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Abstract

The Möbius coinvariant µ⊥(G) of a graph G is defined to be the Möbius invariant of the
dual of the cycle matroid of G. This invariant is known to equal the rank of the reduced
homology of the cycle matroid complex of G. For a complete graph Km+1, W. Kook gave an
interpretation of µ⊥(Km+1) as the number of edge-rooted forests in Km. In this paper, we
obtain a new combinatorial interpretation of µ⊥(Km+1,n+1) as the number of B-edge-rooted
forests in Km,n, which is a bipartite analogue of the previous result.

Based on these interpretations, we will give new bijective proofs of the formulas for
µ⊥(Km+1) and µ⊥(Km+1,n+1) given by I. Novik, A. Postnikov, and B. Sturmfels in terms
of the Hermite polynomials. In addition, we will construct a homology basis for the cycle
matroid complex of Km+1,n+1 indexed by the B-edge-rooted forests. Also we will discuss the
Möbius coinvariant of bi-coned graphs which generalize complete bipartite graphs.
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1. Introduction

The Möbius invariant µ(M) of a matroid M is defined to be |µL(M)(0̂, 1̂)| where µL(M) is
the Möbius function on the lattice of flats L(M) of M . We define the Möbius coinvariant
of M to be µ⊥(M) := µ(M∗) where M∗ is the dual matroid of M . It is well-known that
µ⊥(M) equals an evaluation TM(0, 1) of the Tutte polynomial TM(x, y) of M , which also
equals the rank of the reduced homology of the independent set complex IN(M) of M [1, 3].
For a graph G, we define its Möbius coinvariant to be µ⊥(G) := µ(M(G)∗) where M(G)
is the cycle matroid of G. In this paper, we will give a new interpretation of the Möbius
coinvariant for a class of graphs generalizing complete bipartite graphs.

Some of the previous results that motivated the current work are as follows. In the context
of hyperplane arrangement and commutative algebra, D. Bayer, S. Popescu, and B. Sturmfels
posed a problem of computing µ⊥(G) [4]. In response to this problem, I. Novik, A. Postnikov,
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and B. Sturmfels [20] gave formulas for µ⊥(Km+1) and µ⊥(Km+1,n+1) for complete graphs
Km+1 and complete bipartite graphs Km+1,n+1, studying cographic ideals and hyperplane
arrangements. They expressed these formulas in terms of Hermite polynomials, a generating
function for partial matchings. In a study of group action on the homology of matroid
complexes, W. Kook ([12] or [17, Theorem 20]) gave a simple combinatorial interpretation
for µ⊥(Km+1), and more generally for the Möbius coinvariant of a coned graph [13], via
edge-rooted forests (see Figure 1(a)). However, a direct correspondence relating the edge-
rooted forests and the formula for µ⊥(Km+1) has not appeared before. We will establish this
correspondence in this paper.

More importantly, we will give a new combinatorial interpretation for the Möbius coin-
variant of a complete bipartite graph Km+1,n+1, which can be outlined as follows. A tree in
Km,n is bi-rooted if it has two root vertices, one in each bipartite set of Km,n. A tree in Km,n

is edge-rooted if one edge is marked as an edge-root. Define a B-edge-rooted forest in Km,n to
be a spanning forest with exactly one component bi-rooted and the remaining components
edge-rooted (see Figure 1(b)). By identifying all spanning trees with zero internal activity,
we will show that µ⊥(Km+1,n+1) equals the number of all B-edge-rooted forests in Km,n (see
Theorem 3.4), which is an analogue of the result for a complete graph.

(a) an edge-rooted forest (b) a B-edge-rooted forest

Figure 1: An edge-rooted forest and a B-edge-rooted forest

As a consequence of our combinatorial interpretations for the invariants µ⊥(Km+1) and
µ⊥(Km+1,n+1), we will give new bijective proofs of their formulas given by I. Novik, A.
Postnikov, and B. Sturmfels [20]. In Theorem 4.3, we will show that µ⊥(Km+1) equals

bm
2
c∑

k≥1

(
m

2k

)
(2k ·mm−1−2k)(2k − 1)!!

where the k-th term in this sum is the number of edge-rooted forests in Km with k compo-
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nents. In Theorem 4.8, we will show that µ⊥(Km+1,n+1) equals

min (m−1,n−1)∑
k=0

(
m

k

)(
n

k

)
k!(m− k)(n− k)nm−1−kmn−1−k

where the k-th term in the sum is the number of B-edge-rooted forests in Km,n with k + 1
components (i.e., the number of B-edge-rooted forests with one bi-rooted tree and k edge-
rooted trees). As a tool for proving this fact, we develop a bipartite analogue of Lemma
4.2 about the number of the vertex-rooted forests in a complete graph with given roots (see
Theorem 4.6).

B-edge-rooted forests are not only a combinatorial interpretation, but also a “code” for
constructing a homology basis for the cycle matroid complex of Km+1,n+1. W. Kook [12]
showed how edge-rooted forests in Km could be used to construct a homology basis for the
independent set complex I(Km+1) := IN(M(Km+1)) (see Example 3 in [17]). This basis also
reveals that the action of the symmetric group Sm (as a subgroup of Sm+1) on this homology
group is isomorphic up to sign to that on the set of all edge-rooted forests in Km.

As a bipartite analogue of these results, we will construct a basis for the top reduced
homology group of I(Km+1,n+1) from the B-edge-rooted forests in Km,n (Theorem 5.3). Fur-
thermore, we will show that this construction is equivariant up to sign under the action of
Sm×Sn as a subgroup of Sm+1×Sn+1 (Theorem 5.5). This result requires identifying special
facets that depend on the bi-roots, a subtle difference from the case of complete graphs.

The paper is organized as follows. Section 2 is a brief review of several interpretations
of Möbius coinvariant. Section 3 presents the main definition of the paper, B-edge-rooted
forests, and shows a new interpretation for the Möbius coinvariant of a complete bipartite
graph, as an analogue of that of a complete graph. Section 4 provides bijective proofs of
the formulas for the Möbius coinvariants of complete graphs and complete bipartite graphs
given by I. Novik, A. Postnikov, and B. Sturmfels. Section 5 constructs a new homology
basis for I(Km+1,n+1) based on our combinatorial interpretation, and analyses the symmetric
group action on the homology. Section 6 defines bi-coned graphs which generalize complete
bipartite graphs and discuss their Möbius coinvariants.

2. Background: Interpretations of Möbius coinvariant

In this section, we will review relevant interpretations of the Möbius coinvariant for
graphs. We refer the readers to [22, 26] for basic definitions and notations concerning ma-
troids. A matroid M on a finite ground set E is a pair (E, I) with I ⊂ 2E satisfying

(i) ∅ ∈ I,

(ii) if I ∈ I and I ′ ⊂ I, then I ′ ∈ I, and

(iii) if I, I ′ ∈ I and |I| > |I ′|, then there is e ∈ I − I ′ such that I ′ ∪ e ∈ I.
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The collection I is called the independent sets. A maximal independent set is called a basis
of M . For a matroid M , its dual matroid M∗ = (E, I∗) is defined by I∗ = {E − I | I ∈ I}.

The axioms (i) and (ii) imply that I forms an abstract simplicial complex. This complex
is called the independent set complex, or the matroid complex of M , denoted by IN(M). A
matroid complex is shellable [1], hence homotopy equivalent to a wedge of spheres of the
same dimension so that its reduced homology groups vanish except for the top dimension.

An important example for our purpose is the cycle matroid of a graph. For a graph
G = (V (G), E(G)), its cycle matroid is M(G) = (E, I) where E = E(G) and a subset
I ⊂ E is an element of I if I is acyclic. A basis of M(G) is a spanning tree of G for a
connected graph G. Its dual matroid M(G)∗ is called a cographic matroid. For simplicity,
we will write I(G) for the matroid complex IN(M(G)). Now, we will introduce the definition
of Möbius coinvariant of a graph along with a review of related matroidal invariants.

2.1. The Möbius coinvariant of a graph

The Möbius invariant of a matroid M is defined to be µ(M) := |µL(M)(0̂, 1̂)| where
L(M) is the lattice of flats of M and µL(M)(·, ·) the Möbius function on L(M). The Möbius
coinvariant of M is defined to be µ⊥(M) := µ(M∗). Now, we define the Möbius coinvariant
of a graph G, denoted by µ⊥(G), to be

µ⊥(G) = µ(M(G)∗) .

2.2. An evaluation of the Tutte polynomial of a graph

For a matroid M , its Tutte polynomial TM(x, y) is defined by (refer to [3])

TM(x, y) =
∑

ti,jx
iyj

where ti,j is the number of bases of M with internal activity i and external activity j. We
will review basis activity in Section 3. From the well-known identities µ(M) = TM(1, 0) and
TM(x, y) = TM∗(y, x), we have

µ⊥(G) = TG(0, 1)

where TG(x, y) = TM(G)(x, y). For a connected G, µ⊥(G) is the number of the spanning trees
in G with zero internal activity.

2.3. The rank of the reduced homology of I(G)

Suppose that G is a connected graph with n vertices. The facets (maximal faces) of I(G)
correspond to the spanning trees of G, and the dimension of I(G) is n − 2. The rank of
the top reduced homology group H̃n−2(I(G)) is well-known to equal TG(0, 1) (refer to [1]).
Hence we have

µ⊥(G) = rk H̃n−2(I(G)) .

Since a matroid complex is shellable [1], it follows that µ⊥(G) equals the unsigned reduced
Euler characteristic |χ̃(I(G))| of I(G). This invariant was also called the α-invariant of G in
[11, 13] where a symmetric group action on H̃n−2(I(Kn)) was studied.
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3. Combinatorial interpretations for µ⊥(Km+1) and µ⊥(Km+1,n+1)

The definition of internal activity for a spanning tree in a graph G is as follows. Suppose
that the set of edges E(G) is linearly ordered by ω. Let T be a spanning tree in G. Deleting
an edge e in T creates a forest with two components, say T1 and T2. The fundamental bond
of e with respect to T is the set EG(T1, T2) of all edges in G having one vertex in T1 and the
other in T2. Then e ∈ T is said to be internally active if e is ω-smallest in its fundamental
bond with respect to T . Otherwise e is internally passive. The internal activity of T is the
number of internally active edges. This section will assume the interpretation of µ⊥(G) as
the number of spanning trees in G with zero internal activity.

3.1. The Möbius coinvariant of a complete graph

We will review a combinatorial interpretation for the Möbius coinvariant of a complete
graph (refer to [12] or [17, Theorem 20]). A tree with at least one edge is said to be edge-rooted
if exactly one edge is marked as an edge-root. An edge-rooted forest in a graph is a spanning
forest with every component edge-rooted. Alternatively, an edge-rooted forest in Km is a
pair (F, e), where F is a spanning forest in Km and e is a subset of E(F ) containing exactly
one edge from each component of F (see Figure 1(a)).

Theorem 3.1. [12] For m ≥ 1, the Möbius coinvariant µ⊥(Km+1) of a complete graph Km+1

equals the cardinality of the set of all edge-rooted forests in Km.

3.2. The Möbius coinvariant of a complete bipartite graph

In this paper, we assume that the vertex bipartition of the complete bipartite graph
Km+1,n+1 is given by ([m]∪ 0, [n]∪ 0) where [m] = {1, · · · ,m} and [n] = {1, · · · , n}. Denote
by Km,n the subgraph induced by ([m], [n]). For our purpose, we will order the edges of
Km+1,n+1 as follows. First, order its vertices by

0 < 0 < 1 < 2 < · · · < m < 1 < · · · < n.

Then, we will use the resulting lexicographic ordering on E(Km+1,n+1). In this ordering,
every edge in Km,n is larger than any edge incident to 0 or 0.

To describe the Möbius coinvariant of Km+1,n+1, we introduce a new concept which did
not appear in the case of a complete graph. Define a bi-rooted tree to be a tree in Km,n which
has one root-vertex in each bipartite set. A vertex of a spanning tree T in Km+1,n+1 is called
a connecting root if it is adjacent to 0 or 0 in the spanning tree T . If T is a spanning tree in
Km+1,n+1 and C a component in the spanning forest Km,n ∩ T of Km,n, the component C is
also called bi-rooted if it has a connecting root in each bipartite set of Km,n. Note that there
is no bi-rooted component in Km,n ∩ T if 00 ∈ E(T ), and exactly one bi-rooted component
if 00 /∈ E(T ). In the following lemma, Cx denotes the component of Km,n ∩ T containing a
vertex x.

Lemma 3.2. An edge e in a spanning tree T in Km+1,n+1 is internally active (with respect
to the order defined above) if and only if e is in one of the following three cases:
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(i) e is 00.

(ii) e is 0v with v ∈ [m] where Cv is not bi-rooted and v is the smallest vertex in Cv.

(iii) e is 0w with w ∈ [n] where Cw consists of the vertex w only.

Proof. It is easy to check the sufficiency. The necessity can be proved by the following
observations whose proofs are simple and will be omitted. If e ( 6= 00) is the smallest in its
basic bond, then it is of the form 0v or 0w for some v ∈ [m] or w ∈ [n]. Also, if 0v or 0w is
incident to a bi-rooted component in Km,n ∩ T , it is not internally active because its basic
bond contains 00. Therefore, e must be incident to a “single-rooted” component, and (ii)
and (iii) cover these cases.

The following is the main definition of this section which is a bipartite analogue of an
edge-rooted forest. As we shall see, it will provide an indexing set for the spanning trees
with internal activity zero in Km+1,n+1.

Definition 3.3. A B-edge-rooted forest in a complete bipartite graph Km,n (m,n ≥ 1) is a
spanning forest in Km,n composed of two kinds of components such that

• exactly one component is bi-rooted, i.e., has one vertex-root in each bipartite set, and

• each remaining component is edge-rooted, i.e., has one edge marked as an edge-root.

Equivalently, we define the set FBe (Km,n) of all B-edge-rooted forests in Km,n to be the set
of all triples (F,b, e) where F is a spanning forest in Km,n with each component having at
least one edge, b = {v1, v2} with v1 ∈ [m], v2 ∈ [n] is a bi-root for the component Cb of
F , and e is a subset of E(F )− E(Cb) containing exactly one edge from each component of
F − Cb. We allow the possibility F = Cb, and in that case, e is empty.

Based on this definition, we now give a combinatorial interpretation for µ⊥(Km+1,n+1)
that is independent of ordering of E(Km+1,n+1).

Theorem 3.4. The Möbius coinvariant µ⊥(Km+1,n+1) of Km+1,n+1 equals the cardinality of
the set of all B-edge-rooted forests in Km,n :

µ⊥(Km+1,n+1) = |FBe (Km,n)| .

Proof. It suffices to construct a bijection between FBe (Km,n) and the set T 0(Km+1,n+1) of
all internal activity zero spanning trees in Km+1,n+1. Take T ∈ T 0(Km+1,n+1). The graph
obtained by deleting two vertices 0, 0 from T is a spanning forest F in Km,n. Since we have
00 /∈ E(T ), exactly one component in F is bi-rooted, say, by b. Let C1, C2, · · · , Cd be other
components in F with a connecting root ci and the smallest vertex si ∈ V (Ci) for each
i ∈ [d]. Since ci 6= si by Lemma 3.2, there is a unique path in Ci from si to ci. Let ei be the
last edge in the path and define e = {e1, e2, · · · , ed}. The correspondence T 7→ (F,b, e) is
reversible by Lemma 3.2, which completes the proof. (See Figure 2.)
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(a) a tree T ∈ T 0 (b) B-edge-rooted forest

Figure 2: A tree T ∈ T 0 and its corresponding B-edge-rooted forest

4. Formulas for µ⊥(Km+1) and µ⊥(Km+1,n+1)

In this section, we will give bijective proofs of the formulas in [20] for µ⊥(Km+1) and
µ⊥(Km+1,n+1). The problem of computing these numbers was posed by D. Bayer, S. Popescu
and B. Sturmfels [4] studying the hyperplane arrangements and commutative algebra aris-
ing from graphs. I. Novik, A. Postnikov, and B. Sturmfels [20] continued these studies in
a similar context, and gave formulas for µ⊥(Km+1) and µ⊥(Km+1,n+1) in terms of Hermite
polynomials, obtained via recurrence relations. We will recover the formulas via the com-
binatorial interpretations discussed in the previous section. Our method also gives more
information about each term in the formulas.

4.1. The Möbius coinvariant of a complete graph

We first review the Hermite polynomial Hn(x). For a partial matching π in Kn, let a(π)
be the number of vertices in Kn of degree 0. The Hermite polynomial Hn(x) is defined to
be a generating function for partial matchings in Kn, i.e., Hn(x) =

∑
π x

a(π) where the sum
is over all partial matchings π in Kn. Then the following recurrence holds for n ≥ 0:

Hn+1(x) = xHn(x) + nHn−1(x).

where H−1(x) = 0 and H0(x) = 1. In addition, the Hermite polynomial Hn(x) has the
following explicit form for n ≥ 1:

Hn(x) = xn +

bn/2c∑
k≥1

(
n

2k

)
(2k − 1)!!xn−2k. (1)

Theorem 4.1. [20, Theorem 5.8] The Möbius coinvariant µ⊥(Km+1) of a complete graph
Km+1 with m ≥ 1 equals (m− 1)Hm−2(m). Hence, we obtain

µ⊥(Km+1) =

bm
2
c∑

k≥1

(
m

2k

)
(2k − 1)!!(2k ·mm−1−2k) (2)

by evaluating Hm−2(m) using (1).
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Several initial values of µ⊥(Km+1) are given below:

m 2 3 4 5 6 7 8 9
µ⊥(Km+1) 1 6 51 560 7575 122052 2285353 48803904

Now, we recall an important lemma concerning the number of the vertex-rooted forests
in a complete graph as a generalization of Cayley’s formula. See [21] for a proof.

Lemma 4.2. [21] Let S be a subset of vertices in Kn with |S| = s. Then the number of
the vertex-rooted forests in Kn with s components each of which contains a distinct element
(vertex) in S as a vertex-root is s·nn−s−1.

The following theorem is one of the main results of this section providing a combinatorial
interpretation of Theorem 4.1 via the edge-rooted forests in a complete graph.

Theorem 4.3. The k-th term in the expression for

µ⊥(Km+1) =

bm
2
c∑

k≥1

(
m

2k

)
(2k ·mm−1−2k)(2k − 1)!!

equals the number of edge-rooted forests in Km with exactly k components.

Proof. By Theorem 3.1, µ⊥(Km+1) equals the number of edge-rooted forests in Km. Note

that the number of components of an edge-rooted forest in Km is at most bm
2
c. Hence, it

suffices to show that the number of the edge-rooted forests in Km with exactly k components
is (

m

2k

)
(2k ·mm−1−2k)(2k − 1)!! .

Fix k ≥ 1. If R is a vertex-rooted forest on Km with 2k components and e is a perfect
matching of the 2k vertex-roots of R, then R∪e is an edge-rooted forest with k components
when e is regarded as edge-roots. The map (R, e) 7→ R∪ e is clearly a bijection between the
set of all pairs (R, e) and the set of all edge-rooted forests with k components. By Lemma 4.2
and the fact that (2k−1)!! is the number of perfect matchings on 2k vertices, the cardinality
of the former set is seen to be the desired formula.

Since the number of the edge-rooted spanning trees in Kn is (n− 1)nn−2, an exponential
generating function for µ⊥(Km+1) is given by ([13])∑

m≥0

µ⊥(Km+1)
xm

m!
= exp

(
T (x)

)

where T (x) =
∑
n≥2

(n− 1)nn−2
xn

n!
. This formula can be obtained from [8, Theorem 7] also.
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4.2. The Möbius coinvariant of a complete bipartite graph

We review a bipartite analogue Hm,n(x, y) of Hermite polynomials. For a partial matching
π in Km,n, let a(π) (resp. b(π)) be the number of vertices in [m] (resp. [n]) of degree 0.
Then Hm,n(x, y) is defined to be a generating function for partial matchings in Km,n, i.e.,
Hm,n(x, y) =

∑
π x

a(π)yb(π) where the sum is over all partial matchings π in Km,n, with
Hm,0(x, y) = xm, H0,n(x, y) = yn, and Hm,−1(x, y) = H−1,m(x, y) = 0. Then Hm,n(x, y) has
the following explicit form

Hm,n(x, y) =

min (m,n)∑
k≥0

(
m

k

)(
n

k

)
k!xm−kyn−k. (3)

Theorem 4.4. [20, Theorem 5.14] The Möbius coinvariant µ⊥(Km+1,n+1) of a complete
bipartite graph Km+1,n+1 with m,n ≥ 0 equals mn ·Hm−1,n−1(n,m). Hence, we obtain

µ⊥(Km+1,n+1) =

min (m−1,n−1)∑
k=0

(
m

k

)(
n

k

)
k!(m− k)(n− k)nm−1−kmn−1−k (4)

by evaluating Hm−1,n−1(n,m) using (3)

Several initial values of µ⊥(Km+1,m+1) are given below:

m 1 2 3 4 5 6
µ⊥(Km+1,m+1) 1 20 1071 107104 17201225 4053135456

Now, we need the following lemma that gives a bijective proof for the number of the
spanning trees in Km,n using, for example, function graphs. For a function f : A→ B where
A is a non-empty subset of a finite set B, the graph Gf of f is a directed graph on the vertex
set B with directed edges (a, b) iff f(a) = b.

Lemma 4.5. Let Km,n be the complete bipartite graph with a bipartition [m] ∪ [n]. Then
there is a bijection from the set of all spanning trees of Km,n to the set of all functions
f : {2, · · · ,m, 2, · · · , n} → {1, · · · ,m, 1, · · · , n} such that

(i) if i ∈ {2, · · · ,m}, then f(i) ∈ [n], and

(ii) if i ∈ {2, · · · , n}, then f(i) ∈ [m].

Proof. We will sketch a bijection from [7, Theorem 2.1]. Given a spanning tree T in Km,n,
direct all edges towards the vertex 1. Then, there is a unique directed path from 1 to 1 on T .
Recall that 2 < · · · < m < 2 < · · · < n. Let r0 = 1 and define ri (i > 0) to be the maximum
vertex on the path strictly between ri−1 and 1, recursively. Let li be the vertex immediately
after ri−1 on the path. Now, delete the edge (ri−1, li) and add a new edge (ri, li). Then
the resulting directed graph is the graph of the desired function f . One can check that the
correspondence T 7→ f is bijective.
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We present the following theorem as a bipartite analogue of Lemma 4.2, which will be
used to give a combinatorial interpretation for µ⊥(Km+1,n+1).

Theorem 4.6. The number of B-edge-rooted forests in Km,n consisting of k+ 1 components
with a given bi-root and a given collection of k edge-roots is nm−1−kmn−1−k.

Proof. Without loss of generality, we will assume that the given bi-root is {1, 1}, and the
given edge-roots are 22, 33, . . . , (k + 1)(k + 1). We will construct a bijection between the
set of the B-edge-rooted forests in Km,n with these given roots and the set of the functions
f : {k + 2, · · · ,m, k + 2, · · · , n} → {1, · · · ,m, 1, · · ·n} such that

(i) if i ∈ {k + 2, · · · ,m}, then f(i) ∈ [n], and

(ii) if i ∈ {k + 2, · · · , n}, then f(i) ∈ [m].

Take a B-edge-rooted forest F in Km,n with these roots. Deleting the edge-roots from F
yields 2k vertex-rooted trees (with no change in the original bi-rooted component). Direct
all edges in each of these 2k trees towards the vertex-root to create directed trees, and apply
Lemma 4.5 to the bi-rooted component of F . These operations produce a directed graph
which is the graph of a desired function f satisfying (i) and (ii).

We will show that the correspondence given by F 7→ f is a bijection by describing its
inverse. Indeed, suppose f satisfies (i) and (ii). For a vertex x ∈ [m]∪ [n], let Cx denote the
component of the graph Gf of f containing x. For X = {2, · · · , k + 1} ∪ {2, · · · , k + 1}, it
is easy to check that Cx 6= Cy if x, y ∈ X and x 6= y, and that Cx is acyclic for every x ∈ X.
Add the given edge-roots to ∪x∈XCx to create k edge-rooted trees. Apply Lemma 4.5 to the
restriction of f to {k + 2, · · · ,m, k + 2, · · · , n} \ ∪x∈XV (Cx) to create a tree containing the
vertices {1, 1}, and designate them as the bi-root. This bi-rooted tree together with the k
edge-rooted trees is a B-edge-rooted forest F with the given roots. One can check that the
map f 7→ F is the desired inverse.

Example 4.7. This example illustrates the proof of the above theorem. Consider a B-
edge-rooted forest in Figure 3 with one bi-rooted component and one edge-rooted compo-
nent. First, delete the edge-root 22, and we get f(3) = 2, f(4) = 2, f(3) = 2. Next,
applying Lemma 4.5 to the bi-rooted component (with the bi-roots {1, 1}), we see that
f(4) = 5, f(5) = 5, f(5) = 6, f(6) = 4, f(6) = 6, f(7) = 6. These assignments give the
desired function. Figure 4 is the graph of this f .

The following theorem is another main result of this section providing a combinatorial
interpretation of Theorem 4.4 via B-edge-rooted forests in a complete bipartite graph.

Theorem 4.8. The k-th term in the expression for

µ⊥(Km+1,n+1) =

min (m−1,n−1)∑
k=0

(
m

k

)(
n

k

)
k!(m− k)(n− k)nm−1−kmn−1−k

equals the number of the B-edge-rooted forests in Km,n with k + 1 components (i.e., the
number of the B-edge-rooted forests in Km,n with one bi-rooted tree and k edge-rooted trees).
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Figure 3: a B-edge-rooted forest

Figure 4: the function graph Gf

Proof. By Theorem 3.4, µ⊥(Km+1,n+1) equals the number of the B-edge-rooted forests in
Km,n. Since the number of components in a B-edge-rooted forest on Km,n is at most
min (m− 1, n− 1) + 1, it suffices to show that the number of the B-edge-rooted forests
in Km,n with k + 1 components equals the k-th term in the above formula(

m

k

)(
n

k

)
k!(m− k)(n− k)nm−1−kmn−1−k.

There are

(
m

k

)(
n

k

)
k! ways to choose k-matchings in Km,n which we use as edge-roots

for k edge-rooted components. There are (m− k)(n− k) pairs of vertices each consisting of
one vertex from each bipartite set, disjoint from a given k-matching. Each of these pairs is
used as a bi-root for a bi-rooted component. Thus, the proof follows from Theorem 4.6.

We can obtain an exponential generating function for µ⊥(Km+1,n+1) from its combinato-
rial interpretation. Since the number of all bi-rooted spanning trees in Ks,t is (st)st−1ts−1 =
stts, an exponential generating function for this sequence is

B(x, y) =
∑
s,t≥1

stts
xsyt

s!t!
.
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Since the number of all edge-rooted spanning trees in Ks,t is (s+t−1)st−1ts−1, an exponential
generating function for this sequence is

T (x, y) =
∑
s,t≥1

(s+ t− 1)st−1ts−1
xsyt

s!t!
.

Therefore, an exponential generating function for µ⊥(Km+1,n+1) is∑
m,n≥0

µ⊥(Km+1,n+1)
xmyn

m!n!
= B(x, y) exp

(
T (x, y)

)
.

5. Homology of I(Km+1,n+1)

In this section, we present a homology basis for I(Km+1,n+1). This basis is indexed by
the set of all B-edge-rooted forests in Km,n introduced in section 3.2. In section 5.2, this set
is shown to be isomorphic as a poset to the indexing set for the homology basis of a matroid
complex given by A. Björner [1, Theorem 7.8.4].

5.1. Preliminaries

The join K ∗K ′ of simplicial complexes K and K ′ with mutually disjoint vertex sets is
defined by

K ∗K ′ = {τ ∪ τ ′ : τ ∈ K and τ ′ ∈ K ′}.
Refer to [18] or [19] for details concerning join. If K and K ′ are homeomorphic to spheres of
dimensions i and j, then K∗K ′ is homeomorphic to a sphere of dimension i+j+1. If K∗K ′ is
a subcomplex of a complexA, and if σ is an isomorphism onA, then σ(K∗K ′) = σ(K)∗σ(K ′).

For a simplicial complex K, its exterior face ring Λ(K) is isomorphic to the simplicial
chain complex of K as a Z-module. As for the boundary operator ∂ of Λ(K), one can check
that if τ and τ ′ are disjoint with τ ∪ τ ′ ∈ K, then we have

∂(τ ∧ τ ′) = ∂τ ∧ τ ′ + (−1)|σ|τ ∧ ∂τ ′ . (5)

Note that, if σ is an automorphism of K, then σ induces a ring automorphism of Λ(K) and
an automorphism of the reduced homology groups of K. In describing a homology basis of
K, we may work with its exterior face ring Λ(K) rather than simplicial chain complex.

For a simplicial complex S that is homeomorphic to d-dimensional sphere, the cycle z in
H̃d(S), which is unique up to sign, is called a fundamental cycle if every oriented facet of
S appears in z with coefficient 1 or −1. When S is a join of spheres, its fundamental cycle
can be described as follows. Given a finite set E with |E| ≥ 2, let D(E) denote the set of
all proper subsets of E so that as a simplicial complex D(E) is homeomorphic to S|E|−2.
For each i = 1, · · · , t, let E1, E2, . . . , Et be disjoint finite sets. Then S1 := D(E1), S2 :=
D(E2), . . . , St := D(Et) are disjoint spheres. Let zSi

denote a fundamental cycle of Si for
each i = 1, · · · , t. For the join S := S1 ∗ S2 ∗ · · · ∗ St, let

zS =
∧

1≤i≤t

zSi
. (6)
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By applying Eq. (5) repeatedly, we see that zS is a cycle of S. Moreover, it follows from the
construction of S that zS is a fundamental cycle of S.

5.2. A partial order on FBe
Let (F,b, e) ∈ FBe , and assume e = {e1, . . . , ed}. For each ei ∈ e, let ν(ei) be the vertex

of the edge ei that is farther from the smallest vertex in the component containing ei, and let
v = {ν(e1), . . . , ν(ed)}. Define FBv to be the collection of all (F,b,v) thus obtained. As we
shall see, FBe and FBv can be made isomorphic as posets via the isomorphism V : FBe → FBv
given by V(F,b, e) = (F,b,v). Moreover, we may identify FBv and T 0 by Theorem 3.4. In
particular, an element of FBv may be regarded as representing a spanning tree of Km+1,n+1,
or as a facet of I(Km+1,n+1). We give partial orders ΩB

e and ΩB
v on FBe and FBv , respectively,

as follows. First, define ΩB
e by (F ′,b′,x′) ≤ (F,b,x) iff

(i) b = b′ and F ′ is a proper subgraph of F , or
(ii) (F,b) = (F ′,b′) and for each xi ∈ x and x′i ∈ x′, x′i lies on the path from xi to the

smallest vertex of the component containing xi and x′i.
The partial order ΩB

v can be defined similarly. The following lemma is immediate from
the definition of V .

Lemma 5.1. Suppose (F,b, e) ∈ FBe . Then V(F,b, e) is the ΩB
v -largest element in the set

of all (F,b,v) ∈ FBv such that every vertex in v is a vertex of an edge in e. �

5.3. The homology group of I(Km+1,n+1)

For each (F,b, e) ∈ FBe (Km,n), we construct a subcomplex SF,b,e of I(Km+1,n+1) as
follows. Again, for a finite set E, let D(E) be the set of all proper subsets of E so that D(E)
is homeomorphic to the sphere S|E|−2.

First, consider the bi-root b = {b1, b2} where b1 ∈ [m] and b2 ∈ [n]. Let P be the unique
path in F from b1 to b2, and let Q be the cycle P → 0→ 0→ b1. We define Sb := D(E(Q)).
Hence, Sb is a subcomplex of I(Km+1,n+1) homeomorphic to the sphere S2l+1 where 2l − 1
is the length of P .

Second, for each e = v1v2 ∈ e (v1 ∈ [m], v2 ∈ [n]), define Se := D({e, 0v2, v10}). Then Se
is a subcomplex of I(Km+1,n+1) homeomorphic to the 1-dimensional sphere S1.

Lastly, take an edge e = u1u2 (u1 ∈ [m], u2 ∈ [n]) in E(F )\(e∪P ). If u1 lies farther than
u2 from a root (vertex or edge) in the component containing e, define Se := D({e, u10}). If
u2 lies farther than u1, we similarly define Se := D({e, u20}). Then, Se is a subcomplex of
I(Km+1,n+1) homeomorphic to the 0-dimensional sphere S0.

Finally, define SF,b,e to be the join of Sb, all of Se for e ∈ e, and all of Se for e ∈
E(F ) \ (e ∪ P ).

Proposition 5.2. For every (F,b, e) ∈ FBe (Km,n), the sphere SF,b,e is a full-dimensional
subcomplex of I(Km+1,n+1).

Proof. It suffices to show that for any given (F,b, e) ∈ FBe , every facet of SF,b,e is a spanning
tree in Km+1,n+1. First, every facet of Sb is Q minus an edge, hence is a path containing all
verticies of Q which, in particular, contains both 0 and 0.
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Next, assume e = {e1, . . . , ed}. Since each ei has no common vertex with Q, it is easy to
see that every facet of Sb ∗Sei is a tree on the vertex set V (Q)∪V (ei). Further, since no two
edges in e = {e1, . . . , ed} have a common vertex, it follows that every facet of Sb∗Se1∗· · ·∗Sed
is a tree on the vertex set V (Q) ∪ V (e1) ∪ · · · ∪ V (ed).

Finally, let e ∈ E(F ) \ (e ∪ P ) be an edge incident to e ∪ P . Note that one end of e is a
“new” vertex x that is not in V (Q)∪ V (e1)∪ · · · ∪ V (ed). Hence it follows that each facet of
Sb ∗ Se1 ∗ · · · ∗ Sed ∗ Se is a tree on V (Q) ∪ V (e1) ∪ · · · ∪ V (ed) ∪ {x}. One can make similar
observations for any edge in E(F ) \ (e ∪ P ∪ {e}) that is incident to e∪P ∪ {e}. Repeating
this process, we see that every facet of SF,b,e is a spanning tree in Km+1,n+1.

For (F,b, e) ∈ FBe (Km,n), let zF,b,e denote a fundamental cycle of SF,b,e constructed as
in Eq. (6). We will proceed to show that the set of these zF,b,e forms a basis for the top
reduced homology group of I(Km+1,n+1).

To this end, we recall a known basis [1, Theorem 7.7.2 and 7.8.4] for this homology group.
It was shown that there is a basis Zv := {zF,b,v | (F,b,v) ∈ FBv } of H̃m+n(I(Km+1,n+1))
such that the coefficient of the oriented facet for (F,b,v) in zF,b,v is 1, and that of any other
element of FBv is zero. Thus, when we express zF,b,e ∈ Ze as a linear combination of the
elements in Zv, the coefficient of zF ′,b′,v is ±1 if (F ′,b′,v) gives a facet of SF,b,e.

By the proof of the above proposition, if (F ′,b′,v) is a facet of SF,b,e, then one can check
(F ′,b′) = (F,b). Moreover, the elements in v are vertices of the edges in e. From this
observation and Lemma 5.1, it follows that if (F,b,v) ∈ FBv is a facet of SF,b,e, then

(F,b,v) ≤ V(F,b, e) in FBv . (7)

Theorem 5.3. The set of the cycles Ze := {zF,b,e : (F,b, e) ∈ FBe (Km,n)} forms a basis for
H̃m+n(I(Km+1,n+1)).

Proof. Let M be a matrix representing each zF,b,e ∈ Ze as a linear combination of elements
in Zv. To show that M is a transition matrix from Ze to Zv, it suffices to show that M is
an upper triangular matrix whose diagonal entries are ±1.

Suppose that the columns of M are indexed by the elements of FBe in a list that preserves
the partial order ΩB

e , and the rows of M indexed by the image of this list under V . Note that
the rows of M are indexed by the elements of FBv in a list that preserves ΩB

v . The diagonal
entries of M are the coefficients of V(F,b, e) in zF,b,e for (F,b, e) ∈ FBe , and they are clearly
±1. From Eq. (7) and the definition of ΩB

v , it follows that the only non-zero entries in the
column indexed by (F,b, e) are on or above the row indexed by V(F,b, e), as desired.

5.4. A group action on the homology group of I(Km+1,n+1)

We will describe the action of Sm× Sn on H̃m+n(I(Km+1,n+1)) induced by that on Km,n.
Every σ ∈ Sm×Sn induces a permutation on the set of all subgraphs of Km,n. For any subset
e = {e1, . . . , ed} of E(Km,n) and b = {b1, b2} ∈ V (Km,n), define σ(e) := {σ(e1), . . . , σ(ed)}
and σ(b) := {σ(b1), σ(b2)}. Then we have the action of Sm × Sn on FBe defined by
σ(F,b, e) := (σ(F ), σ(b), σ(e)). We also note that since σ ∈ Sm × Sn induces an auto-
morphism of I(Km+1,n+1), it also induces a (ring) automorphism of Λ(I(Km+1,n+1)).
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For (F,b, e) ∈ FBe (Km,n), we write (with the sign to be determined),

zF,b,e = ±zb ∧
(∧
e∈e

ze
)
∧
( ∧
e∈E(F )\(e∪P )

ze

)
where zb := zSb

, ze := zSe for e ∈ e, and ze := zSe for e ∈ E(F ) \ (e ∪ P ).
Now, we determine the sign of zF,b,e as follows. Let P be the unique path in F with b

as end points written as b1 = p1 → · · · → p2l−1 → p2l = b2 so that podd ∈ [m] and peven ∈ [n].
Note that an edge set

TP := (E(Q) \ 0b2) ∪ {0u | u ∈ [m], u /∈ V (P )} ∪ {0v | v ∈ [n], v /∈ V (P )}

is a facet of SF,b,e. Note that σ(TP ) = Tσ(P ) for σ ∈ Sm× Sn. The corresponding element of
TP in the chain group is

tP := 00 ∧
(
1vP (1) ∧ 2vP (2) ∧ · · · ∧mvP (m)

)
∧
(
1uP (1) ∧ 2uP (2) ∧ · · · ∧ nuP (n)

)
where vP (i) = 0 if i is b1 or i is not a vertex of P with vP (i) = peven otherwise, and uP (i) = 0
if j is not a vertex of P with uP (j) = podd otherwise. Now, we choose the sign of zF,b,e so
that the coefficent of tP is positive.

Example 5.4. Consider a B-edge-rooted forest (F,b, e) in Figure 2(b). The path P equals
2 = p1 → p2 → p3 → p4 = 1, and TP = {00, 02, 22, 21, 11} ∪ {03, 04, 05} ∪ {03, 04, 05}. Note
that 01 is missing (see Figure 5). Then vP (1) = 2, vP (2) = vP (3) = vP (4) = vP (5) = 0, and
uP (1) = 1, uP (2) = 2, uP (3) = uP (4) = uP (5) = 0. Hence,

tP = 00 ∧
(
12 ∧ 20 ∧ 30 ∧ 40 ∧ 50

)
∧
(
11 ∧ 22 ∧ 30 ∧ 40 ∧ 50

)
.

Figure 5: the spanning tree TP in SF,b,e

Theorem 5.5. The action of Sm×Sn as a subgroup of Sm+1×Sn+1 on H̃m+n(I(Km+1,n+1))
is isomorphic to the action on FBe (Km,n) tensored with the sign representation sgn.

15



Proof. Take σ ∈ Sm × Sn. Since

σ(zF,b,e) = ±σ(zb) ∧
(∧
e∈e

σ(ze)
)
∧
( ∧
e∈E(F )\(e∪P )

σ(ze)
)

= ±zσ(b) ∧
( ∧
e∈σ(e)

ze
)
∧
( ∧
e∈E(σ(F ))\(σ(e)∪σ(P ))

ze
)
,

we have σ(zF,b,e) = ±zσ(F,b,e). Moreover, we see that

σ(tP ) = σ
(

00 ∧
(
1vP (1) ∧ · · · ∧mvP (m)

)
∧
(
1uP (1) ∧ · · · ∧ nuP (n)

))
= 00 ∧

(
σ(1)σ(vP (1)) ∧ · · · ∧ σ(m)σ(vP (m))

)
∧
(
σ(1)σ(uP (1)) ∧ · · · ∧ σ(n)σ(uP (n))

)
= sgn(σ)(00 ∧

(
1vσ(P )(1) ∧ · · · ∧mvσ(P )(m)

)
∧
(
1uσ(P )(1) ∧ · · · ∧ nuσ(P )(n)

)
= sgn(σ)tσ(P )

where the third equality follows because if σ(x) = y, then σ(vP (x)) = vσ(P )(y) and σ(uP (x)) =
uσ(P )(y). Therefore, we conclude that σ(zF,b,e) = sgn(σ) zσ(F,b,e).

6. Möbius coinvariants of bi-coned graphs

Our combinatorial interpretation for µ⊥(Km+1,n+1) can be applied to the Möbius coin-
variant of bi-coned graphs, a bipartite analogue of coned graphs. A bi-coned graph is defined
as follows. Let G = (V (G), E(G)) be a graph with n− 1 vertices, and V (G) = U ·∪ U with
0 < |U | < n − 1. The bi-coned graph GU on G is a graph obtained from G by adding two
vertices 0 and 0 and edges 0u for u ∈ U and 0u for u ∈ U . Note that GU is a connected
graph with n+ 1 vertices. For example, (Km,n)U with U = [m] is Km+1,n+1.

Define a bi-rooted tree in G (with V (G) = U ·∪ U as above) to be a tree with two root
vertices, one in U and the other in U . Now define a B-edge-rooted forest in G to be a
spanning forest in G with exactly one component bi-rooted and the rest edge-rooted. One
can check that the proof of Theorem 3.4 applies to a bi-coned graph GU , showing that
µ⊥(GU) is the number of B-edge-rooted forests in G.

For example, we will compute the Möbius coinvariant of the bi-coned graph on a path.
Let Pm+n−1 be a path of length m+n− 1, its vertices labeled by [m] ·∪ [n̄] (Figure 6(a)), and
(Pn+m−1)

[m] its bi-coned graph (Figure 6(b)). Note that a bi-rooted tree in Pm+n−1 is a path
containing the edge m1. Hence, a B-edge-rooted forest in Pm+n−1 consists of one component
that is a bi-rooted path from a ∈ [m] to n− b+ 1 ∈ [n] (for some 1 ≤ a ≤ m and 1 ≤ b ≤ n)
and other components that are edge-rooted paths contained in the path from 1 to a − 1
or in the path from n− b+ 2 to n (if 3 ≤ a ≤ m and 3 ≤ b ≤ n). Note that a 6= 2 and
b 6= 2 because otherwise edge-rooted paths would be needed, but cannot be defined. Since
the number of edge-rooted forests in a path of length l is 2l−1 [14], we have

µ⊥((Pn+m−1)
[m]) =

(
m+

m∑
a=3

(m− a+ 1)2a−3
)(
n+

n∑
b=3

(n− b+ 1)2b−3
)

= 2m−12n−1.
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(a) a path Pm+n−1 (b) a bi-coned graph (Pn+m−1)
[m]

Figure 6: A path Pm+n−1 and its bi-coned graph (Pn+m−1)
[m] for [m]

Finally, we suggest the following future works. One may generalize the definition of a
bi-coned graph on G to allow V (G) = U1∪U2 where U1∩U2 may be non-empty. This gener-
alization includes complete multipartite graphs. One may consider finding a combinatorial
interpretation of the Möbius coninvariants for these graphs, for which a more careful study
of the internal activities of spanning trees is needed. Also we leave a study of their h-vectors
and Stanley’s M-vector conjecture for these graphs as a future work. Refer to [15, 16] for
related results concerning coned graphs.
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