Simplicial networks and effective resistance

Woong Kook^a, Kang-Ju Lee^{a,}

^aDepartment of Mathematical Sciences, Seoul National University, Seoul, Korea

Abstract

We introduce the notion of effective resistance for a simplicial network (X, R) where X is a simplicial complex and R is a set of resistances for the top simplices, and prove two formulas generalizing previous results concerning effective resistance for resistor networks. Our approach, based on combinatorial Hodge theory, is to assign a unique harmonic class to a current generator σ , an extra top-dimensional simplex to be attached to X. We will show that the harmonic class gives rise to the current I_{σ} and the voltage V_{σ} for $X \cup \sigma$, satisfying Thomson's energy-minimizing principle and Ohm's law for simplicial networks.

The effective resistance R_{σ} of a current generator σ shall be defined as a ratio of the σ components of V_{σ} and I_{σ} . By introducing *potential* for voltage vectors, we present a formula
for R_{σ} via the inverse of the weighted combinatorial Laplacian of X in codimension one. We
also derive a formula for R_{σ} via weighted high-dimensional tree-numbers for X, providing a
combinatorial interpretation for R_{σ} . As an application, we generalize Foster's Theorem, and
discuss various high-dimensional examples.

Keywords: effective resistance, simplicial network, combinatorial Laplacians, combinatorial Hodge theory, high-dimensional tree-numbers 2000 MSC: primary 05E45, secondary 05C50, 35J05, 94C15

1. Introduction

A simplicial network (X, R) consists of a simplicial complex X of dimension d (> 0) and a set R of positive resistances for the d-dimensional simplices of X. Additional topological conditions for X will be assumed later as needed. A current generator σ is a d-dimensional simplex that is attached to X resulting in a (cell) complex $Y = X \cup \sigma$. The purpose of this paper is to introduce the notion of effective resistance R_{σ} of a current generator σ , and present its formulas and applications. Simplicial networks are a generalization of resistor networks, and the current work aims to extend classical results (see e.g. [15, 19]) concerning effective resistance for resistor networks.

Let us outline our approach to R_{σ} . Suppose a nonzero real number i_{σ} is assigned to a current generator σ . We will associate a unique cycle I_{σ} in the chain group $\mathcal{C}_d(Y;\mathbb{R})$, which we call the *current vector* induced by i_{σ} , as follows. Attach σ to an *acyclication* $\mathcal{A}(X)$ of

Preprint submitted to Advances in Applied Mathematics

Email addresses: woongkook@snu.ac.kr (Woong Kook), leekj0706@snu.ac.kr (Kang-Ju Lee)

X (see Section 2) to form a complex Z with rank 1 homology group in dimension d (see Section 3 for the definition of Z). By combinatorial Hodge theory [9], there is a unique harmonic class for Z determined by i_{σ} . This harmonic class is the desired I_{σ} when every element in R equals 1. Otherwise, a similar argument using a weighted chain complex for Z will produce I_{σ} (see Section 3.2). As we shall see, the energy-minimizing property of a harmonic class is a high-dimensional analogue of Thomson's Principle for currents in a resistor network. Also, we will define a voltage vector $V_{\sigma} \in C_d(Y; \mathbb{R})$ by requiring Ohm's law [4] and the orthogonality of current and voltage vectors. In short, we have the current I_{σ} and voltage V_{σ} vectors for $Y = X \cup \sigma$ uniquely determined by a given nonzero current i_{σ} through σ . Now, we shall define R_{σ} as a ratio of the respective σ -components v_{σ} and i_{σ} of V_{σ} and I_{σ} .

We will present another definition of R_{σ} by introducing *potential* for voltage vectors (See (11) in Section 4). For a 1-dimensional potential theory, refer to [3]. Using this definition, we obtain a formula for R_{σ} via the inverse of the weighted combinatorial Laplacian for X in codimension 1 where the weights are given by the conductances $C = R^{-1}$ (regarding R as a diagonal matrix). This formula generalizes that of effective resistance for 1-dimensional networks via the inverse of the combinatorial Laplacian in dimension zero [18, 15].

We will obtain another formula for R_{σ} (Theorem 5.2) via weighted high-dimensional tree-numbers for X with the weights $C = R^{-1}$. We refer the readers to [5, 6, 13] for high-dimensional tree-numbers. This formula generalizes a well-known combinatorial interpretation [19] of effective resistance for resistor networks. For its application, we will derive a high-dimensional analogue of Foster's Theorem [8], and compute effective resistance for the standard simplexes (Example 5.5), the complete colorful complexes (Example 5.6), and the hypercubes (Example 5.7).

2. Preliminaries

In this section, we will review definitions regarding simplicial complexes and homology groups. Refer to [17] for further details. We will collect relevant definitions and results concerning combinatorial Hodge theory [7, 9, 12, 16] which are essential for our purpose.

2.1. Simplicial complexes, and boundary and coboundary operators

Let X be an (abstract) simplical complex with an ordered finite vertex set $[n] := \{1, \ldots, n\}$. The dimension of $\sigma \in X$ is dim $\sigma = |\sigma| - 1$, and the dimension of X is dim $X = \max\{\dim \sigma \mid \sigma \in X\}$. Let X_i denote the collection of all *i*-dimensional simplicies (*i*-faces) of X. The *i*-th skeleton of X is $X^{(i)} = \bigcup_{0 \le j \le i} X_j$. In this paper, we allow X_d $(d = \dim X)$ to be a multiset, generalizing the notion of parallel edges. (With this condition, X is a cell complex, and we will refer to X simply as a complex.)

The *i*-th chain group of X with integer coefficients is a free abelian group $C_i = C_i(X) \cong \mathbb{Z}^{|X_i|}$ generated by the oriented simplices $[\tau]$ for $\tau \in X_i$. Elements of *i*-th chain group of X called *i*-chains, and an *i*-chain $x \in C_i$ may be represented as a formal sum $x = \sum_{\tau \in X_i} n_{\tau}[\tau]$ or as a column (vector) $x = (n_{\tau})_{\tau \in X_i}$ depending on the context. The *i*-th boundary operator

 $\partial_i : \mathcal{C}_i \to \mathcal{C}_{i-1}$ is a $|X_{i-1}| \times |X_i|$ matrix given by, for each *i*-face $\tau = \{v_0, v_1, \dots, v_i\}$ with $v_0 < v_1 < \dots < v_i$,

$$\partial_i[\tau] = \sum_{j=0}^{i} (-1)^j [\tau - v_j].$$

Define $\partial_0 : \mathcal{C}_0 \to \mathcal{C}_{-1} \cong \mathbb{R}$ by $\partial_0[v] = 1$ for each $v \in X_0$. We have $\partial_i \partial_{i+1} = 0$ for all *i*. The collection $\{\mathcal{C}_i, \partial_i\}$ is called an (augmented) chain complex of X. We will write $\{\mathcal{C}_i(X), \partial_{X,i}\}$ to emphasize X. Use $\mathcal{C}_i(X; \mathbb{R})$ for chain groups with real coefficients.

The *i*-th cochain group of a simplicial complex X is

$$\mathcal{C}^{i} = \mathcal{C}^{i}(X) := \operatorname{Hom}(\mathcal{C}_{i}(X;\mathbb{Z}),\mathbb{Z}),$$

and its elements called *i*-cochains. Let us denote $\mathcal{C}^i(X;\mathbb{R})$ for chain groups with real coefficients. The *i*-th coboundary operator or alternating difference operator $\delta_i : \mathcal{C}^i \to \mathcal{C}^i$ is defined by, for $f \in \mathcal{C}^i$,

$$(\delta_i f)[\sigma] = \sum_{j=0}^{i+1} (-1)^j f([\sigma - v_j])$$

where $[\sigma] = [v_0, v_1, \ldots, v_i, v_{i+1}]$. In what follows, we may denote $f([\tau])$ by f_{τ} for $\tau \in X_i$ for convenience. When i = 1 and i = 2, the coboundary operators are called *gradient* and *curl*, respectively. Hence, the gradient of $f \in \mathcal{C}^1$ is given by

$$(\text{grad } f)([a,b]) := \delta_1 f([a,b]) = f_b - f_a$$

and the curl of $f \in \mathcal{C}^2$ is given by

$$(\operatorname{curl} f)([a, b, c]) := \delta_2 f([a, b, c]) = f_{bc} - f_{ac} + f_{ab}.$$

For each *i*-face τ , we associate an element $[\tau] \in C_i$ to the characteristic function $\chi_{\tau} \in C^i$ defined by for an *i*-face $\tau', \chi_{\tau}([\tau']) = 1$ if $\tau' = \tau$, and $\chi_{\tau}([\tau']) = 0$ otherwise. This association induces an isomorphism between C_i and C^i , and hence we identify their elements by this isomorphism. We may regard $f = \sum_{\tau} f_{\tau} \chi_{\tau} \in C^i$ as a formal sum $\sum_{\tau \in X_i} f_{\tau}[\tau]$ or as a column vector $(f_{\tau})_{\tau \in X_i}$, which we will denote by f again. Moreover, the *i*-th coboundary operator δ_i is represented by the transpose $\partial_{i+1}^t : C_i \to C_{i+1}$ of the (i+1)-th boundary operator ∂_{i+1} . Hence, for our purpose, it will suffice to work with chain groups, boundary operators and their transpose for most of the topological and combinatorial invariants discussed in this paper.

2.2. Homology and cohomology groups, and acyclization

The elements of ker ∂_i and ker ∂_{i+1}^t are called *i*-cycles and *i*-cocycles, respectively. The *i*-th reduced homology group and cohomology group with *integer* coefficients \mathbb{Z} are $\tilde{H}_i(X) = \ker \partial_i / \operatorname{im} \partial_{i+1}$, and $\tilde{H}^i(X) = \ker \partial_{i+1}^t / \operatorname{im} \partial_i^t$, respectively. We will write $\tilde{H}_i(X; \mathbb{R})$ ($\tilde{H}^i(X; \mathbb{R})$) for reduced (co)homology with *real* coefficients. Note rk $\tilde{H}_i(X) = \operatorname{rk} \tilde{H}_i(X; \mathbb{R})$ for all *i*.

Given a chain complex $\{C_i(X), \partial_{X,i}\}$ for a simplicial complex X of dimension d, we define an *acyclization* $\mathcal{A}(X)$ of X to be a chain complex $\mathcal{A}(X) = \{\mathcal{A}_i(X), \partial_{\mathcal{A}(X),i}\}$ for $-1 \leq i \leq d+1$ as follows. For $i \leq d$, let $\mathcal{A}_i(X) = \mathcal{C}_i(X)$ and $\partial_{\mathcal{A}(X),i} = \partial_{X,i}$. The (d+1)-th chain group $\mathcal{A}_{d+1}(X)$ is free abelian of rank $c := \operatorname{rk} \tilde{H}_d(X)$ with a standard basis, and the (d+1)-th boundary operator for $\mathcal{A}(X)$ is an integer matrix of size $|X_d| \times c$ given by

$$\partial_{\mathcal{A}(X),d+1} = \begin{bmatrix} z_1 & z_2 & \dots & z_c \end{bmatrix}$$
(1)

where $\{z_1, \ldots, z_c\}$ is a basis of $\tilde{H}_d(X) = \ker \partial_{X,d}$. Note that $\tilde{H}_i(\mathcal{A}(X)) = \tilde{H}_i(X)$ for i < d, and $\tilde{H}_d(\mathcal{A}(X)) = \tilde{H}_{d+1}(\mathcal{A}(X)) = 0$. Also, note that $\ker \partial^t_{\mathcal{A}(X),d+1} = (\ker \partial_{X,d})^{\perp}$ which we will refer to later. When $\tilde{H}_d(X) = 0$, we define $\mathcal{A}(X)$ to be the same as $\{\mathcal{C}_i(X), \partial_{X,i}\}$.

2.3. Combinatorial Hodge theory

Given a complex X, the *i*-th combinatorial Laplacian $\Delta_i = \Delta_{X,i} : \mathcal{C}_i(X,\mathbb{R}) \to \mathcal{C}_i(X,\mathbb{R})$ is defined by ([7])

$$\Delta_i = \partial_i^t \partial_i + \partial_{i+1} \partial_{i+1}^t$$

The *i*-th harmonic space $\mathcal{H}_i(X)$ is ker Δ_i and its elements are *i*-harmonic classes.

Regard $\mathcal{C}_i(X, \mathbb{R})$ and $\mathcal{C}^i(X, \mathbb{R})$ as \mathbb{R} -vector spaces endowed with a standard inner product \langle , \rangle such that the set of all oriented *i*-faces of X forms an orthonormal basis. From the orthogonal decomposition $\mathcal{C}_i(X, \mathbb{R}) = \mathcal{H}_i(X; \mathbb{R}) \oplus \operatorname{im} \partial_i^t \oplus \operatorname{im} \partial_{i+1}$ (refer to [9, Section 2]), one can deduce

$$\mathcal{H}_i(X) = \ker \partial_i \cap \ker \partial_{i+1}^t \,. \tag{2}$$

Hence, an *i*-harmonic class is both an *i*-cycle and an *i*-cocycle.

Also from the above decomposition for $\mathcal{C}_i(X;\mathbb{R})$ follows the main result of combinatorial Hodge theory: $\mathcal{H}_i(X)$ is isomorphic to $\tilde{H}_i(X;\mathbb{R})$ (and to $\tilde{H}^i(X;\mathbb{R})$) as \mathbb{R} -vector spaces for all *i*, where the isomorphism maps a harmonic class *h* to its (co)homology class \overline{h} .

The following *energy-minimizing property* of a harmonic class is a consequence of (2): For $h \in \mathcal{H}_i(X)$ and $x \in \overline{h}$,

$$\langle h, h \rangle \le \langle x, x \rangle \,. \tag{3}$$

This inequality is verified by the following facts: If $x = h + \partial_{i+1}y$ for some $y \in \mathcal{C}_{i+1}(X, \mathbb{R})$, then $\langle h, \partial_{i+1}y \rangle = \langle \partial_{i+1}^t h, y \rangle = 0$ because $h \in \ker \partial_{i+1}^t$. Similarly, if $x = h + \partial_i^t y$ for some $y \in \mathcal{C}^i(X, \mathbb{R})$, then $\langle h, \partial_i^t y \rangle = \langle \partial_i h, y \rangle = 0$ since $h \in \ker \partial_i$.

3. Simplicial networks and effective resistance

In this section, we define simplicial resistor networks as a generalization of resistor networks, and characterize current and voltage vectors for simplicial networks. We will also present the main definition of the paper, the effective resistance of a current generator in a simplicial network.

3.1. Simplicial networks

A resistor network is a finite graph where each edge is assigned a positive real number, called a resistance, and weighted by the corresponding conductance, the reciprocal of resistance. As a generalization, we define a simplicial network (X, R) as follows. A simplicial network (X, R) consists of a simplicial complex X of dimension d and a set R of resistances $r_{\tau} (> 0)$ for the d-faces $\tau \in X_d$. The resistance matrix, which we also denote by R, is a diagonal matrix whose diagonal entries are r_{τ} . We will refer to a simplicial network (X, R)as a network for short. The simplicial complex X will be regarded as the weighted simplicial complex each of whose d-faces is weighted by its conductance $c_{\tau} := 1/r_{\tau}$, and C is the conductance matrix, a diagonal matrix whose diagonal entries are c_{τ} .

Let (X, R) be a network of dimension d with [n] as vertices. A current generator is a subset $\sigma \subset [n]$ with $|\sigma| = d + 1$ such that

$$\partial_d[\sigma] = -\partial_{X,d}(p)$$
 for some $p \in \mathcal{C}_d(X, \mathbb{R})$.

Then X together with a current generator σ , which we denote by $Y = X \cup \sigma$, is again a *d*-dimensional complex with $Y_d = X_d \cup \{\sigma\}$ as a multiset. One can also deduce rk $\tilde{H}_d(Y, \mathbb{R}) =$ rk $\tilde{H}_d(X, \mathbb{R}) + 1$ from the fact that $[\sigma] + p$ is a *d*-dimensional cycle in Y, but not in X.

Eventually, we will define two vectors $I_{\sigma} \in \ker \partial_{Y,d}$ and $V_{\sigma} \in (\ker \partial_{Y,d})^{\perp}$, called *current* and *voltage* vectors for Y, respectively, such that their restrictions I and V to X satisfy the Ohm's law V = RI. Then the effective resistance of the current generator σ will be defined as a ratio of the σ -components v_{σ} and i_{σ} of V_{σ} and I_{σ} , respectively. Details will follow subsequently.

An important characterization of I_{σ} will be given by an analogue of Thomson's Principle. For a 1-dimensional network (X, R), this principle states that if $I_{\sigma} = I + i_{\sigma}[\sigma]$ is a current for $Y = X \cup \sigma$, then I satisfies the *energy-minimizing* property, *i.e.*,

$$I^t R I \le x^t R x \tag{4}$$

for any cycle of the form $x + i_{\sigma}[\sigma]$ in Y. This energy-minimizing property will be generalized for I_{σ} in a network of arbitrary dimension.

3.2. Harmonic class for a network

Given a network (X, R) of dimension d and a current generator σ , we define a chain complex $Z = \{Z_i, \partial_{Z,i}\}$ for $-1 \leq i \leq d+1$, which represents, intuitively, the union of σ and an acyclization of X. (To avoid confusion concerning the notation Z_i , we will denote the cycle group as the kernel of a boundary operator throughout the paper.) Specifically, we have $Z_i = \mathcal{C}_i(Y) = \mathcal{C}_i(X)$ with $\partial_{Z,i} = \partial_{Y,i} = \partial_{X,i}$ for i < d, $Z_d = \mathcal{C}_d(Y) = \mathcal{C}_d(X) \oplus \mathbb{Z}$ with $\partial_{Z,d} = \partial_{Y,d}$, and $Z_{d+1} = \mathcal{A}_{d+1}(X)$ with $\partial_{Z,d+1}$ given by

$$\partial_{Z,d+1} = \begin{bmatrix} \partial_{\mathcal{A}(X),d+1} \\ 0 \cdots 0 \end{bmatrix}$$
(5)

where $\partial_{\mathcal{A}(X), d+1} = [z_1 \dots z_c]$ as in (1), and the last row of 0's is indexed by σ . A routine computation shows $\tilde{H}_d(Z; \mathbb{R}) = \mathbb{R}$. Hence, $\mathcal{H}_d(Z) = \mathbb{R}$ by combinatorial Hodge theory.

Therefore, there is a unique *d*-harmonic class *h* for *Z* up to scalar multiplication. We may call this *h* the harmonic class of σ with respect to *X*. Note that *h* must have a nonzero σ -component. Otherwise, *h* would be a *d*-cycle in $\mathcal{A}(X)$, and its homology class \overline{h} would be zero, a contradiction.

Next, we define a *weighted* chain complex of Z incorporating R into the chain complex $\{Z_i, \partial_{Z,i}\}$. Define R' to be the diagonal matrix $R' = \begin{bmatrix} R & 0 \\ 0 & 1 \end{bmatrix}$. Let Q be a diagonal matrix satisfying $Q^2 = R'$. Define the weighted boundary operators $\hat{\partial}_i$ for Z by

$$\hat{\partial}_d = \partial_{Z,d} Q^{-1} \qquad \hat{\partial}_{d+1} = Q \partial_{Z,d+1}$$

and $\hat{\partial}_i = \partial_{Z,i}$ for all other *i*. Then we have $\hat{\partial}_i \hat{\partial}_{i+1} = 0$ for all *i*, and $\{Z_i, \hat{\partial}_i\}$ is the desired weighted chain complex. By (2), we obtain

$$\hat{\mathcal{H}}_d(Z) = \ker \hat{\partial}_d \cap \ker \hat{\partial}_{d+1}^t \tag{6}$$

where $\hat{\mathcal{H}}_d(Z)$ is the kernel of $\hat{\Delta}_{Z,d} := \hat{\partial}_d^t \hat{\partial}_d + \hat{\partial}_{d+1} \hat{\partial}_{d+1}^t$. Hence, every element $h \in \hat{\mathcal{H}}_d(Z)$ is of the form h = Qw for a unique $w \in \ker \partial_{Z,d}$. Since $Z_d = \mathcal{C}_d(Y)$, we also have $h, w \in \mathcal{C}_d(Y; \mathbb{R})$.

Define $\hat{H}_d(Z; \mathbb{R}) := \ker \hat{\partial}_d / \operatorname{im} \hat{\partial}_{d+1}$. Then we have $\operatorname{rk} \tilde{H}_d(Z; \mathbb{R}) = \operatorname{rk} \hat{H}_d(Z; \mathbb{R}) = \operatorname{rk} \hat{\mathcal{H}}_d(Z)$, where the first equality follows from $\operatorname{rk} \hat{\partial}_i = \operatorname{rk} \partial_{Z,i}$ for all *i* and the second from combinatorial Hodge theory. Hence, $\hat{\mathcal{H}}_d(Z) = \mathbb{R}$, and its generator must have a nonzero σ -component by a similar reasoning as above.

3.3. Current and voltage vectors for a network

Let h_{σ} be the unique generator of $\hat{\mathcal{H}}_d(Z)$ with a given σ -component i_{σ} . This h_{σ} does not depend on the choice of an acyclization of X since a new acyclization is obtained by a change of basis of $\tilde{H}_d(X)$ and ker $\hat{\partial}_{d+1}^t$ is invariant under this change. We define the current vector I_{σ} for $Y = X \cup \sigma$ to be the unique d-cycle in $\mathcal{C}_d(Y; \mathbb{R})$ satisfying

$$h_{\sigma} = QI_{\sigma}$$

If I denotes the restriction of I_{σ} to X so that $I_{\sigma} = I + i_{\sigma}[\sigma]$, then I_{σ} is characterized by

$$I_{\sigma} \in \ker \partial_{Y,d} \quad \text{and} \quad RI \in \ker \partial_{\mathcal{A}(X), d+1}^{t} = (\ker \partial_{X,d})^{\perp}$$

$$\tag{7}$$

where the first condition follows from $\partial_{Z,d} = \partial_{Y,d}$, and the second from (6) and (5).

To justify the definition of I_{σ} , we check that I_{σ} satisfies a generalized Thomson's Principle. Given a cycle $w = x + i_{\sigma}[\sigma] \in \ker \partial_{Y,d}$, note that $I_{\sigma} - w = I - x$ is a d-cycle in X, and, therefore, an element of $\operatorname{im} \partial_{\mathcal{A}(X),d+1}$. By the definition of $\partial_{Z,d+1}$, we have $I_{\sigma} - w \in \operatorname{im} \partial_{Z,d+1}$. Since $\hat{\partial}_{d+1} = Q\partial_{Z,d+1}$, we also have $h_{\sigma} - Qw = Q(I_{\sigma} - w) \in \operatorname{im} \hat{\partial}_{d+1}$. Hence, Qw is in the homology class of h_{σ} , and $\langle h_{\sigma}, h_{\sigma} \rangle \leq \langle Qw, Qw \rangle$ by (3). From this inequality, one can easily deduce $I^{t}RI \leq x^{t}Rx$, which is the desired generalization of (4). Next, we define the voltage vector V_{σ} for $Y = X \cup \sigma$ as follows. First we define the voltage V for X by the generalized Ohm's law V = RI. We define V_{σ} for Y to be the extension of V that is orthogonal to I_{σ} . Hence, $V_{\sigma} = V + v_{\sigma}[\sigma]$ is the unique vector satisfying

$$V = RI$$
 and $V_{\sigma} \perp I_{\sigma}$.

Note that v_{σ} is obtained from the following consequence of these conditions:

$$I^t R I + i_\sigma v_\sigma = 0. \tag{8}$$

Also from the above conditions for V_{σ} , one can deduce

$$V_{\sigma} = V + v_{\sigma}[\sigma] \in \ker \partial^t_{\mathcal{A}(Y), d+1} = (\ker \partial_{Y, d})^{\perp},$$

which we will also verify after introducing *potential* in Section 4.

3.4. Effective resistance of a current generator

Now, we present the main definition of the paper. For a network (X, R) and a current generator σ , let $I_{\sigma} = I + i_{\sigma}[\sigma]$ and $V_{\sigma} = V + v_{\sigma}[\sigma]$ be the current and voltage vectors for $Y = X \cup \sigma$, respectively, determined by a non-zero current i_{σ} through σ .

Definition 3.1. We define the *effective resistance* R_{σ} of σ to be

$$R_{\sigma} = \left| \frac{v_{\sigma}}{i_{\sigma}} \right|.$$

Remarks: This is well-defined because changing i_{σ} to mi_{σ} $(m \neq 0)$ results in mI_{σ} and mV_{σ} . Note from (8) that the product $i_{\sigma}v_{\sigma}$ is always negative. Hence, we may define $R_{\sigma} = -v_{\sigma}/i_{\sigma}$. We also note in passing that if $|i_{\sigma}| = 1$, then $R_{\sigma} = I^{t}RI$, *i.e.*, the effective resistance of a current generator σ is the energy created by a unit flow through σ .

4. Effective resistance via simplicial potential

In this section, we introduce the notion of potential for voltage vectors, and present a formula for effective resistance R_{σ} for a current generator σ in a network (X, R) of dimension d via the inverse of the combinatorial Laplacian in codimension 1. A *potential* of an element $x \in C^i(X; \mathbb{R})$ is an element $\phi \in C^{i-1}(X; \mathbb{R})$ such that $x = \partial_i^t \phi$. For example, refer to [3] for 1-dimensional potential theory.

4.1. Potential for voltage vectors

Since $V = RI \in \ker \partial^t_{\mathcal{A}(X), d+1}$ and $\tilde{H}^d(\mathcal{A}(X); \mathbb{R}) = 0$, there is a (d-1)-cochain $\phi \in \mathcal{C}^{d-1}(X; \mathbb{R}) = \mathcal{C}^{d-1}(Y; \mathbb{R})$ such that

$$V = \partial_{X,d}^t \phi.$$

Hence, ϕ is a potential for V. It is important to note that a potential for V is also a potential for V_{σ} , *i.e.*,

$$V_{\sigma} = \partial_{Y,d}^{t} \phi \quad \text{whenever} \quad V = \partial_{X,d}^{t} \phi \,. \tag{9}$$

Indeed, the restriction of $\partial_{Y,d}^t \phi$ to X is $\partial_{X,d}^t \phi$ which equals V, and $\partial_{Y,d}^t \phi$ is orthogonal to I_{σ} because $\partial_{Y,d}^t \phi \in \ker \partial_{\mathcal{A}(Y),d+1}^t = (\ker \partial_{Y,d})^{\perp}$ and $I_{\sigma} \in \ker \partial_{Y,d}$. Hence $\partial_{Y,d}^t \phi = V_{\sigma}$ by the definition of V_{σ} . In particular, we have also shown

$$V_{\sigma} = V + v_{\sigma}[\sigma] \in \ker \partial^t_{\mathcal{A}(Y), d+1},\tag{10}$$

which we will refer to later.

A potential $\phi \in \mathcal{C}^{d-1}(X; \mathbb{R})$ of V gives rise to another expression for the effective resistance R_{σ} of a current generator σ . Let ∂_{σ} denote $\partial_{Y,d}[\sigma]$, the column of $\partial_{Y,d}$ indexed by σ . Then, we obtain $v_{\sigma} = \partial_{\sigma}^{t} \phi$ from $V_{\sigma} = V + v_{\sigma}[\sigma] = \partial_{Y,d}^{t} \phi$. Further, suppose $[\sigma] = [v_{0}, \ldots, v_{d}]$, and let $\sigma_{j} := \sigma - \{v_{j}\}$ for each j. Then we have $\partial_{\sigma}^{t} \phi = \sum_{j=0}^{d} (-1)^{j} \phi_{\sigma_{j}}$. Hence, for a nonzero i_{σ} , we obtain

$$R_{\sigma} = -\frac{v_{\sigma}}{i_{\sigma}} = -\frac{\partial_{\sigma}^t \phi}{i_{\sigma}} = -\frac{\sum_{j=0}^a (-1)^j \phi_{\sigma_j}}{i_{\sigma}}.$$
(11)

Note that this expression generalizes a definition of effective resistance by *potential difference*.

The following lemma characterizes a potential for V via a generalized Kirchhoff's equation. Define the weighted Laplacian for (X, R) in codimension 1 with the weights $C = R^{-1}$ to be

$$\hat{L} = \hat{L}_{d-1} = \partial_{X,d} C \partial^t_{X,d}$$

as an operator on $\mathcal{C}^{d-1}(X;\mathbb{R})$. Now, we define a generalized Kirchhoff's equation to be

$$\hat{L}\phi = -i_{\sigma}\,\partial_{\sigma}.\tag{12}$$

Lemma 4.1. Let V be the voltage vector induced by a nonzero current i_{σ} through the current generator σ . Then a (d-1)-cochain $\phi \in C^{d-1}$ is a potential for V if and only if ϕ is a solution of a generalized Kirchhoff's equation (12).

Proof. Let $\phi \in \mathcal{C}^{d-1}$ be a potential for V. From $I_{\sigma} = I + i_{\sigma}[\sigma] \in \ker \partial_{Y,d}$, we get $\partial_{Y,d}I = -i_{\sigma} \partial_{\sigma}$. Now, (12) follows from CV = I and $V = \partial_{X,d}^{t} \phi$ together with the fact that $\partial_{Y,d}$ restricts to $\partial_{X,d}$ on X. Conversely, suppose an element $\phi \in \mathcal{C}^{d-1}$ satisfies $\hat{L}\phi = -i_{\sigma} \partial_{\sigma}$. We may rewrite this equation as $\partial_{Y,d}(C\partial_{X,d}^{t}\phi + i_{\sigma}[\sigma]) = 0$, or $C\partial_{X,d}^{t}\phi + i_{\sigma}[\sigma] \in \ker \partial_{Y,d}$. Since $\partial_{\mathcal{A}(X),d+1}^{t}\partial_{X,d}^{t} = 0$, we see $R(C\partial_{X,d}^{t}\phi) = \partial_{X,d}^{t}\phi \in \ker \partial_{\mathcal{A}(X),d+1}^{t}$. Therefore, by (7), we conclude that $C\partial_{X,d}^{t}\phi + i_{\sigma}[\sigma]$ is equal to $I_{\sigma} = I + i_{\sigma}[\sigma]$, the current vector induced by i_{σ} . Consequently, we have $\partial_{X,d}^{t}\phi = RI = V$, and ϕ is a potential of V.

We also note that a generalized Thomson's principle (in Section 3.3) can be stated in terms of potential as follows: Let Φ be the set of all $\phi \in C^{d-1}$ such that $\partial_{\sigma}^t \phi = 1$, and $C_{\sigma} := 1/R_{\sigma}$. Then $\phi \in \Phi$ is a solution for $\hat{L}\phi = C_{\sigma}\partial_{\sigma}$ if and only if $\phi \in \Phi$ satisfies $\phi^t \hat{L}\phi = \inf_{\phi' \in \Phi} {\phi'^t \hat{L}\phi'}$. Note that the infimum is C_{σ} . 4.2. Main Theorem: a formula for R_{σ} via Green's function

The weighted combinatorial Laplacian $\Delta_{X,d-1}$ for a *d*-dimensional network (X,R) with the weights $C = R^{-1}$ is a symmetric operator on \mathcal{C}^{d-1} defined by

$$\hat{\Delta} = \hat{\Delta}_{X,d-1} = \hat{L}_{d-1} + \hat{J}_{d-1}$$

where $\hat{L} = \hat{L}_{d-1} = \partial_{X,d} C \partial_{X,d}^t$ as before and $\hat{J} = \hat{J}_{d-1} = \partial_{X,d-1}^t \partial_{X,d-1}$.

If X satisfies $\tilde{H}_{d-1}(X; \mathbb{R}) = 0$, then $\hat{\Delta}$ is invertible by combinatorial Hodge theory, and we call the inverse $\hat{\Delta}^{-1} = \hat{\Delta}_{X,d-1}^{-1}$ the *combinatorial Green's function* of X. Its rows and columns are indexed by the set X_{d-1} of all (d-1)-simplices of X, and we may write $\hat{\Delta}^{-1} = (g_{\nu,\nu'})_{\nu,\nu'\in X_{d-1}}$ to specify its entries. For a *connected* 1-dimensional network (X, R), the effective resistance R_{ab} between two distinct vertices a and b is given via $\hat{\Delta}_{X,0}^{-1} = (g_{ab})_{a,b\in V(X)}$ as follows [18, 15]:

$$R_{ab} = g_{aa} + g_{bb} - g_{ab} - g_{ba}$$
 .

The following theorem, which generalizes this formula, is a main result of the paper.

Theorem 4.2. Let (X, R) be a network of dimension d (> 0) with $\tilde{H}_{d-1}(X; \mathbb{R}) = 0$, and $\hat{\Delta}^{-1} = (g_{\nu,\nu'})_{\nu,\nu'\in X_{d-1}}$ its combinatorial Green's function. Let σ be a current generator. Then, the effective resistance R_{σ} of σ is

$$R_{\sigma} = \partial_{\sigma}^{t} \hat{\Delta}^{-1} \partial_{\sigma} = \sum_{j,j'=0}^{d} (-1)^{j+j'} g_{\sigma_{j},\sigma_{j'}}$$

where $[\sigma] = [v_0, v_1, \cdots, v_d]$ and $\sigma_j = \sigma - \{v_j\}$ for each j.

Proof. Since R_{σ} is independent of the current i_{σ} through σ , we will assume $i_{\sigma} = -1$ for convenience. Let $V_{\sigma} = V + v_{\sigma}[\sigma]$ be the voltage vector induced by $i_{\sigma} = -1$. By (11), we have $R_{\sigma} = \partial_{\sigma}^{t} \phi$ for any potential ϕ of V. Hence, we will prove the first equality of the theorem by showing that the element $\phi := \hat{\Delta}^{-1}\partial_{\sigma}$ is a potential for V. By Lemma 4.1, it suffices to prove $\hat{L}\phi = \partial_{\sigma}$. In fact, $\hat{L}\phi = (\hat{\Delta} - \hat{J})\phi = \partial_{\sigma} - \hat{J}\phi$ by the definitions of \hat{L} and ϕ . Hence, the proof reduces to showing $\hat{J}\phi = 0$.

To that end, note $\hat{J}\hat{L} = \partial_{X,d-1}^t \partial_{X,d-1} \partial_{X,d} C \partial_{X,d}^t = 0$ and $\hat{J}\partial_{\sigma} = \partial_{X,d-1}^t \partial_{X,d-1} \partial_{Y,d}[\sigma] = 0$ where the second equation follows from $\partial_{X,d-1} = \partial_{Y,d-1}$. From these equations, we see that $\hat{J}^2\phi = \hat{J}(\hat{J} + \hat{L})\phi = \hat{J}\hat{\Delta}\hat{\Delta}^{-1}\partial_{\sigma} = \hat{J}\partial_{\sigma} = 0$. Since \hat{J} is symmetric, $\langle \hat{J}\phi, \hat{J}\phi \rangle = \phi^t \hat{J}^2\phi = 0$, from which $\hat{J}\phi = 0$ follows.

For the second equality of the theorem, note that the σ_j -component ϕ_{σ_j} of $\phi = \hat{\Delta}^{-1} \partial_{\sigma}$ equals $\phi_{\sigma_j} = \sum_{j'=0}^d (-1)^{j'} g_{\sigma_j,\sigma_{j'}}$ for each $j \in [0,n]$. Since we have $R_{\sigma} = \sum_{j=0}^d (-1)^j \phi_{\sigma_j}$ by (11), the result follows.

Example 4.3. Let X be the d-skeleton of a standard (n-1)-simplex on $[n] := \{1, 2, \dots, n\}$ with unit resistance for each d-simplex. A routine verification shows that $\Delta_{X,d-1} = n \cdot \text{id}$ where id is an identity matrix. Hence, for each $\sigma \in {[n] \choose d+1}$, we have

$$R_{\sigma} = \sum_{j,j'=0}^{d} (-1)^{j+j'} g_{\sigma_j,\sigma_{j'}} = \frac{d+1}{n}.$$

This example will be revisited in Example 5.5.

5. Effective resistance via high-dimensional tree-numbers

For a 1-dimensional network, effective resistance can be expressed in terms of spanning trees [13, 19]. In this section, we will establish a high-dimensional analogue of this expression. For that purpose, we will review high-dimensional tree-numbers (refer to [5, 6, 14]). In this section, we assume $\tilde{H}_{d-1}(X) = 0$ where $d = \dim X$ (> 0).

5.1. High-dimensional trees

For a non-empty subset $T \subset X_i$, define $X_T = T \cup X^{(i-1)}$, regarded as a subcomplex of X. For $i \in [0, d]$, the *i*-dimensional subcomplex X_T of X is an *i*-dimensional spanning tree, or *i*-tree for short, if

(i) $\tilde{H}_i(X_T) = 0$, and

(ii)
$$\operatorname{rk} H_{i-1}(X_T) = 0.$$

Let $\mathcal{T}_i = \mathcal{T}_i(X) := \{T \mid X_T \text{ is an } i\text{-tree}\}$. Note that $\mathcal{T}_i(X) \neq \emptyset$ iff $\operatorname{rk} \tilde{H}_{i-1}(X) = 0$. Keeping in mind that $|\tilde{H}_{i-1}(X_T)|$ is finite for an *i*-tree X_T , define the *i*-th tree-number $k_i(X)$ of X (by Kalai [13]) to be

$$k_i(X) := \sum_{T \in \mathcal{T}_i} |\tilde{H}_{i-1}(X_T)|^2$$

This definition generalizes the tree-number of a connected graph. Indeed, one can easily show that $k_1(X)$ equals the number of spanning trees in $X^{(1)}$ as a graph. Moreover, if X_T is an *i*-tree, then $|T| = \operatorname{rk} \partial_i$.

Proposition 5.1. Let $\mathcal{A}(X)$ be an acyclization of X, and $\partial = \partial_{\mathcal{A}(X), d+1}$. For $T \subset X_d$, let $\partial_{\overline{T}}$ be the submatrix of ∂ obtained by deleting the rows indexed by T. Then $\partial_{\overline{T}}$ is a non-singular square matrix iff $T \in \mathcal{T}_d(X)$, and in that case, $|\det \partial_{\overline{T}}| = |\tilde{H}_{d-1}(X_T)|$.

Proof. See [5, Proposition 4.1] or [14, Theorem 6].

As a consequence, we obtain a determinantal formula for $k_d(X)$ with $\partial = \partial_{\mathcal{A}(X), d+1}$:

$$k_d(X) = \sum_{T \in \mathcal{T}_d(X)} (\det \partial_{\overline{T}})^2 = \det \partial^t \partial$$
(13)

where the second equality follows from the Cauchy-Binet Theorem (refer to [10]).

Recall that each top-dimensional simplex τ of a network (X, R) is weighted by its conductance $c_{\tau} = r_{\tau}^{-1}$. For non-empty $T \subset X_d$, let $c_T = \prod_{\tau \in T} c_{\tau}$. We define the *weighted* tree-number $\hat{k}_d(X)$ of (X, R) to be

$$\hat{k}_d(X) := \sum_{T \in \mathcal{T}_d(X)} c_T |\tilde{H}_{i-1}(X_T)|^2 = \det R^{-1} \cdot \det \partial^t R \partial$$
(14)

where the second equality is an easy consequence of (13).

5.2. A combinatorial formula for R_{σ}

For a current generator σ , we assign weight 1 to σ . Note that, under the assumption $\tilde{H}_{d-1}(X) = 0$, if σ is a subset $\sigma \subset [n]$ with $|\sigma| = d + 1$ such that the collection of all proper subsets is a subcomplex of X, then σ is a current generator of X. That is because the facts $\partial_d[\sigma] \in \ker \partial_{X,d-1}$ and $\tilde{H}_{d-1}(X) = 0$ imply $\partial_d[\sigma] \in \operatorname{im} \partial_{X,d}$.

In order to give a combinatorial formula for R_{σ} , via high-dimensional tree-numbers, we need a generalization of the tree-number of an edge-contracted graph. Let σ be a current generator of X, and $Y = X \cup \sigma$ as before. Define $\mathcal{T}_d(X)_{\sigma} = \{T \in \mathcal{T}_d(Y) \mid \sigma \in T\}$. If X is a connected graph, then $\mathcal{T}_1(X)_{\sigma}$ corresponds bijectively to the set of all spanning trees in the contraction Y/σ . Hence, we will regard $\mathcal{T}_d(X)_{\sigma}$ as a high-dimensional analogue of the former for enumeration purposes. Thus, we define

$$k_d(X)_{\sigma} := \sum_{T \in \mathcal{T}_d(X)_{\sigma}} |\tilde{H}_{d-1}(Y_T)|^2,$$

as a generalization of the tree-number of an edge-contracted graph.

By a completely analogous manner to the case of a simplicial complex, we may define $\mathcal{T}_d(Y/\sigma)$ with Y/σ as a cell complex, and the map from $\mathcal{T}_d(X)_\sigma$ to $\mathcal{T}_d(Y/\sigma)$ induced by contracting σ to a point is shown to be a torsion-preserving bijection [11, Corollary 2.11]. Therefore, we also note

$$k_d(Y/\sigma) = k_d(X)_\sigma.$$

Let $\mathcal{A}(Y)$ be an acyclization of Y, and let $D = \partial_{\mathcal{A}(Y), d+1}$. Note that the rows of D are indexed by $X_d \cup \{\sigma\}$. Let \tilde{D} be obtained from D by deleting the row indexed by σ . Applying Proposition 5.1, we see that $D_{\overline{T}}$ is a non-singular submatrix of \tilde{D} iff $T \in \mathcal{T}_d(Y)$ and $\sigma \in T$, *i.e.*, iff $T \in \mathcal{T}_d(X)_{\sigma}$, and in that case, $|\det D_{\overline{T}}| = |\tilde{H}_{d-1}(Y_T)|$. Hence, we have

$$k_d(X)_{\sigma} = \sum_{T \in \mathcal{T}_d(X)_{\sigma}} (\det D_{\overline{T}})^2 = \det \tilde{D}^t \tilde{D}$$
(15)

where the second equality follows again from the Cauchy-Binet Theorem. For a network (X, R), we define

$$\hat{k}_{d}(X)_{\sigma} := \sum_{T \in \mathcal{T}_{d}(X)_{\sigma}} c_{T} |\tilde{H}_{d-1}(Y_{T})|^{2} = \det R^{-1} \cdot \det \tilde{D}^{t} R \tilde{D}.$$
(16)

Theorem 5.2. For a d-dimensional simplicial network (X, R) with $H_{d-1}(X) = 0$ and a current generator σ ,

$$R_{\sigma} = \frac{\hat{k}_d(X)_{\sigma}}{\hat{k}_d(X)} = \frac{\hat{k}_d((X \cup \sigma)/\sigma)}{\hat{k}_d(X)}.$$

Proof. Since $R_{\sigma} = -v_{\sigma}/i_{\sigma}$, we will show $i_{\sigma} = \hat{k}_d(X)/\hat{k}_d(X)_{\sigma}$ when $v_{\sigma} = -1$. A main ingredient of the proof is $D := \partial_{\mathcal{A}(Y), d+1}$ whose columns form a basis for $\tilde{H}_d(Y)$. Since

d-cycles, $[\sigma] + p \in \tilde{H}_d(Y)$ together with the basis of $\tilde{H}_d(X)$, define a basis for $\tilde{H}_d(Y)$, we may take

$$D := \partial_{\mathcal{A}(Y), d+1} = \begin{bmatrix} \partial_{\mathcal{A}(X), d+1} & p \\ 0 \cdots 0 & 1 \end{bmatrix}$$

where the last row is indexed by σ . Recall that $I_{\sigma} = I + i_{\sigma}[\sigma]$ is a *d*-cycle in *Y*, *i.e.*, $I_{\sigma} \in \ker \partial_{Y,d}$ (refer to (7)). Since $\ker \partial_{\mathcal{A}(Y),d} / \operatorname{im} \partial_{\mathcal{A}(Y),d+1} = \tilde{H}_d(\mathcal{A}(Y)) = 0$, we have $I_{\sigma} = Dy$ for some $y \in \mathcal{A}_{d+1}(Y)$. From the expression for *D*, it follows that i_{σ} equals the last component of *y*, which we denote by y_{σ} . We will show $y_{\sigma} = \hat{k}_d(X)/\hat{k}_d(X)_{\sigma}$ to complete the proof.

By (10), we have $D^t V_{\sigma} = 0$, *i.e.*, V_{σ} is orthogonal to each column of D. Then by the assumption $v_{\sigma} = -1$, we obtain

$$0 = \langle p + [\sigma], V_{\sigma} \rangle = \langle p + [\sigma], V + v_{\sigma}[\sigma] \rangle, \text{ or, } \langle p, V \rangle = 1.$$

It follows that

$$(0,\ldots,0,1)^t = \tilde{D}^t V = \tilde{D}^t R I = \tilde{D}^t R \tilde{D} y$$

Since det $\tilde{D}^t R \tilde{D} = \det R \cdot \hat{k}_d(X)_{\sigma}$ is non-zero, we see that $(\tilde{D}^t R \tilde{D})^{-1}$ exists, and it follows that y_{σ} equals its lower-right corner entry. Also, the cofactor of the lower-right corner entry of $\tilde{D}^t R \tilde{D}$ equals det $(\partial^t R \partial) = \det R \cdot \hat{k}_d(X)$. Therefore, we conclude

$$R_{\sigma} = \frac{1}{y_{\sigma}} = \frac{\det \tilde{D}^t R \tilde{D}}{\det(\partial^t R \partial)} = \frac{\hat{k}_d(X)_{\sigma}}{\hat{k}_d(X)}.$$

5.3. High-dimensional Foster's theorem

Based on our combinatorial formula for simplicial effective resistance (Theorem 5.2), we presents a high-dimensional analogue of Foster's theorem [8].

Theorem 5.3. Let (X, R) be a d-dimensional simplicial network with $\tilde{H}_{d-1}(X) = 0$ and $\operatorname{rk} \partial_{X,d} = \gamma_d$. Then

$$\sum_{\tau \in X_d} c_\tau R_\tau = \gamma_d$$

Proof. Summing $c_T |\tilde{H}_{d-1}(X_T)|^2$ over $S := \{ (T, \tau) \mid T \in \mathcal{T}_d(X) \text{ and } \tau \in T \}$ and changing the order of summation yields

$$\hat{k}_d(X)\gamma_d = \sum_{(T,\tau)\in\mathcal{S}} c_T |\tilde{H}_{d-1}(X_T)|^2 = \sum_{\tau\in X_d} c_\tau \hat{k}_d(X)_\tau$$

where the first equality follows from the fact $|T| = \gamma_d$ for $T \in \mathcal{T}_d(X)$ and (14), and the second equality from (16). The result is immediate from Theorem 5.2.

A simplicial complex X is called *facet-trasitive* if X has an automorphism taking any facet to any other facet. In a facet-transitive complex, effective resistance is clearly constant on facets, and hence the effective resistance follows from the theorem.

Corollary 5.4. Suppose that X is a d-dimensional simplicial complex each of whose d-face has a unit resistance. If X is facet-transitive, the effective resistance R_{σ} for $\sigma \in X_d$ equals

$$R_{\sigma} = \frac{\gamma_d}{|X_d|}.$$

We apply the corollary to obtain effective resistances in the following three complexes: skeleta of standard simplexes, complete colorful complexes, and hypercubes.

Example 5.5. Let X be the d-skeleton of a standard (n-1)-simplex on $[n] := \{1, 2, ..., n\}$. The collection $T = \{\tau \in X_d \mid n \in \tau\}$ is a d-tree in X, and we have $\gamma_d = |T| = \binom{n-1}{d}$. For every $\sigma \in \binom{[n]}{d+1}$, its effective resistance R_{σ} is equal to

$$R_{\sigma} = \frac{\binom{n-1}{d}}{\binom{n}{d+1}} = \frac{d+1}{n}.$$

Example 5.6. For each *d*-face σ of a *complete colorful complex*, we will compute R_{σ} . For disjoint vertex sets V_1, \ldots, V_r ("color classes") with $|V_1| = n_1, \ldots, |V_r| = n_r$, a complete colorful complex $K := K(n_1, n_2, \ldots, n_r)$ is defined to be a simplicial complex each of whose faces is a set of vertices with no more than one vertex of each color.

The number of *d*-faces in *K* is $e_{d+1}(n_1, \ldots, n_r)$, and $\gamma_d = \sum_{j=0}^d {r-j-1 \choose r-d-1} e_j(n_1-1, \ldots, n_r-1)$ [2, Proposition 1.2], where e_j is the *j*-th elementary symmetric function. For each *d*-face σ ,

$$R_{\sigma} = \left(\sum_{j=0}^{d} \binom{r-j-1}{r-d-1} e_j(n_1-1,\ldots,n_r-1)\right) / \left(e_{d+1}(n_1,\ldots,n_r)\right).$$

Example 5.7. We apply the idea of the proof of Theorem 5.3 to a hypercube. For a definition of hypercubes, we refer the readers to [6]. A hypercube Q_n is the *n*-fold product $[0,1] \times \cdots \times [0,1]$, where [0,1] is a cell complex with two 0-cells, 0 and 1, and one 1-cell, (0,1). The number of *d*-cells in Q_n is $\binom{n}{d} 2^{n-d}$, and

$$\gamma_d = \sum_{j=d}^n \binom{n}{j} \binom{j-1}{d-1}$$

[1, Theorem 1.5]. We have $R_{\sigma} = k_d(Q_n)_{\sigma}/k_d(Q_n)$ for a d-cell σ in Q_n . Then R_{σ} equals

$$R_{\sigma} = \Big(\sum_{j=d}^{n} \binom{n}{j} \binom{j-1}{d-1}\Big) \Big/ \Big(\binom{n}{d} 2^{n-d}\Big).$$

Moreover, since $k_d(Q_n) = \prod_{j=d+1} (2j)^{\binom{n}{j}\binom{j-2}{d-1}}$ [6, Corollary 3.5], we have

$$k_d(Q_n)_{\sigma} = \Big(\sum_{j=d}^n \binom{n}{j} \binom{j-1}{d-1}\Big) \Big/ \Big(\binom{n}{d} 2^{n-d}\Big) \cdot \prod_{j=d+1} (2j)^{\binom{n}{j}\binom{j-2}{d-1}}.$$

Finally, we end the paper with the following intriguing identity for R_{σ} as a high-dimensional analogue of [15, Theorem 4]. By Theorem 4.2 and Theorem 5.2, we obtain

$$\sum_{j,j'=0}^{d} (-1)^{j+j'} g_{\sigma_j,\sigma_{j'}} = \frac{\hat{k}_d(X)_{\sigma}}{\hat{k}_d(X)}.$$
(17)

Acknowledgment

The authors would like to thank an anonymous referee for his/her careful reading of the manuscript. The authors are partially supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) [No.2017R1A5A1015626], and by Samsung Science and Technology Foundation under Project Number SSTF-BA1402-08.

References

- G. Aalipour, A. M. Duval, W. Kook, K. Lee, and J. L. Martin, A weighted cellular matrix-tree theorem, with applications to complete colorful and cubical complexes, J. Combin. Theory Ser. A 158 (2018) 362-386.
- [2] R. Adin, Counting colorful multi-dimensional trees, Combinatorica 12(3) (1992), 247-260.
- [3] N. Biggs, Algebraic potential theory on graphs, Bull. London Math. Soc. 29(6) (1997) 641682.
- [4] M. Catanzaro, V. Chernyak, and J. Klein, Kirchhoff's theorems in higher dimensions and Reidemeister torsion, Homology, Homotopy and Applications 17(1) (2015) 165-189.
- [5] A. Duval, C. Klivans, and J. Martin, Simplicial matrix-tree theorems, Trans. Amer. Math. Soc. 361 (2009) 6073-6114.
- [6] A. Duval, C. Klivans, and J. Martin, Cellular spanning trees and Laplacians of cubical complexes, Adv. Appl. Math. 46 (2011) 247-274.
- [7] B. Eckmann, Harmonische Funktionen und Randwertaufgaben in einem Komplex, Commentarii mathematici Helvetici 17 (1944) 240-255.
- [8] R. Foster, The average impedance of an electrical network, In Contributions to Applied Mechanics (Reissner Anniversary Volume) (1949) 333-340.
- [9] J. Friedman, Computing Betti numbers via combinatorial Laplacians, Algorithmica 21 (1998) 331-346.
- [10] F. R. Gantmacher, The Theory of Matrices-Vol I, Chelsea, New York, 1960.

- [11] A. Hatcher, *Algebraic Topology*, Cambridge University Press, 2001.
- [12] X. Jiang, L. Lim, Y. Yao, and Y. Ye, Statistical ranking and combinatorial Hodge theory. *Mathematical Programming*, **127**(1) (2011) 203-244.
- [13] G. Kalai, Enumeration of Q-acyclic simplicial complexes, Israel J. Math. 45 (1983) 337-351.
- [14] H. Kim and W. Kook, Logarithmic tree-numbers for acyclic complexes, *Electron. J. Combin.* 21 (2014) #P1.50, 12 pp.
- [15] W. Kook, Combinatorial Green's function of a graph and applications to networks, *Adv. Appl. Math.* **46** (2011) 417-423.
- [16] L. Lim, Hodge Laplacians on graphs. arXiv preprint arXiv:1507.05379 (2015).
- [17] J. Munkres, *Elements of Algebraic Topology*, Addison-Wesley, Reading, MA, 1984.
- [18] K. Stephenson and M. Zelen, Rethinking centrality: Methods and examples, Social Networks 11 (1989) 1-37.
- [19] C. Thomassen, Resistances and currents in infinite electrical networks J. Combin. Theory Ser. B 49 (1990) 87-102.