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ABSTRACT
Given a finite connected graph G = (V (G), E(G)) and a basis ∂ for a hyperplane
in the cycle space of G, define λ =

∑
Y det(CY , ∂) ·CY summing over all connected

spanning subgraphs Y of G such that |E(Y )| = |V (G)| with CY denoting the unique
cycle in Y . We will show that λ is an element of the harmonic space ker(∂t

1∂1 +∂∂t)
where ∂1 is the incidence matrix of G by establishing an inner product formula
λ ◦ z = det(z, ∂)k(G) for the cycles z and the tree number k(G) of G. Several
examples and applications of these formulas will be given.
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1. Introduction

Let G = (V (G), E(G)) be a finite connected graph and ∂1 its incidence matrix. A
second incidence matrix for G is an integer matrix ∂2 such that ∂1∂2 = 0. For a pair
G = (G, ∂2), we define its harmonic space to be H(G ) = ker(∂t1∂1 +∂2∂

t
2). An element

of H(G ) is called a harmonic cycle, which is the main object of study in this paper.
(See section 3.) Refer to [4] for a concise discussion of harmonic spaces of a chain
complex, and [3,8] for previous studies related to harmonic cycles.

The purpose of this paper is to present a formula for a harmonic cycle, which
is given as a sum of doubly weighted cycles in G. To describe the weights, we will
introduce cycletrees of G and a winding number for the cycles in G. (See sections 2
and 4.) A cycletree in G is a connected spanning subgraph containing a unique cycle.
A cycletree can be understood as a union of a spanning tree in G and an external
edge. To define the winding number, assume that the columns of ∂2 form a basis of a
hyperplane, i.e., a codimension 1 subspace, of the cycle space Z1 of G. This condition
is equivalent to rkH(G ) = 1 as we shall see. The winding number of z ∈ Z1 is defined
by w(z) = det(z, ∂2). Now let λ be an element of Z1 given by

λ =
∑
Y

w(CY ) · CY

summing over all cycletrees Y in G with CY denoting the unique cycle in Y . (See
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section 5.) Note that in this formula each cycle C in G is doubly weighted by its
winding number and the number of cycletrees it belongs to.

We will prove that λ is a harmonic cycle, i.e., an element ofH(G ). The proof is based
another intriguing formula for λ as a functional on Z1. Let the first chain group of G
be equipped with an inner product ◦ where the oriented edges form an orthonormal
basis. Let k(G) denote the number of spanning trees in G. For z ∈ Z1, we will show

λ ◦ z = w(z)k(G)

from which one can deduce that λ is a harmonic cycle. (See section 6.) The functional
defined by λ is called a combinatorial harmonic functional, or a matrix-tree functional.

Several examples are given in the paper to illustrate these results. Based on the
rank one case, we will address harmonic spaces of arbitrary ranks. (See section 7.)
As an application of the above inner product formula for λ, we introduce a rational
winding number for paths in G. (See section 8.)

2. Preliminaries

We refer the readers to [1,2] for basic definitions concerning graphs. In this paper, we
assume that a graph G = (V (G), E(G)) is finite and connected. Loops and multiple
edges are allowed.

2.1. Spanning trees and cycle space of a graph

A subgraph of G is spanning if the vertex set of the subgraph equals V (G). A spanning
tree T of a connected graph G is a spanning subgraph which is connected and has no
cycle. One can show that every spanning tree has |V (G)| − 1 edges. Let T (G) denote
the set of all spanning trees in G. The tree number k(G) of G is the number of spanning
trees of G:

k(G) = |T (G)| .

We assume that every edge e of G is assigned an orientation with [e] denoting
the oriented edge. One may regard −[e] as representing the edge e with the opposite
orientation. The chain group C1 = C1(G) = Z|E(G)| is generated by the oriented
edges {[e] | e ∈ E(G)}, and C0 = C0(G) = Z|V (G)| by the vertex set V (G). An element
x ∈ C1 may be represented either as a column vector x = (ne)e∈E(G) or as a formal sum
x =

∑
e∈E(G) ne[e] with ne ∈ Z for all e ∈ E(G). An element of C0 will be represented

similarly. The incidence matrix ∂1 = ∂1(G) : C1 → C0 is an integer matrix defined by
∂1[xy] = y− x for an oriented edge [xy]. We assume that C1 is given a standard inner
product, denoted by ◦, where the oriented edges of G form an orthonormal basis.

The cycle space of G is ker ∂1 which we will denote by Z1 = Z1(G). A cycle
C as a subgraph of G with a given orientation corresponds to a unique element∑

e∈E(C) εe[e] ∈ Z1 where the coefficients εe = ±1 are determined by the orienta-

tion of C. Let C(G) denote the set of all cycles in G. We will assume that every
C ∈ C(G) is assigned an orientation.

The rank of Z1 for a connected G equals the corank |E(G)|−|V (G)|+1 of G (refer to
[1]), and an important basis for Z1 is given as follows. Fix a spanning tree T ∈ T (G).
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For each e ∈ E(G) \ E(T ), there is a unique cycle in T ∪ e which contains e. Let ze
denote the element in Z1 that corresponds to this cycle with a given orientation. Then
the collection {ze | e ∈ E(G) \ E(T )} is a basis for Z1 with the property that for
e, e′ ∈ E(G) \ E(T ), the coefficient of [e] in ze′ is ±1 if e = e′, and 0 otherwise (refer
to [1]). Hence, every z ∈ Z1 is written uniquely as

z =
∑

e∈E(G)\E(T )

me · ze (1)

where me is the product of the coefficients of [e] in z and ze.

2.2. Cycletrees of a graph

Let G be a finite connected graph. A cycletree in G is a connected spanning subgraph
of G with exactly one cycle. Let U(G) denote the set of all cycletrees in G.

Note that Y ∈ U(G) can be expressed as a union

Y = T ∪ e (2)

of a spanning tree T in G and an edge e ∈ E(G)−E(T ). Hence, a connected spanning
subgraph Y of G is a cycletree iff |E(Y )| = |V (G)|.

We will denote the unique cycle in a cycletree Y ∈ U(G) by CY and its corresponding
element in Z1(G) by zY . Again, assume that an orientation of CY for each Y ∈ U(G)
is fixed so that zY is well defined. As we shall see, our results are independent of these
orientations. In the literature, a cycletree is also called a cycle-rooted spanning tree [6],
or a co-tree [3].

Example 2.1. For the graph G on the left in Figure 1, the list of all 14 cycletrees are
shown. For each cycletree, its unique cycle is given as bold red edges.

Figure 1. A graph G and its cycletrees

3. Harmonic space for a graph

We will discuss the notion of a harmonic space for a graph G. We refer the readers to
[4] for harmonic spaces and combinatorial Hodge theory for a chain complex.

An integer matrix ∂2 will be called a second incidence matrix for G if ∂1∂2 = 0.
Hence the columns of ∂2 are elements of Z1(G). Also, we regard ∂t2 as a map on C1(G).
We will use the notation G = (G, ∂2) when ∂2 is a second incidence matrix for G. The
combinatorial Laplacian ∆ for G = (G, ∂2) is an operator on C1(G) defined by

∆ = ∂t1∂1 + ∂2∂
t
2
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and the harmonic space H(G ) is the kernel of ∆, i.e.,

H(G ) = {λ ∈ C1(G) | ∆λ = 0} .

An element λ ∈ H(G ) is called a harmonic cycle, the main interest of this paper.

Proposition 3.1. Given G = (G, ∂2), let Z1 = ker ∂t2 and B1 = im ∂2. Then

(1) H(G ) = Z1 ∩ Z1, and
(2) rkH1(G ) = rkZ1 − rkB1 .

Proof. (1) The backward inclusion is clear. For the forward inclusion, let ∆λ = 0.
Left-multiplying this equation by ∂1 and using the property ∂1∂2 = 0, we obtain
∂1∂

t
1∂1λ = 0. Since kerM tM = kerM for any matrix M , we see that λ ∈ ker ∂1.

Similarly, left-multiplying ∆λ = 0 by ∂t2 reveals λ ∈ ker ∂t2.
(2) It follows from (1) that H(G ) consists of all elements in Z1 that are orthogonal

to the subspace B1 of Z1. Hence, rkZ1 = rkH(G ) + rkB1.

Example 3.2. Given a connected cell complex X, let ∂1 and ∂2 be the first two
boundary operators for X. (Refer to [5,7] for a definition of cell complexes.) The first
harmonic space for X is defined by H1(X) = ker(∂t1∂1 + ∂2∂

t
2). Now, if we let G be

the 1-skeleton X(1) of X, then we have H1(X) = H(G ) for G = (G, ∂2).

The rest of this section will discuss harmonic cycles when rkH1(G ) = 1. This case
is a basis for understanding harmonic spaces of arbitrary rank.

Example 3.3. Each picture in Figure 2 represents a harmonic cycle λ for G = (G, ∂2)
where the columns of ∂2 are the boundary cycles of the shaded faces of G and
rkH(G ) = 1. The number attached to an oriented edge is its coefficient in λ, called the
flow. Note that the net flow through each vertex is zero, satisfying the cycle condition
λ ∈ Z1, and the sum of the (signed) flows around each shaded square is zero, satisfying
the cocycle condition λ ∈ Z1. Note how the coefficients in a harmonic cycle reflect the
symmetry (or unsymmetry) in G .

Figure 2. Examples of harmonic cycles

4. Winding number for the cycles

Given a graph G, suppose rkZ1 = m with m > 0. A unicyclizer ∂ of G is a second
incidence matrix for G of rank m − 1 with linearly independent columns. The pair
G = (G, ∂) will be called a unicyclization of G. Note that in this case, we have
rkH(G ) = m− (m− 1) = 1 by Proposition 3.1.

Let β be a basis of the cycle space Z1(G). A cycle z ∈ Z1 will be denoted [z]β ∈ Zm
when it is written with respect to β. Similarly, [∂]β is the matrix obtained by writing
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each column vector of ∂ with respect to β. Note that the size of [∂]β is m× (m− 1).
We are ready to present the main definition of this section.

Definition 4.1. Given a unicyclization G = (G, ∂) and a basis β for Z1(G), the
winding number for the cycles in G is a map wG : Z1 → Z given by

w(z) = wG (z) = det([z]β, [∂]β) .

When β is fixed, we may simply write w(z) = det(z, ∂). If C is a cycle in G with a
given orientation and [C] its corresponding element in Z1, we may write w(C) instead
of w([C]). The following proposition shows that the winding number is essentially
independent of the choices of a basis for Z1 and a basis for im ∂.

Proposition 4.2. Let ∂ and ∂′ be unicyclizers of a graph G, and β and β′ bases of
Z1. Let w denote the winding number defined by ∂ and β, and w′ defined by ∂′ and β′.
If im ∂ = im ∂′ as subgroups of Z1, then we must have either w = w′ or w = −w′ as
maps on Z1.

Proof. If z ∈ im ∂ = im ∂′, then w(z) = w′(z) = 0. Suppose z /∈ im ∂. Clearly, the
matrices M = ([z]β′ , [∂]β′) and M ′ = ([z]β′ , [∂

′]β′) have the same column spaces. Also,
the set α of the columns of M forms a basis of that space, and the same is true for
the set α′ of the columns of M ′. Therefore, we see that

det([z]β, [∂]β) = detB · det([z]β′ , [∂]β′) = detB · det([z]β′ , [∂
′]β′) · detA

where B is a change of basis matrix for β and β′, and A is a change of basis matrix
for α and α′. Since B and A (and their inverses) are invertible integer matrices, each
has determinant ±1. It is easy to see that A does not depend on the choice of z ∈ Z1.
Now the result is clear.

The winding number wG of a unicyclization G = (G, ∂) can be interpreted via
homology. (Refer to [5,7] for homology groups.) The first homology of G is H1(G ) =
Z1/B1 where B1 = im ∂. One can find a basis β of Z1 such that [∂]β is an upper
triangular matrix of size m × (m − 1) with diagonal entries d1, · · · , dm−1 satisfying
di > 0 for all i. Therefore, we get H1(G ) ∼= Zd1 ⊕ · · · ⊕ Zdm−1

⊕ Z. Without loss of
generality, assume that the last element in β represents a generator for the free part Z
of H1(G ). Hence we also assume that the last row of [∂]β is indexed by that element.
Let τ = d1 · · · dm−1 the size of the torsion part of H1(G ). For C ∈ C(G),

|wG (C)| = | det([∂]β, [C]β)| = τcm

where cm is the last component of [C]β. Hence, we obtain wG (C)/τ = cm which counts
the number of times a cycle C ‘winds around’ a generator for the free part of H1(G ).

5. Standard harmonic cycle

Let us introduce the main object of study in this paper. Recall that for a connected
graph G, every Y ∈ U(G) contains a unique cycle CY . Let zY denote the element in
Z1(G) corresponding to CY . Assume a fixed basis for Z1(G).
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Definition 5.1. (Standard harmonic cycle) The standard harmonic cycle for a uni-
cyclization G = (G, ∂) is an element λG in Z1(G) given by

λG =
∑

Y ∈U(G)

wG (zY ) · zY (3)

where wG is the winding number for G .

Note that λG is independent of the orientations of CY ’s. Indeed, each weighted cycle
wG (zY ) · zY in the sum is independent of the orientation of CY because wG (zY ) · zY =
det(zY , ∂)·zY = det(−zY , ∂)·(−zY ) = wG (−zY )·(−zY ). We also note that if G = (G, ∂)
and G ′ = (G, ∂′) are unicyclizations of G with im ∂ = im ∂′, then we have λG = ±λG ′

by Proposition 4.2. Later, we will show in Theorem 6.3 that λG is indeed a nonzero
harmonic cycle for G .

Example 5.2. The picture on the left in Figure 3 describes the standard harmonic
cycle λ for G = (G, ∂) where the columns of ∂ are the boundary cycles of the two
shaded faces of G. The pictures on the right show all cycletrees Y ∈ U(G) with
nonzero w(CY ), which are all equal to 1 in this example, with their unique cycles in
red. The sum of these cycles equals λ.

Figure 3. An example of standard harmonic cycle

The following proposition gives a description of λG via tree numbers. Let C(G) be
the set of all cycles in G. For C ∈ C(G), let G/C be the graph obtained by contracting
C to a point. Let k(G/C) denote the number of spanning trees in G/C. (Refer to [9]
for graph contractions.)

Proposition 5.3. The standard harmonic cycle for a unicyclization G = (G, ∂) is

λG =
∑

C∈C(G)

k(G/C)wG (C) · [C] . (4)

Proof. Given C ∈ C(G), let U(G)C = {Y ∈ U(G) | CY = C}. The map Y 7→ Y/C
defines a bijection from U(G)C to T (G/C). The proposition follows from U(G) =
qC∈C(G)U(G)C and the definition of λG . Details will be omitted.

6. Main results

In this section, we present the main results of the paper that will justify our termi-
nology standard harmonic cycle for a graph. To begin, we will derive an intriguing
formula that relates the standard harmonic cycle and the tree number of a graph.
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Theorem 6.1. (Inner product formula) Let λG be the standard harmonic cycle for a
unicyclization G = (G, ∂). For z ∈ Z1(G), we have

λG ◦ z = wG (z)k(G) (5)

where ◦ denotes a standard inner product for C1(G).

Proof. By (1) and the linearity of w = wG , it is enough to prove the theorem when
z ∈ Z1(G) corresponds to a cycle C ∈ C(G). Again, assume that every C ∈ C(G) is
assigned an orientation, and let ε(C, e) denote the coefficient of [e] in [C]. If C ′ is also
a cycle in G, then note that

[C] ◦ [C ′] =
∑
e

ε(C, e)ε(C ′, e) (6)

where the sum may be taken over E(C) or E(C ′) (or, E(G)).
Given a spanning tree T ∈ T (G), let E(T ) = E(G) \ E(T ). For e ∈ E(T ), let Ce

denote the unique cycle in T ∪ e. Now, given a cycle C ∈ C(G), we have

w(C)k(G) =
∑

T∈T (G)

w(C)

=
∑

T∈T (G)

∑
e∈E(T )

ε(C, e)ε(Ce, e)w(Ce)

=
∑

Y ∈U(G)

∑
e∈E(CY )

ε(C, e)ε(CY , e)w(CY )

=
∑

Y ∈U(G)

([C] ◦ [CY ])w(CY )

where the equalities are justified as follows. The first equality is clear. The second
equality follows from (1) and the linearity of w the winding number. The third equality
holds because the set {(T, e) | T ∈ T (G), e ∈ E(T )} corresponds bijectively to the
set {(Y, e) | Y ∈ U(G), e ∈ E(CY )} via the map (T, e) 7→ (T ∪ e, e), and because Ce
equals CY for Y = T ∪e. The fourth equality follows from (6). Since the last expression
in the above equations equals λG ◦ [C], the proof is complete.

The following corollary provides a new method for computing the tree number k(G)
of G. We will present an example illustrating this formula in the last section.

Corollary 6.2. Let w = wG , and let C0 be a cycle in G. Then we have

w(C0)k(G) =
∑

C∈C(G)

([C0] ◦ [C])w(C)k(G/C) . (7)

Proof. The equation follows immediately from Theorem 6.1 and Proposition 5.3.

Theorem 6.3. Let G = (G, ∂) be a unicyclization of a graph G. Then

λG =
∑

Y ∈U(G)

wG (zY ) · zY (8)
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is a nonzero harmonic cycle for G .

Proof. Let λ = λG and w = wG . For any column z of ∂, we have w(z) = det(z, ∂) = 0.
Hence λ◦z = w(z)k(G) = 0 by Theorem 6.1, which implies λ ∈ Z1 = ker ∂t. Therefore
we have λ ∈ Z1 ∩Z1, and λ is a harmonic cycle for G by Proposition 3.1. Since rk ∂ =
rkZ1−1, there is x ∈ Z1 such that w(x) = det(x, ∂) 6= 0. Hence, λ◦x = w(x)k(G) 6= 0,
which shows λ 6= 0.

7. Harmonic spaces of arbitrary ranks

Based on our results for unicyclizations of a graph G, we will describe the harmonic
space of G = (G, ∂2) for an arbitrary ∂2.

Proposition 7.1. Any nonzero cycle z ∈ Z1(G) is a standard harmonic cycle of a
unicyclization of G up to a scalar (possibly rational) multiplication.

Proof. Let rkZ1 = m (m > 0). Let z⊥ = {c ∈ Z1 | z ◦ c = 0}. Since z 6= 0, we have
rk z⊥ = m − 1. Let ∂ be an integer matrix whose columns form a basis for z⊥. Then
G = (G, ∂) is a unicyclization of G. For c ∈ λ⊥, we have wG (c) = det(c, ∂) = 0, and
consequently, λG ◦ c = wG (c)k(G) = 0 by Theorem 6.1. Hence, λG is orthogonal to z⊥,
and the result follows.

Given G = (G, ∂2), suppose rk ∂2 = m−r where m = rkZ1(G) and r > 0. Then, we
have rkH(G ) = r. Let {zi | 1 ≤ i ≤ m} be a collection of linearly independent vectors
in Z1 such that {zr+1, . . . , zm} forms a basis for im ∂2. For 1 ≤ k ≤ r, let Dk be the
matrix having all zi’s as columns except zk. In particular, we have rkDk = m − 1.
Then, for each 1 ≤ k ≤ r, the pair (G,Dk) is a unicyclization of G. Let wk and λk be
the corresponding winding number and standard harmonic cycle, respectively. Hence,
we have wk(z) = det(z,Dk) for z ∈ Z1(G), and λk =

∑
Y ∈U(G)wk(CY ) · [CY ]. Note

that wk(zj) is nonzero iff k = j.

Theorem 7.2. Given G = (G, ∂2), the collection {λk | 1 ≤ k ≤ rkH(G )} of standard
harmonic cycles is linearly independent in the harmonic space H(G ).

Proof. Suppose
∑

1≤k≤r nkλk = 0. We claim that nj = 0 for each 1 ≤ j ≤ r. Applying
the inner product to this equation with zj for a fixed j shows

0 =
∑

1≤k≤r
nk(λk ◦ zj)

=
∑

1≤k≤r
njwk(zj)k(G)

= njwj(zj)k(G)

where the second equality follows from Theorem 6.1, and the last equality from the
fact wk(zj) is nonzero iff k = j. We conclude that nj = 0 for each 1 ≤ j ≤ r, and the
proof is complete.
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8. Examples and applications

Example 8.1. Each picture in Figure 4 shows the standard harmonic cycle λ of a
unicyclization of a graph G where the coefficients of the oriented edges form Fibonacci
numbers f1 = 1, f2 = 1, and fn+2 = fn+1 + fn for n ≥ 1. The well-known equalities
f1 + f3 + · · ·+ f2n−1 = f2n and f2 + f4 + · · ·+ f2n−2 = f2n−1 − f1 correspond to the
cycle or cocycle conditions of a harmonic cycle. Details will be left to the readers.

Figure 4. Fibonacci numbers in standard harmonic cycles

Example 8.2. Let us count the number of spanning trees of the graph G on the left
in Figure 5 by applying (7). Assume all cycles are oriented counterclockwise. Let β be
the basis of Z1 given by the boundary cycles of four finite faces of G. Let ∂ be given by
the boundary cycles of the three shaded faces, and let C0 be the green cycle winding
around the ‘hole’, the unshaded face. One can check that w(C0) = det I4 = 1 where
I4 is the identity matrix of order 4.

Figure 5. A graph G, a unicyclizer ∂, and a cycle C0

By (7), we need to consider only those C ∈ C(G) with w(C) 6= 0, and they are the
cycles which wind around the hole. Figure 6 shows the full list of those cycles in red.

Figure 6. Cycles in G with nontrivial winding numbers

It is easy to show that w(C) = 1 for each red cycle C, and we have the equality

192 = k(G) =
∑

C: red cycles

([C0] ◦ [C])k(G/C)

= 4 · 30 + 3 · 8 + 3 · 8 + 3 · 2 + 2 · 2 + 3 · 2 + 2 · 4

where the terms in the last sum correspond to the red cycles in the same order. Each of
the tree numbers that appear in the right hand side of this equation may be computed
also by applying (7).

9



Example 8.3. The picture on the left in Figure 7 shows the standard harmonic cycle
λ of a Möbius strip represented as a unicyclization of a graph G. The pictures on the
right illustrate a computation of λ by Proposition 5.3. Note that there is a cycle C
with w(C) = 2 in this computation.

Figure 7. Standard harmonic cycle of a Möbius strip

Winding number for paths

Using the inner product formula for the standard harmonic cycle, the winding number
wG for a unicyclization G = (G, ∂) can be extended to a map on C1(G). For P ∈ C1(G),
we define its winding number to be

wG (P ) =
λG ◦ P
k(G)

∈ Q .

This definition is intended to assess the degree to which an arbitrary path ‘winds
around’ a homology generator in a cell complex. The following example illustrates that
the winding number, being a rational number, is a finer invariant than homology.

Example 8.4. Let P ∈ C1(G) be a path where G is the 1-skeleton of the Möbius
strip in the previous example. In each figure below, P is marked red, and we have
w(P ) = (λ ◦ P )/k(G). Note that k(G) = 24 in this example.

Figure 8. Winding numbers of paths

Note that the path P in the last figure has a nonzero rational winding number
whereas it would belong to the same trivial class as a point in homology.
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