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Abstract. We give a formula for the simplicial tree numbers of the indepen-
dent set complex of a finite matroid M as a product of eigenvalues of the total

combinatorial Laplacians on this complex. Two matroid invariants emerge nat-
urally in describing the multiplicities of these eigenvalues in the formula: one
is the unsigned reduced Euler characteristic of the independent set complex

and the other is the β-invariant of a matroid. We will demonstrate various ap-
plications of this formula including a “matroid theoretic” derivation of Kalai’s
simplicial tree numbers of a standard simplex.

1. Introduction

In this paper, we will prove a formula for the simplicial tree numbers of the inde-
pendent set complex IN(M) of a finite matroid M . Simplicial trees for simplicial
complexes have been studied as a generalization of spanning trees for graphs [1,4,7].
In these studies, combinatorial Laplacians for simplicial complexes play a role anal-
ogous to that of graph Laplacians for graphs. We will review simplicial tree num-
bers and combinatorial Laplacians in section 2. Since eigenvalues of combinatorial
Laplacians on matroid complexes are known [10], one may ask whether the simpli-
cial tree numbers for these complexes can be computed [4]. We give an answer to
this question in this paper.

The formula is given as a product of eigenvalues of the combinatorial Laplacians
on IN(M). We refer the readers to [10] for the integrality of these eigenvalues.
Two matroid invariants will appear naturally in describing the multiplicities of the
eigenvalues in this product. One is the unsigned reduced Euler charcteristic of
IN(M), and the other is Crapo’s β-invariant of M . For the sake of simplicity, we
will refer to the former as the α-invariant of M , and denote the two invariants by
α(M) and β(M), respectively. We will review these invariants in section 2, also.

Our main result (Theorem 5) can be stated as follows. Let M be a matroid of
rank d+ 1 on a finite ground set E, and L(M) its lattice of flats. For V ∈ L(M),
let M/V be the contraction of V from M . For an integer λ ∈ [0, |E|], we define
L(M)λ = {V ∈ L(M) : |E \ V | = λ }, and define the convolution α ◦λ β of
α-invariant and β-invariant for M with respect to the given λ to be

α ◦λ β =
∑

V ∈L(M)λ

α(V )β(M/V ) .

Then, the simplicial tree number kd of IN(M) in the top dimension d is

kd =
∏

λ∈(0,|E|]

λα◦λβ

where the product is over all positive integers λ ∈ (0, |E|] (with L(M)λ ̸= ∅).
1



2 W. KOOK AND K. LEE

This formula can be used to give simplicial tree numbers ki for IN(M) in other
dimensions i. For −1 ≤ i ≤ d, we observe that ki is the top dimensional simplicial
tree number of IN(T i+1(M)), where T i+1(M) is the truncation obtained from M
by ignoring all independent sets of rank > i + 1. Therefore, the main result can
be applied to the matroid T i+1(M) to compute ki . We shall demonstrate these
computations via examples later.

This paper is organized as follows. In section 2, we will review all prelimainary
definitions and results concerning simplicial tree numbers, combinatorial Lapla-
cians, and α(M) and β(M) of a finite matroid M . In section 3, we will present a
proof of the main result, Theorem 5. Section 4 will discuss applications of Theorem
5, including a new derivation of Kalai’s classical result on standard simplex [7].
We refer the readers to [12] or [15] for terminologies and definitions from matroid
theory that are used in this paper.

2. Preliminaries

2.1. Simplicial tree numbers. In this paper, simplicial tree numbers mean high-
dimensional tree numbers of a simplicial complex (refer to [4, 5, 8]). A non-empty
simplicial complex Γ is said to be Z-acyclic in positive codimensions (shortly, Z-
APC ) if the reduced integral homology H̃i(Γ) = 0 for i < dim Γ (refer to [4]). Note
that the independent set complex IN(M) of a finite (non-empty) matroid M is
Z-APC because it is shellable (refer to [2]).

Let Γ be a Z-APC complex of dimension d. For i ∈ [0, d], let Γi denote the set of
all i-dim simplices in Γ. The i-skeleton of Γ is Γ(i) = Γ−1∪Γ0∪Γ1∪· · ·∪Γi , where
we define Γ−1 = {∅}. For a non-empty subset S ⊂ Γi, define ΓS := S ∪ Γ(i−1) as
an i-dimensional subcomplex of Γ. For i ∈ [−1, d], a non-empty subset B ⊂ Γi is
an i-dimensional simplicial tree (or simply, i-tree) if

(1) H̃i(ΓB) = 0,

(2) |H̃i−1(ΓB)| is finite, and
(3) H̃j(ΓB) = 0 for j ≤ i− 2.

Note that condition (3) is a consequence of the fact Γ
(i−1)
B = Γ(i−1). We will denote

the set of all i-trees in Γ by Bi = Bi(Γ) with B−1 = {{∅}}.
Define the i-th simplicial tree number (or simply, i-th tree number) of Γ to be

ki = ki(Γ) =
∑
B∈Bi

|H̃i−1(ΓB)|2.

We have k−1 = 1 by definition, and k0 = |Γ0|. If Γ is a connected graph, then k1
is the number of spanning trees in Γ because |H̃0(ΓB)| = 1 for B ∈ B1. However,

|H̃i−1(ΓB)| may not equal 1 for B ∈ Bi when i > 1. Refer to [7] for an example.

2.2. Combinatorial Laplacians and tree numbers. Let {Ci, ∂i} be an aug-
mented chain complex of a finite Z-APC complex Γ of dimension d with the aug-
mentation ∂0 : C0 → Z given by ∂0(v) = 1 for every vertex v in Γ0. We will
represent ∂i as a |Γi−1|× |Γi| integer matrix. For i ∈ [−1, d], the i-th combinatorial
Laplacian ∆i : Ci → Ci is defined by

∆i = ∂t
i∂i + ∂i+1∂

t
i+1 ,

where ∂−1 and ∂d+1 are defined to be zero maps.
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An important property of the combinatorial Laplacians is that ∆i is non-singular
iff rkH̃i(Γ) = 0 (refer to [6, Proposition 2.1]). In particular, for a finite Z-APC
complex Γ of dimension d, we have det∆i > 0 for i ∈ [−1, d− 1]. Furthermore, the
following proposition shows a connection between simplicial tree numbers and the
determinant of combinatorial Laplacians. (The following proposition also appeared
in [4, 5].)

Proposition 1. [8, Prop 7] Let Γ be a Z-APC complex of dimension d, and let ∆i

be its combinatorial Laplacians for i ∈ [−1, d]. Then

(1) det∆−1 = k0 ,
(2) det∆i = ki−1k

2
i ki+1 for i ∈ [0, d− 1]̇, and

(3) det∆d = kd−1 if Γ is acyclic, and 0 otherwise. 2

For example, if Γ is a finite graph with n vertices, and k(Γ) is the number of
spanning trees in Γ, then the Temperley’s tree number formula det∆0 = n2k(Γ)
follows from this proposition (refer to [13]).

Note that if Γ is a Z-APC complex of dimension d, Proposition 1 together with
the properties det∆i > 0 for i ∈ [−1, d− 1] implies that all simplicial tree numbers
of Γ are non-zero. Furthermore, the simplicial tree numbers of Γ can be expressed
in terms of eigenvalues of the total combinatorial Laplacian as follows. Note that
the following corollary appeared in [5, Eq.(11)].

Corollary 2. Let Γ be a Z-APC complex of dimension d, and Λ the set of all
distinct eigenvalues of its total combinatorial Laplacian ⊕d

i=−1∆i. For λ ∈ Λ and
j ∈ [−1, d], let mλ,j be the multiplicity of λ as an eigenvalue of ∆j. For i ∈ [0, d],
the i-th tree number ki of Γ is

ki =
∏

λ∈Λ\{0}

λaλ,i

where aλ,i =
∑i

j=−1 (−1)i−j−1(i− j)mλ,j.

Proof. For each i ∈ [0, d], Proposition 1 implies ki =
∏i−1

j=−1 det∆
(−1)i−j−1(i−j)
j .

The formula for aλ,i follows from this and the identities det∆j =
∏

λ∈Λ\{0} λ
mλ,j

for j < d. Note that the i-th term in the formula for aλ,i is zero. □
2.3. α-invariant and β-invariant of a matroid M . We define the α-invariant
α(M) of a finite matroid M to be the unsigned reduced Euler characteristic of the
independent set complex IN(M), i.e.,

α(M) = |χ̃(IN(M))| .
This terminology, α-invaraint, was introduced first in [9]. We refer the readers to [2]
for a comprehensive discussion of this invariant.

For a finite matroid M , let L(M) be its lattice of flats, and µ(V,W ) the Möbius
function on L(M) × L(M). Also, let r denote the rank function on M . The β-
invariant of M is defined as

(1) β(M) = (−1)r(M)
∑

V ∈L(M)

µ(0̂, V )r(V ).

This is not the original definition introduced first in [3], but this is an equivalent
definition used in [16]. For our purpose, it is useful to take (1) as the definition
of the β-invariant. The β-invariant is also equal to the unsigned reduced Euler
characteristic of the reduced broken circuit complex [2].
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3. The main result

In this section, M denotes a non-empty matroid of rank r(M) = d+1 on a finite
ground set E, and IN(M) its independent set complex. Hence the dimension of
IN(M) is d. The following result contains necessary information for our purpose
concerning the eigenvalues of the combinatorial Laplacians on IN(M) .

Proposition 3. [10, Corollary 18] For λ ∈ R and i ∈ [−1, d], let mλ,i be the
multiplicity of λ as an eigenvalue of the combinatorial Laplacian ∆i on IN(M).
Then we have ∑

λ∈R, i∈[−1,d]

mλ,it
iqλ =

∑
V,W∈L(M)

α(V )µ(W/V )tr(W )−1q|E\V |

where we define µ(W/V ) = |µ(V,W )| if V ⊂ W , and 0 otherwise.

Proof. Corollary 18 in [10] originally states that∑
λ∈R, i∈[−1,d]

dimR(∆
M
i )λ t

iqλ = t−1q|E|SpecM (t, q−1)

where (∆M
i )λ is the real λ-eigenspace of the combinatorial Laplacian ∆M

i on IN(M),
and SpecM (t, q), called the spectrum polynomial of M , is given by (2.2) in [10]:

SpecM (t, q) =
∑

W∈L(M)

tr(W )
∑

V ∈L(M), V⊂W

|χ̃(IN(V ))| · |µ(V,W )|q|V | .

The proposition follows from these two equations and the observations that ∆M
i is

the same integer matrix as ∆i on IN(M) with a fixed linear ordering on E, and
that dimR(∆

M
i )λ = mλ,i . □

From this proposition, it is clear that every eigenvalue of the combinatorial
Laplacians on IN(M) is an integer of the form |E \ V | for some V ∈ L(M). For
an integer λ ∈ [0, |E|], define L(M)λ = {V ∈ L(M) : |E \V | = λ }. Note that this
set may be empty. Also, let L(M)j denote the collection of all flats of rank j in M .
The following lemma is immediate from Proposition 3.

Lemma 4. For integers λ ∈ [0, |E|] and i ∈ [−1, d], the multiplicity mλ,i of λ as
an eigenvalue of ∆i on IN(M) is

mλ,i =
∑

V ∈L(M)λ

∑
W∈L(M)i+1

α(V )µ(W/V ) . 2

From this lemma, we see that λ is an eigenvalue of the total combinatorial
Laplacian ⊕d

i=−1∆i if and only if λ = |E \ V | for some V ∈ L(M) with α(V ) ̸= 0.

We will let ΛM denote the set of all distinct eigenvalues of ⊕d
i=−1∆i on IN(M).

Now, we proceed to the main result of this paper. Recall that, for λ ∈ ΛM , we
define the convolution α ◦λ β of α-invariant and β-invariant for M with respect to
the given λ to be

α ◦λ β =
∑

V ∈L(M)λ

α(V )β(M/V ) .

Theorem 5. The simplicial tree number kd of IN(M) in the top dimension d is

kd =
∏

λ∈ΛM\{0}

λα◦λβ .
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Proof. Since IN(M) is a Z-APC complex, we can apply Corollary 2 to obtain for
each i ∈ [0, d]

ki =
∏

λ∈ΛM\{0}

λaλ,i

where aλ,i =
∑i

j=−1 (−1)i−j−1(i− j)mλ,j . Now, we reformulate aλ,i as follows:

aλ,i =
i+1∑
j=0

(−1)i−j(i+ 1− j)
( ∑

V ∈L(M)λ

∑
W∈L(M)j

α(V )µ(W/V )
)

=
∑

V ∈L(M)λ

α(V )
i+1∑
j=0

∑
W∈L(M)j

(−1)i−r(V )(i+ 1− j)µ(V,W )

where the first equality follows from Lemma 4, and the second equality from a
change of summation order and µ(W/V ) = |µ(V,W )| = (−1)r(W )−r(V )µ(V,W ).

Note that since λ ∈ ΛM \ {0}, we have V ̸= 1̂ for any V ∈ L(M)λ. Letting i = d
in the above equation for aλ,i, we get

aλ,d =
∑

V ∈L(M)λ

α(V )(−1)d+1−r(V )
∑

W∈L(M)

(r(W )− d− 1)µ(V,W )

=
∑

V ∈L(M)λ

α(V )(−1)r(M)−r(V )
∑

W∈L(M)

(r(W )− r(V ))µ(V,W )

=
∑

V ∈L(M)λ

α(V )(−1)r(M/V )
∑

W/V ∈L(M/V )

r(W/V )µ(0̂,W/V )

=
∑

V ∈L(M)λ

α(V )β(M/V )

= α ◦λ β

where the second equality uses the fact that
∑

W∈L(M) c · µ(V,W ) = 0 for any

constant c and any V ∈ L(M) with V ̸= 1̂, and the third equality uses the fact that

the interval [V, 1̂] in L(M) is isomorphic to L(M/V ). The fourth equality follows
from the definition of β(M), equation (1). □

4. Examples

4.1. Standard simplexes. In this example, we recover Kalai’s formula [7, The-
orem 1] for the simplicial tree numbers of a standard simplex Σ with n vertices.
We regard Σ as the independent set complex of the uniform matroid Un,n on the

ground set [n]. For 0 ≤ i ≤ n− 1, the i-skeleton Σ(i) is IN(Ui+1,n), and ki for Σ is
the top-dimensional tree number for IN(Ui+1,n).

Theorem 6. [7, Theorem 1] Let Σ be a standard simplex with n vertices. For
0 ≤ i ≤ n− 1, its i-th tree number ki equals

ki = n(
n−2

i ).

Proof. The only flat V in L(Ui+1,n) \ 1̂ with α(V ) ̸= 0 is the empty flat ∅ with
α(∅) = 1. Hence the only non-zero eigenvalue for the total combinatorial Laplacian
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on IN(Ui+1,n) is λ = card([n] \ ∅) = n. By Theorem 5, we have ki = nα◦nβ where

α ◦n β = α(∅)β(Ui+1,n/∅) = β(Ui+1,n) =

(
n− 2

i

)
.

The last equality is well-known for uniform matroids [3, Proposition 7]. □

4.2. Cycle matroid complexes. In this subsection, we assume that a finite graph
G is equipped with a cycle matroid structure M(G) on the ground set E(G). In
particular, an induced subgraph of G is regarded as a flat in M(G). Also, we will
write α(G) = α(M(G)) and β(G) = β(M(G)).

Recall that if G̃ is obtained from G by replacing all multiple edges by simple
edges, then β(G) = β(G̃) (refer to [3]). Also, for a tree G, we have β(G) = 1 if G
has one edge, and 0 otherwise (refer to the equation 1).

In what follows, we will compute the top-dimensional tree numbers for IN(M(G))
when G is a wheel or a fan. A wheel Wn+1 is obtained by joining each vertex of a
cycle Cn of length n ≥ 1 to a new vertex p by a simple edge (see Fig. 1(a)). The
number of edges in Wn+1 is 2n. Moreover, it is known that α(Wn+1) = 2n − 2 and
β(Wn+1) = n (refer to [3, 9]).

Let Pn be a path of length n ≥ 1, or Pn = v0v1 · · · vn. A fan P̂n is obtained by
joining each vertex of Pn to a new vertex p by a simple edge (see Fig. 1(b)). Then

the number of edges in P̂n is 2n+ 1. Moreover, α(P̂n) = 2n−1 and β(P̂n) = 1.

(a) a wheel Wn+1 (b) a fan P̂n

Theorem 7. The top-dimensional tree number kn−1 for IN(M(Wn+1)) equals

(2n)n · n ·
n−2∏
k=1

(2n− (2k + 1))
n·2k−1

.

Proof. In this proof, we let G = Wn+1 and let E = E(Wn+1). In order to apply
Theorem 5, we will identify all induced subgraphs H of G with α(H) ̸= 0 and
β(G/H) ̸= 0. There are three cases to consider.

The first is the empty graph ∅, i.e., a spanning subgraph of G with no edges.
In this case, we have α(∅) = 1 and β(G) = n, and the corresponding eigenvalue is
λ = |E| = 2n, which explains the first factor (2n)n in the above formula.

The second is H induced by the vertex set {v1, v2, . . . , vn}. Hence H = Cn and
G/H is the complete graph K2 with multiple edges. Therefore, we have α(H) = 1
and β(G/H) = β(K2) = 1. The corresponding eigenvalue is λ = |E − E(Cn)| = n,
which explains the second factor n in the above formula.
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The third case is Hi,k induced by {p, vi, vi+1, . . . , vi+k} for i ∈ [1, n] and k ∈
[1, n − 2], where we identify vj+n with vj for all j. Note that each Hi,k is a

fan P̂k and that G/Hi,k is also a fan P̂n−k with multiple edges. Therefore, we
have α(Hi,k) = 2k−1 and β(G/Hi,k) = 1, and the corresponding eigenvalue is

λ = 2n− (2k+1), from which we obtain the last factor
∏n−2

k=1(2n− (2k+1))n·2
k−1

.
One can check that any other induced subgraph H either contains an isthmus,

which results in α(H) = 0, or produces G/H which is a tree with multiple edges
and more than 2 vertices, which results in β(G/H) = 0. □

Theorem 8. The top-dimensional tree number kn for IN(M(P̂n)) equals

(2n+ 1)

n−1∏
k=1

(2n− 2k)
2·2k−1

n−2∏
k=2

(2k − 1)
(n−k−1)·2n−k−2

.

Proof. Similar to the proof of the previous theorem. Details will be omitted. □
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