we see that $\operatorname{det} \Delta_{i} \geq 1$ for $-1 \leq i \leq d$, and $D(x)$ is well defined. The rest of the proof is checking the following details. Proposition 6 (1) implies $\omega_{-1}=\kappa_{0}$. Proposition 6 (2) implies $\omega_{i}=\kappa_{i-1}+2 \kappa_{i}+\kappa_{i+1}$ for $0 \leq i \leq d-1$. In particular, $k_{-1}=1$ implies $\omega_{0}=2 \kappa_{0}+\kappa_{1}$, which also follows from (4.1). Also, $k_{d}=1$ because Γ is acyclic, and we have $\omega_{d-1}=\kappa_{d-2}+2 \kappa_{d-1}$. Finally, Proposition 6 (3) implies $\omega_{d}=\kappa_{d-1}$. The result follows.

5. Examples

5.1. Tree-number of a planar graph. Given a connected finite planar graph G, let \bar{G} be the 2-dimensional complex whose 1-skeleton is G and 2-dimensional cells are the finite faces of G. Note that \bar{G} is an acyclic complex. By (3) in Proposition 6, the number of spanning trees of G is the determinant of Δ_{2} for \bar{G}. As an example, we prove the following theorem. Recall that the Fibonacci sequence $\left\{F_{n}\right\}$ is defined by $F_{0}=F_{1}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$.

Theorem 9. Let G be a triangulation of an $(n+2)$-gon $P(n \geq 1)$ without any internal triangle, i.e., a triangle with no edge from P. Then the number of spanning trees in G equals $F_{2 n+1}$.

Proof. Let f_{1}, \ldots, f_{n} be the faces of G. Since G has no internal triangle, each f_{i} contains one or two edges of P. Since each edge of P belongs to a unique face, there are exactly two faces, say f_{1} and f_{n}, each of which contains two edges of P. If G^{*} is the dual graph of G and v_{∞} the vertex corresponding to the infinite face of G, then $G^{*}-v_{\infty}$ is a path whose two end points correspond to f_{1} and f_{n}. By arranging the faces of G in the same order as the vertices appear in this path, we may assume that f_{i} shares one edge each with f_{i-1} and f_{i+1} for $1<i<n$. The remaining edge of f_{i} is an edge of P.

Assume that each face of G is oriented counterclockwise. Then each column of ∂_{2} for \bar{G} has exactly three non-zero entries, which are ± 1 's, and the inner product of two columns is -1 if they are adjacent, and 0 otherwise. Therefore, $\Delta_{2}=\partial_{2}^{t} \partial_{2}$ is an $n \times n$ tridiagonal matrix with 3 's on the main diagonal and -1 's just below and above it. If δ_{n} denotes the determinant of this tridigonal matrix, we have the recurrence relations $\delta_{n}=3 \delta_{n-1}-\delta_{n-2}$ for $n \geq 2$ with $\delta_{1}=3$ and $\delta_{0}:=1$. These are the same recurrence relations satisified by the subsequence $\left\{F_{2 n+1}\right\}$ of Fibonacci numbers. Hence, we have $\operatorname{det} \Delta_{2}=\delta_{n}=F_{2 n+1}$.

In particular, the number of spanning trees of the fan with $n+2$ vertices is $F_{2 n+1}$ by this theorem.
5.2. Standard simplexes. Let Σ be the standard simplex on n vertices (hence $\operatorname{dim} \Sigma=n-1$). Then, Σ is acyclic and $\left|\Sigma_{i}\right|=\binom{n}{i+1}$ for $-1 \leq i \leq n-1$. If $[\sigma]$ denotes an oriented simplex for $\sigma \in \Sigma_{i}$, one can check that $\Delta_{i}[\sigma]=n[\sigma]$, which follows directly from the definition of the boundary operators ∂_{i} and ∂_{i+1} (and their transpose). Therefore, we have $\Delta_{i}=n I$, where I is the identity matrix of order $\binom{n}{i+1}$, and $\operatorname{det} \Delta_{i}=n^{\binom{n}{i+1}}$. Letting $\omega_{i}=\log _{n} \operatorname{det} \Delta_{i}=\binom{n}{i+1}$, we see that

$$
D(x)=\sum_{i=-1}^{n-1} \omega_{i} x^{i+1}=\sum_{i=-1}^{n-1}\binom{n}{i+1} x^{i+1}=(1+x)^{n}
$$

By Theorem 8, we obtain

$$
K(x)=\sum_{i=0}^{n-2} \kappa_{i} x^{i}=(1+x)^{n-2}
$$

where $\kappa_{i}=\log _{n} k_{i}=\binom{n-2}{i}$. Hence, we have $k_{i}=n\left(\begin{array}{c}\left({ }_{i}-2\right)\end{array}\right.$ for $0 \leq i \leq n-2$. This result was originally obtained by Kalai [6].
5.3. Cubical complexes. The n-cube $Q_{n}(n \geq 1)$ is an n-dimensional cell complex that is the n-fold product $I \times \cdots \times I$, where I is the unit interval regarded as a cell complex with two 0 -cells and one 1 -cell. Hence Q_{n} is a cell complex of dimension n, and is the convex hull of the 2^{n} points in \mathbb{R}^{n} whose coordinates are all 0 or 1 . One can see that Q_{n} is acyclic by induction on n together with the fact that Q_{n-1} is a deformation retract of Q_{n} for $n \geq 2$.

In [3], Duval, Klivans, and Martin showed that the tree-numbers for Q_{n} are

$$
\begin{equation*}
k_{i}=\prod_{j=2}^{n}(2 j)^{\binom{j-2}{i-1}\binom{n}{j}} \quad(1 \leq i \leq n-1) \tag{5.1}
\end{equation*}
$$

based on the spectra (the multisets of eigenvalues) of $\partial_{*} \partial_{*}^{t}$, which are, in turn, obtained from those of Δ_{*}. In what follows, we will derive (5.1) directly from the $\operatorname{spectra} \operatorname{Spec}\left(\Delta_{*}\right)$ of Δ_{*} via Theorem 8 . We will start with the following generating function for the eigenvalues of Δ_{*} for $Q_{n}([3$, Theorem 3.4]):

$$
\begin{equation*}
\sum_{i=0}^{\operatorname{dim} Q_{n}} \sum_{\lambda \in \operatorname{Spec}\left(D_{i}\right)} t^{i} r^{\lambda}=\left(1+r^{2}+t r^{2}\right)^{n}=\sum_{k=0}^{n} t^{k}\binom{n}{k} r^{2 k}\left(1+r^{2}\right)^{n-k} \tag{5.2}
\end{equation*}
$$

where $D_{i}=\Delta_{i}$ for $i \geq 1$ and $D_{0}=\partial_{1} \partial_{1}^{t}$. From (5.2), one can deduce that $\operatorname{det} \Delta_{i}=\prod_{j=1}^{n}(2 j)^{\binom{n}{j}\binom{j}{i}}$ for $1 \leq i \leq n$, and that $\pi_{D_{0}}=k_{0} k_{1}=\prod_{j=1}^{n}(2 j)^{\binom{n}{j}}$. By Corollary 7, we also obtain $\left.\operatorname{det} \Delta_{0}=2^{n} \prod_{j=1}^{n}(2 j)\right)^{\binom{n}{j}}$. Now, let $\omega_{i}=\log _{2} \operatorname{det} \Delta_{i}$, and let $\alpha_{j}=\binom{n}{j} \log _{2}(2 j)$. Then,

$$
\omega_{-1}=n, \quad \omega_{0}=n+\sum_{j=1}^{n} \alpha_{j}, \quad \text { and } \omega_{i}=\sum_{j=1}^{n}\binom{j}{i} \alpha_{j} \text { for } 1 \leq i \leq n
$$

and we have

$$
\begin{aligned}
D(x) & =\sum_{i=-1}^{n} \omega_{i} x^{i+1} \\
& =n+\left(n+\sum_{j=1}^{n} \alpha_{j}\right) x+\sum_{i=1}^{n}\left(\sum_{j=1}^{n}\binom{j}{i} \alpha_{j}\right) x^{i+1} \\
& =n(1+x)+\sum_{i=0}^{n}\left(\sum_{j=1}^{n}\binom{j}{i} \alpha_{j}\right) x^{i+1} \\
& =n(1+x)+x \sum_{j=1}^{n} \alpha_{j}(1+x)^{j} \quad \text { (by interchanging the sums) } \\
& \left.=n(1+x)^{2}+x \sum_{j=2}^{n} \alpha_{j}(1+x)^{j} . \quad \text { (because } \alpha_{1}=n\right)
\end{aligned}
$$

By Theorem 8, we obtain

$$
K(x)=\sum_{i=0}^{n-1} \kappa_{i} x^{i}=n+x \sum_{j=2}^{n} \alpha_{j}(1+x)^{j-2}
$$

where $\kappa_{i}=\log _{2} k_{i}$. By identifying the coefficients of x^{i} for $1 \leq i \leq n-1$, we obtain $\kappa_{i}=\sum_{j=2}^{n}\binom{j-2}{i-1} \alpha_{j}$, and $k_{i}=\prod_{j=2}^{n}(2 j)^{\binom{j-2}{i-1}\binom{n}{j}}$ for $1 \leq i \leq n-1$.

6. Acknowledgments

The authors would like to thank Prof. M. Wachs for her encouragement to generalize Temperley's tree-number formula.

References

[1] R. Adin, Counting colorful multi-dimensional trees, Combinatorica. 12, no. 3 (1992) 247-260.
[2] N. Biggs, Algebraic Graph Theory (2nd ed.), Cambridge University Press, Cambridge, 1993.
[3] A. Duval, C. Klivans, and J. Martin, Cellular spanning trees and Laplcians of cubical complexes, Advances in Applied Mathematics. 46 (2011) 247-274.
[4] J. Friedman, Computing Betti numbers via combinatorial Laplacians, in Proc. 28th Annual ACM Symposium on the Theory of Computing, ACM: New York, 1996, 386-391.
[5] F. R. Gantmacher, The Theory of Matrices, vol I, Chelsea, New York, 1960.
[6] G. Kalai, Enumeration of Q-acyclic simplicial complexes, Israel J. Math. 45 (1983), 337-351.
[7] G. Kirkhoff, Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme gefürht wird, Ann. Phys. Chem. 72 (1847) 497-508.
[8] J.R. Munkres, Elements of Algebraic Topology, Addison-Wesley, Reading, MA, 1984.
[9] J. Oxley, Matroid Theory, Oxford University Press, Oxford, England, 1992.
[10] H.N.V. Temperley, On the mutual cancellation of cluster integrals in Mayer's fugacity series, Proc. Phys. Soc. 83 (1964) 3-16.
E-mail address: hyukkim@snu.ac.kr
Department of Mathematical Sciences, Seoul National University, Seoul, Korea
E-mail address: andrewk@math.uri.edu
Department of Mathematics, University of Rhode Island, Kingston, RI 02881

[^0]: Key words and phrases. cell complexes, high-dimensional trees, Combinatorial Laplacians. Mathematics Subject Classification: primary 05E99 secondary 05C05.

 * Supported by the Korea Research Foundation (KRF) grant funded by the Korea government (MEST)(No. 2011-0011223).

