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Abstract

We introduce the notion of effective resistance for a simplicial network (X,R) where X
is a simplicial complex and R is a set of resistances for the top simplices, and prove two
formulas generalizing previous results concerning effective resistance for resistor networks.
Our approach, based on combinatorial Hodge theory, is to assign a unique harmonic class to
a current generator σ, an extra top-dimensional simplex to be attached to X. We will show
that the harmonic class gives rise to the current Iσ and the voltage Vσ for X ∪ σ, satisfying
Thomson’s energy-minimizing principle and Ohm’s law for simplicial networks.

The effective resistance Rσ of a current generator σ shall be defined as a ratio of the σ-
components of Vσ and Iσ. By introducing potential for voltage vectors, we present a formula
for Rσ via the inverse of the weighted combinatorial Laplacian of X in codimension one. We
also derive a formula for Rσ via weighted high-dimensional tree-numbers for X, providing a
combinatorial interpretation for Rσ. As an application, we generalize Foster’s Theorem, and
discuss various high-dimensional examples.
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1. Introduction

A simplicial network (X,R) consists of a simplicial complex X of dimension d (> 0) and
a set R of positive resistances for the d-dimensional simplices of X. Additional topological
conditions for X will be assumed later as needed. A current generator σ is a d-dimensional
simplex that is attached to X resulting in a (cell) complex Y = X ∪ σ. The purpose of
this paper is to introduce the notion of effective resistance Rσ of a current generator σ, and
present its formulas and applications. Simplicial networks are a generalization of resistor
networks, and the current work aims to extend classical results (see e.g. [15, 19]) concerning
effective resistance for resistor networks.

Let us outline our approach to Rσ. Suppose a nonzero real number iσ is assigned to a
current generator σ. We will associate a unique cycle Iσ in the chain group Cd(Y ;R), which
we call the current vector induced by iσ, as follows. Attach σ to an acyclization A(X) of
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X (see Section 2) to form a complex Z with rank 1 homology group in dimension d (see
Section 3 for the definition of Z). By combinatorial Hodge theory [9], there is a unique
harmonic class for Z determined by iσ. This harmonic class is the desired Iσ when every
element in R equals 1. Otherwise, a similar argument using a weighted chain complex for
Z will produce Iσ (see Section 3.2). As we shall see, the energy-minimizing property of
a harmonic class is a high-dimensional analogue of Thomson’s Principle for currents in a
resistor network. Also, we will define a voltage vector Vσ ∈ Cd(Y ;R) by requiring Ohm’s law
[4] and the orthogonality of current and voltage vectors. In short, we have the current Iσ
and voltage Vσ vectors for Y = X ∪ σ uniquely determined by a given nonzero current iσ
through σ. Now, we shall define Rσ as a ratio of the respective σ-components vσ and iσ of
Vσ and Iσ.

We will present another definition of Rσ by introducing potential for voltage vectors (See
(11) in Section 4). For a 1-dimensional potential theory, refer to [3]. Using this definition,
we obtain a formula for Rσ via the inverse of the weighted combinatorial Laplacian for X
in codimension 1 where the weights are given by the conductances C = R−1 (regarding R
as a diagonal matrix). This formula generalizes that of effective resistance for 1-dimensional
networks via the inverse of the combinatorial Laplacian in dimension zero [18, 15].

We will obtain another formula for Rσ (Theorem 5.2) via weighted high-dimensional
tree-numbers for X with the weights C = R−1. We refer the readers to [5, 6, 13] for
high-dimensional tree-numbers. This formula generalizes a well-known combinatorial inter-
pretation [19] of effective resistance for resistor networks. For its application, we will derive
a high-dimensional analogue of Foster’s Theorem [8], and compute effective resistance for
the standard simplexes (Example 5.5), the complete colorful complexes (Example 5.6), and
the hypercubes (Example 5.7).

2. Preliminaries

In this section, we will review definitions regarding simplicial complexes and homology
groups. Refer to [17] for further details. We will collect relevant definitions and results
concerning combinatorial Hodge theory [7, 9, 12, 16] which are essential for our purpose.

2.1. Simplicial complexes, and boundary and coboundary operators

Let X be an (abstract) simplical complex with an ordered finite vertex set [n] :=
{1, . . . , n}. The dimension of σ ∈ X is dim σ = |σ| − 1, and the dimension of X is
dimX = max{dim σ | σ ∈ X}. Let Xi denote the collection of all i-dimensional simpli-
cies (i-faces) of X. The i-th skeleton of X is X(i) =

∪
0≤j≤iXj. In this paper, we allow Xd

(d = dimX) to be a multiset, generalizing the notion of parallel edges. (With this condition,
X is a cell complex, and we will refer to X simply as a complex.)

The i-th chain group of X with integer coefficients is a free abelian group Ci = Ci(X) ∼=
Z|Xi| generated by the oriented simplices [τ ] for τ ∈ Xi. Elements of i-th chain group of X
called i-chains, and an i-chain x ∈ Ci may be represented as a formal sum x =

∑
τ∈Xi

nτ [τ ]
or as a column (vector) x = (nτ )τ∈Xi

depending on the context. The i-th boundary operator
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∂i : Ci → Ci−1 is a |Xi−1|×|Xi| matrix given by, for each i-face τ = {v0, v1, . . . , vi} with
v0 < v1 < · · · < vi,

∂i[τ ] =
i∑

j=0

(−1)j[τ − vj].

Define ∂0 : C0 → C−1
∼= R by ∂0[v] = 1 for each v ∈ X0. We have ∂i∂i+1 = 0 for all i. The

collection {Ci, ∂i} is called an (augmented) chain complex of X. We will write {Ci(X), ∂X,i}
to emphasize X. Use Ci(X;R) for chain groups with real coefficients.

The i-th cochain group of a simplicial complex X is

Ci = Ci(X) := Hom(Ci(X;Z),Z),

and its elements called i-cochains. Let us denote Ci(X;R) for chain groups with real co-
efficients. The i-th coboundary operator or alternating difference operator δi : Ci → Ci is
defined by, for f ∈ Ci,

(δif)[σ] =
i+1∑
j=0

(−1)jf([σ − vj])

where [σ] = [v0, v1, . . . , vi, vi+1]. In what follows, we may denote f([τ ]) by fτ for τ ∈ Xi for
convenience. When i = 1 and i = 2, the coboundary operators are called gradient and curl,
respectively. Hence, the gradient of f ∈ C1 is given by

(grad f)([a, b]) := δ1f([a, b]) = fb − fa

and the curl of f ∈ C2 is given by

(curl f)([a, b, c]) := δ2f([a, b, c]) = fbc − fac + fab.

For each i-face τ , we associate an element [τ ] ∈ Ci to the characteristic function χτ ∈ Ci

defined by for an i-face τ ′, χτ ([τ
′]) = 1 if τ ′ = τ , and χτ ([τ

′]) = 0 otherwise. This association
induces an isomorphism between Ci and Ci, and hence we identify their elements by this
isomorphism. We may regard f =

∑
τ fτχτ ∈ Ci as a formal sum

∑
τ∈Xi

fτ [τ ] or as a column
vector (fτ )τ∈Xi

, which we will denote by f again. Moreover, the i-th coboundary operator
δi is represented by the transpose ∂t

i+1 : Ci → Ci+1 of the (i+1)-th boundary operator ∂i+1.
Hence, for our purpose, it will suffice to work with chain groups, boundary operators and
their transpose for most of the topological and combinatorial invariants discussed in this
paper.

2.2. Homology and cohomology groups, and acyclization

The elements of ker ∂i and ker ∂t
i+1 are called i-cycles and i-cocycles, respectively. The

i-th reduced homology group and cohomology group with integer coefficients Z are H̃i(X) =
ker ∂i/ im ∂i+1, and H̃ i(X) = ker ∂t

i+1/ im ∂t
i , respectively. We will write H̃i(X;R) (H̃ i(X;R))

for reduced (co)homology with real coefficients. Note rk H̃i(X) = rk H̃i(X;R) for all i.
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Given a chain complex {Ci(X), ∂X,i} for a simplicial complex X of dimension d, we define
an acyclization A(X) ofX to be a chain complexA(X) = {Ai(X), ∂A(X),i} for −1 ≤ i ≤ d+1
as follows. For i ≤ d, let Ai(X) = Ci(X) and ∂A(X),i = ∂X,i. The (d + 1)-th chain group

Ad+1(X) is free abelian of rank c := rk H̃d(X) with a standard basis, and the (d + 1)-th
boundary operator for A(X) is an integer matrix of size |Xd|×c given by

∂A(X), d+1 =
[
z1 z2 . . . zc

]
(1)

where {z1, . . . , zc} is a basis of H̃d(X) = ker ∂X,d. Note that H̃i(A(X)) = H̃i(X) for i < d,
and H̃d(A(X)) = H̃d+1(A(X)) = 0. Also, note that ker ∂t

A(X),d+1 = (ker ∂X,d)
⊥ which we will

refer to later. When H̃d(X) = 0, we define A(X) to be the same as {Ci(X), ∂X,i}.

2.3. Combinatorial Hodge theory

Given a complex X, the i-th combinatorial Laplacian ∆i = ∆X,i : Ci(X,R) → Ci(X,R)
is defined by ([7])

∆i = ∂t
i∂i + ∂i+1∂

t
i+1 .

The i-th harmonic space Hi(X) is ker∆i and its elements are i-harmonic classes.
Regard Ci(X,R) and Ci(X,R) as R-vector spaces endowed with a standard inner product

⟨ , ⟩ such that the set of all oriented i-faces of X forms an orthonormal basis. From the
orthogonal decomposition Ci(X,R) = Hi(X;R)⊕ im ∂t

i ⊕ im ∂i+1 (refer to [9, Section 2]), one
can deduce

Hi(X) = ker ∂i ∩ ker ∂t
i+1 . (2)

Hence, an i-harmonic class is both an i-cycle and an i-cocycle.
Also from the above decomposition for Ci(X;R) follows the main result of combinatorial

Hodge theory: Hi(X) is isomorphic to H̃i(X;R) (and to H̃ i(X;R)) as R-vector spaces for
all i, where the isomorphism maps a harmonic class h to its (co)homology class h.

The following energy-minimizing property of a harmonic class is a consequence of (2):
For h ∈ Hi(X) and x ∈ h,

⟨h, h⟩ ≤ ⟨x, x⟩ . (3)

This inequality is verified by the following facts: If x = h + ∂i+1y for some y ∈ Ci+1(X,R),
then ⟨h, ∂i+1y⟩ = ⟨∂t

i+1h, y⟩ = 0 because h ∈ ker ∂t
i+1. Similarly, if x = h + ∂t

iy for some
y ∈ Ci(X,R), then ⟨h, ∂t

iy⟩ = ⟨∂ih, y⟩ = 0 since h ∈ ker ∂i.

3. Simplicial networks and effective resistance

In this section, we define simplicial resistor networks as a generalization of resistor net-
works, and characterize current and voltage vectors for simplicial networks. We will also
present the main definition of the paper, the effective resistance of a current generator in a
simplicial network.
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3.1. Simplicial networks

A resistor network is a finite graph where each edge is assigned a positive real number,
called a resistance, and weighted by the corresponding conductance, the reciprocal of resis-
tance. As a generalization, we define a simplicial network (X,R) as follows. A simplicial
network (X,R) consists of a simplicial complex X of dimension d and a set R of resistances
rτ (> 0) for the d-faces τ ∈ Xd. The resistance matrix, which we also denote by R, is a
diagonal matrix whose diagonal entries are rτ . We will refer to a simplicial network (X,R)
as a network for short. The simplicial complex X will be regarded as the weighted simpli-
cial complex each of whose d-faces is weighted by its conductance cτ := 1/rτ , and C is the
conductance matrix, a diagonal matrix whose diagonal entries are cτ .

Let (X,R) be a network of dimension d with [n] as vertices. A current generator is a
subset σ ⊂ [n] with |σ| = d+ 1 such that

∂d[σ] = −∂X,d (p) for some p ∈ Cd(X,R).

Then X together with a current generator σ, which we denote by Y = X ∪ σ, is again a
d-dimensional complex with Yd = Xd∪{σ} as a multiset. One can also deduce rk H̃d(Y,R) =
rk H̃d(X,R) + 1 from the fact that [σ] + p is a d-dimensional cycle in Y , but not in X.

Eventually, we will define two vectors Iσ ∈ ker ∂Y,d and Vσ ∈ (ker ∂Y,d)
⊥, called current

and voltage vectors for Y , respectively, such that their restrictions I and V to X satisfy
the Ohm’s law V = RI. Then the effective resistance of the current generator σ will be
defined as a ratio of the σ-components vσ and iσ of Vσ and Iσ, respectively. Details will
follow subsequently.

An important characterization of Iσ will be given by an analogue of Thomson’s Principle.
For a 1-dimensional network (X,R), this principle states that if Iσ = I + iσ[σ] is a current
for Y = X ∪ σ, then I satisfies the energy-minimizing property, i.e.,

I tRI ≤ xtRx (4)

for any cycle of the form x+ iσ[σ] in Y . This energy-minimizing property will be generalized
for Iσ in a network of arbitrary dimension.

3.2. Harmonic class for a network

Given a network (X,R) of dimension d and a current generator σ, we define a chain
complex Z = {Zi, ∂Z,i} for −1 ≤ i ≤ d+ 1, which represents, intuitively, the union of σ and
an acyclization of X. (To avoid confusion concerning the notation Zi, we will denote the
cycle group as the kernel of a boundary operator throughout the paper.) Specifically, we
have Zi = Ci(Y ) = Ci(X) with ∂Z,i = ∂Y,i = ∂X,i for i < d, Zd = Cd(Y ) = Cd(X) ⊕ Z with
∂Z,d = ∂Y,d, and Zd+1 = Ad+1(X) with ∂Z,d+1 given by

∂Z, d+1 =

[
∂A(X), d+1

0 · · · 0

]
(5)

where ∂A(X), d+1 = [z1 . . . zc] as in (1), and the last row of 0’s is indexed by σ. A routine

computation shows H̃d(Z;R) = R. Hence, Hd(Z) = R by combinatorial Hodge theory.
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Therefore, there is a unique d-harmonic class h for Z up to scalar multiplication. We may
call this h the harmonic class of σ with respect to X. Note that h must have a nonzero
σ-component. Otherwise, h would be a d-cycle in A(X), and its homology class h would be
zero, a contradiction.

Next, we define a weighted chain complex of Z incorporating R into the chain complex

{Zi, ∂Z,i}. Define R′ to be the diagonal matrix R′ =

[
R 0
0 1

]
. Let Q be a diagonal matrix

satisfying Q2 = R′. Define the weighted boundary operators ∂̂i for Z by

∂̂d = ∂Z,dQ
−1 ∂̂d+1 = Q∂Z,d+1

and ∂̂i = ∂Z,i for all other i. Then we have ∂̂i∂̂i+1 = 0 for all i, and {Zi, ∂̂i} is the desired
weighted chain complex. By (2), we obtain

Ĥd(Z) = ker ∂̂d ∩ ker ∂̂t
d+1 (6)

where Ĥd(Z) is the kernel of ∆̂Z,d := ∂̂ t
d ∂̂d+ ∂̂d+1∂̂

t
d+1. Hence, every element h ∈ Ĥd(Z) is of

the form h = Qw for a unique w ∈ ker ∂Z, d. Since Zd = Cd(Y ), we also have h,w ∈ Cd(Y ;R).
Define Ĥd(Z;R) := ker ∂̂d/ im ∂̂d+1. Then we have rk H̃d(Z;R) = rk Ĥd(Z;R) = rk Ĥd(Z),

where the first equality follows from rk ∂̂i = rk ∂Z,i for all i and the second from combinatorial

Hodge theory. Hence, Ĥd(Z) = R, and its generator must have a nonzero σ-component by
a similar reasoning as above.

3.3. Current and voltage vectors for a network

Let hσ be the unique generator of Ĥd(Z) with a given σ-component iσ. This hσ does
not depend on the choice of an acyclization of X since a new acyclization is obtained by a
change of basis of H̃d(X) and ker ∂̂t

d+1 is invariant under this change. We define the current
vector Iσ for Y = X ∪ σ to be the unique d-cycle in Cd(Y ;R) satisfying

hσ = QIσ .

If I denotes the restriction of Iσ to X so that Iσ = I + iσ[σ], then Iσ is characterized by

Iσ ∈ ker ∂Y,d and RI ∈ ker ∂t
A(X), d+1 = (ker ∂X, d)

⊥ (7)

where the first condition follows from ∂Z, d = ∂Y,d, and the second from (6) and (5).
To justify the definition of Iσ, we check that Iσ satisfies a generalized Thomson’s Principle.

Given a cycle w = x + iσ[σ] ∈ ker ∂Y,d, note that Iσ − w = I − x is a d-cycle in X, and,
therefore, an element of im ∂A(X),d+1. By the definition of ∂Z,d+1, we have Iσ−w ∈ im ∂Z,d+1.

Since ∂̂d+1 = Q∂Z,d+1, we also have hσ − Qw = Q(Iσ − w) ∈ im ∂̂d+1. Hence, Qw is in the
homology class of hσ, and ⟨hσ, hσ⟩ ≤ ⟨Qw,Qw⟩ by (3). From this inequality, one can easily
deduce I tRI ≤ xtRx, which is the desired generalization of (4).
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Next, we define the voltage vector Vσ for Y = X∪σ as follows. First we define the voltage
V for X by the generalized Ohm’s law V = RI. We define Vσ for Y to be the extension of
V that is orthogonal to Iσ. Hence, Vσ = V + vσ[σ] is the unique vector satisfying

V = RI and Vσ ⊥ Iσ.

Note that vσ is obtained from the following consequence of these conditions:

I tRI + iσvσ = 0 . (8)

Also from the above conditions for Vσ, one can deduce

Vσ = V + vσ[σ] ∈ ker ∂t
A(Y ), d+1 = (ker ∂Y,d)

⊥,

which we will also verify after introducing potential in Section 4.

3.4. Effective resistance of a current generator

Now, we present the main definition of the paper. For a network (X,R) and a current
generator σ, let Iσ = I + iσ[σ] and Vσ = V + vσ[σ] be the current and voltage vectors for
Y = X ∪ σ, respectively, determined by a non-zero current iσ through σ.

Definition 3.1. We define the effective resistance Rσ of σ to be

Rσ =
∣∣∣vσ
iσ

∣∣∣ .
Remarks: This is well-defined because changing iσ to miσ (m ̸= 0) results in mIσ and mVσ.
Note from (8) that the product iσvσ is always negative. Hence, we may define Rσ = −vσ/iσ.
We also note in passing that if |iσ| = 1, then Rσ = I tRI, i.e., the effective resistance of a
current generator σ is the energy created by a unit flow through σ.

4. Effective resistance via simplicial potential

In this section, we introduce the notion of potential for voltage vectors, and present a
formula for effective resistance Rσ for a current generator σ in a network (X,R) of dimension
d via the inverse of the combinatorial Laplacian in codimension 1. A potential of an element
x ∈ Ci(X;R) is an element ϕ ∈ Ci−1(X;R) such that x = ∂t

iϕ. For example, refer to [3] for
1-dimensional potential theory.

4.1. Potential for voltage vectors

Since V = RI ∈ ker ∂t
A(X), d+1 and H̃d(A(X);R) = 0, there is a (d − 1)-cochain ϕ ∈

Cd−1(X;R) = Cd−1(Y ;R) such that
V = ∂t

X, dϕ.

Hence, ϕ is a potential for V . It is important to note that a potential for V is also a potential
for Vσ , i.e.,

Vσ = ∂t
Y, dϕ whenever V = ∂t

X, dϕ . (9)
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Indeed, the restriction of ∂t
Y, dϕ to X is ∂t

X, dϕ which equals V , and ∂t
Y, dϕ is orthogonal to

Iσ because ∂t
Y, dϕ ∈ ker ∂t

A(Y ), d+1 = (ker ∂Y,d)
⊥ and Iσ ∈ ker ∂Y,d. Hence ∂t

Y, dϕ = Vσ by the
definition of Vσ. In particular, we have also shown

Vσ = V + vσ[σ] ∈ ker ∂t
A(Y ), d+1, (10)

which we will refer to later.
A potential ϕ ∈ Cd−1(X;R) of V gives rise to another expression for the effective resistance

Rσ of a current generator σ. Let ∂σ denote ∂Y,d[σ], the column of ∂Y,d indexed by σ. Then,
we obtain vσ = ∂t

σϕ from Vσ = V + vσ[σ] = ∂t
Y,dϕ. Further, suppose [σ] = [v0, . . . , vd], and

let σj := σ − {vj} for each j. Then we have ∂t
σϕ =

∑d
j=0(−1)jϕσj

. Hence, for a nonzero iσ,
we obtain

Rσ = −vσ
iσ

= −∂t
σϕ

iσ
= −

∑d
j=0(−1)jϕσj

iσ
. (11)

Note that this expression generalizes a definition of effective resistance by potential difference.
The following lemma characterizes a potential for V via a generalized Kirchhoff’s equa-

tion. Define the weighted Laplacian for (X,R) in codimension 1 with the weights C = R−1

to be
L̂ = L̂d−1 = ∂X,dC∂t

X,d

as an operator on Cd−1(X;R). Now, we define a generalized Kirchhoff’s equation to be

L̂ϕ = −iσ ∂σ. (12)

Lemma 4.1. Let V be the voltage vector induced by a nonzero current iσ through the current
generator σ. Then a (d−1)-cochain ϕ ∈ Cd−1 is a potential for V if and only if ϕ is a solution
of a generalized Kirchhoff’s equation (12).

Proof. Let ϕ ∈ Cd−1 be a potential for V . From Iσ = I + iσ[σ] ∈ ker ∂Y,d, we get ∂Y,dI =
−iσ ∂σ. Now, (12) follows from CV = I and V = ∂t

X, dϕ together with the fact that ∂Y,d

restricts to ∂X,d on X. Conversely, suppose an element ϕ ∈ Cd−1 satisfies L̂ϕ = −iσ ∂σ. We
may rewrite this equation as ∂Y,d(C∂t

X,dϕ + iσ[σ]) = 0, or C∂t
X,dϕ + iσ[σ] ∈ ker ∂Y,d. Since

∂t
A(X),d+1∂

t
X,d = 0, we see R(C∂t

X,dϕ) = ∂t
X,dϕ ∈ ker ∂t

A(X),d+1. Therefore, by (7), we conclude

that C∂t
X, dϕ+iσ[σ] is equal to Iσ = I+iσ[σ], the current vector induced by iσ. Consequently,

we have ∂t
X, dϕ = RI = V , and ϕ is a potential of V .

We also note that a generalized Thomson’s principle (in Section 3.3) can be stated in
terms of potential as follows: Let Φ be the set of all ϕ ∈ Cd−1 such that ∂t

σϕ = 1, and
Cσ := 1/Rσ. Then ϕ ∈ Φ is a solution for L̂ϕ = Cσ∂σ if and only if ϕ ∈ Φ satisfies
ϕtL̂ϕ = infϕ′∈Φ{ϕ′tL̂ϕ′}. Note that the infimum is Cσ.
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4.2. Main Theorem: a formula for Rσ via Green’s function

The weighted combinatorial Laplacian ∆̂X, d−1 for a d-dimensional network (X,R) with
the weights C = R−1 is a symmetric operator on Cd−1 defined by

∆̂ = ∆̂X, d−1 = L̂d−1 + Ĵd−1

where L̂ = L̂d−1 = ∂X,dC∂t
X,d as before and Ĵ = Ĵd−1 = ∂t

X,d−1∂X,d−1.

If X satisfies H̃d−1(X;R) = 0, then ∆̂ is invertible by combinatorial Hodge theory, and
we call the inverse ∆̂−1 = ∆̂−1

X,d−1 the combinatorial Green’s function of X. Its rows and

columns are indexed by the set Xd−1 of all (d− 1)-simplices of X, and we may write ∆̂−1 =
(gν,ν′)ν,ν′∈Xd−1

to specify its entries. For a connected 1-dimensional network (X,R), the

effective resistance Rab between two distinct vertices a and b is given via ∆̂−1
X,0 = (gab)a,b∈V (X)

as follows [18, 15]:
Rab = gaa + gbb − gab − gba .

The following theorem, which generalizes this formula, is a main result of the paper.

Theorem 4.2. Let (X,R) be a network of dimension d (> 0) with H̃d−1(X;R) = 0, and
∆̂−1 = (gν,ν′)ν,ν′∈Xd−1

its combinatorial Green’s function. Let σ be a current generator. Then,
the effective resistance Rσ of σ is

Rσ = ∂t
σ ∆̂

−1 ∂σ =
d∑

j,j′=0

(−1)j+j′gσj ,σj′

where [σ] = [v0, v1, · · · , vd] and σj = σ − {vj} for each j.

Proof. Since Rσ is independent of the current iσ through σ, we will assume iσ = −1 for
convenience. Let Vσ = V +vσ[σ] be the voltage vector induced by iσ = −1. By (11), we have
Rσ = ∂t

σϕ for any potential ϕ of V . Hence, we will prove the first equality of the theorem
by showing that the element ϕ := ∆̂−1∂σ is a potential for V . By Lemma 4.1, it suffices to
prove L̂ϕ = ∂σ. In fact, L̂ϕ = (∆̂− Ĵ)ϕ = ∂σ − Ĵϕ by the definitions of L̂ and ϕ. Hence, the
proof reduces to showing Ĵϕ = 0.

To that end, note Ĵ L̂ = ∂t
X,d−1∂X,d−1∂X,dC∂t

X,d = 0 and Ĵ∂σ = ∂t
X,d−1∂X,d−1∂Y,d[σ] = 0

where the second equation follows from ∂X,d−1 = ∂Y,d−1. From these equations, we see that

Ĵ2ϕ = Ĵ(Ĵ + L̂)ϕ = Ĵ∆̂∆̂−1∂σ = Ĵ∂σ = 0. Since Ĵ is symmetric, ⟨Ĵϕ, Ĵϕ⟩ = ϕtĴ2ϕ = 0,
from which Ĵϕ = 0 follows.

For the second equality of the theorem, note that the σj-component ϕσj
of ϕ = ∆̂−1∂σ

equals ϕσj
=

∑d
j′=0(−1)j

′
gσj ,σj′ for each j ∈ [0, n]. Since we have Rσ =

∑d
j=0(−1)jϕσj

by
(11), the result follows.

Example 4.3. Let X be the d-skeleton of a standard (n−1)-simplex on [n] := {1, 2, · · · , n}
with unit resistance for each d-simplex. A routine verification shows that ∆X,d−1 = n · id
where id is an identity matrix. Hence, for each σ ∈

(
[n]
d+1

)
, we have

Rσ =
d∑

j,j′=0

(−1)j+j′gσj ,σj′ =
d+ 1

n
.
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This example will be revisited in Example 5.5.

5. Effective resistance via high-dimensional tree-numbers

For a 1-dimensional network, effective resistance can be expressed in terms of spanning
trees [13, 19]. In this section, we will establish a high-dimensional analogue of this expression.
For that purpose, we will review high-dimensional tree-numbers (refer to [5, 6, 14]). In this
section, we assume H̃d−1(X) = 0 where d = dimX (> 0) .

5.1. High-dimensional trees

For a non-empty subset T ⊂ Xi, define XT = T ∪ X(i−1), regarded as a subcomplex of
X. For i ∈ [0, d], the i-dimensional subcomplex XT of X is an i-dimensional spanning tree,
or i-tree for short, if

(i) H̃i(XT ) = 0, and

(ii) rk H̃i−1(XT ) = 0.

Let Ti = Ti(X) := {T |XT is an i-tree }. Note that Ti(X) ̸= ∅ iff rk H̃i−1(X) = 0.
Keeping in mind that |H̃i−1(XT )| is finite for an i-tree XT , define the i-th tree-number ki(X)
of X (by Kalai [13]) to be

ki(X) :=
∑
T∈Ti

|H̃i−1(XT )|2.

This definition generalizes the tree-number of a connected graph. Indeed, one can easily
show that k1(X) equals the number of spanning trees in X(1) as a graph. Moreover, if XT is
an i-tree, then |T | = rk ∂i.

Proposition 5.1. Let A(X) be an acyclization of X, and ∂ = ∂A(X), d+1. For T ⊂ Xd, let ∂T
be the submatrix of ∂ obtained by deleting the rows indexed by T . Then ∂T is a non-singular
square matrix iff T ∈ Td(X), and in that case, | det ∂T | = |H̃d−1(XT )|.

Proof. See [5, Proposition 4.1] or [14, Theorem 6].

As a consequence, we obtain a determinantal formula for kd(X) with ∂ = ∂A(X), d+1:

kd(X) =
∑

T∈Td(X)

(det ∂T )
2 = det ∂t∂ (13)

where the second equality follows from the Cauchy-Binet Theorem (refer to [10]).
Recall that each top-dimensional simplex τ of a network (X,R) is weighted by its con-

ductance cτ = r−1
τ . For non-empty T ⊂ Xd, let cT =

∏
τ∈T cτ . We define the weighted

tree-number k̂d(X) of (X,R) to be

k̂d(X) :=
∑

T∈Td(X)

cT |H̃i−1(XT )|2 = detR−1 · det ∂tR∂ (14)

where the second equality is an easy consequence of (13).
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5.2. A combinatorial formula for Rσ

For a current generator σ, we assign weight 1 to σ. Note that, under the assumption
H̃d−1(X) = 0, if σ is a subset σ ⊂ [n] with |σ| = d+ 1 such that the collection of all proper
subsets is a subcomplex of X, then σ is a current generator of X. That is because the facts
∂d[σ] ∈ ker ∂X,d−1 and H̃d−1(X) = 0 imply ∂d[σ] ∈ im ∂X,d.

In order to give a combinatorial formula for Rσ, via high-dimensional tree-numbers, we
need a generalization of the tree-number of an edge-contracted graph. Let σ be a current
generator of X, and Y = X ∪ σ as before. Define Td(X)σ = {T ∈ Td(Y ) |σ ∈ T }. If X is
a connected graph, then T1(X)σ corresponds bijectively to the set of all spanning trees in
the contraction Y/σ. Hence, we will regard Td(X)σ as a high-dimensional analogue of the
former for enumeration purposes. Thus, we define

kd(X)σ :=
∑

T∈Td(X)σ

|H̃d−1(YT )|2,

as a generalization of the tree-number of an edge-contracted graph.
By a completely analogous manner to the case of a simplicial complex, we may define

Td(Y/σ) with Y/σ as a cell complex, and the map from Td(X)σ to Td(Y/σ) induced by
contracting σ to a point is shown to be a torsion-preserving bijection [11, Corollary 2.11].
Therefore, we also note

kd(Y/σ) = kd(X)σ .

Let A(Y ) be an acyclization of Y , and let D = ∂A(Y ), d+1. Note that the rows of D are

indexed by Xd∪{σ}. Let D̃ be obtained from D by deleting the row indexed by σ. Applying
Proposition 5.1, we see that DT is a non-singular submatrix of D̃ iff T ∈ Td(Y ) and σ ∈ T ,
i.e., iff T ∈ Td(X)σ, and in that case, | detDT | = |H̃d−1(YT )|. Hence, we have

kd(X)σ =
∑

T∈Td(X)σ

(detDT )
2 = det D̃tD̃ (15)

where the second equality follows again from the Cauchy-Binet Theorem. For a network
(X,R), we define

k̂d(X)σ :=
∑

T∈Td(X)σ

cT |H̃d−1(YT )|2 = detR−1 · det D̃tRD̃. (16)

Theorem 5.2. For a d-dimensional simplicial network (X,R) with H̃d−1(X) = 0 and a
current generator σ,

Rσ =
k̂d(X)σ
k̂d(X)

=
k̂d((X ∪ σ)/σ)

k̂d(X)
.

Proof. Since Rσ = −vσ/iσ, we will show iσ = k̂d(X)/k̂d(X)σ when vσ = −1. A main
ingredient of the proof is D := ∂A(Y ), d+1 whose columns form a basis for H̃d(Y ). Since
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d-cycles, [σ]+p ∈ H̃d(Y ) together with the basis of H̃d(X), define a basis for H̃d(Y ), we may
take

D := ∂A(Y ),d+1 =

[
∂A(X),d+1 p
0 · · · 0 1

]
where the last row is indexed by σ. Recall that Iσ = I + iσ[σ] is a d-cycle in Y , i.e.,
Iσ ∈ ker ∂Y,d (refer to (7)). Since ker ∂A(Y ), d/ im ∂A(Y ), d+1 = H̃d(A(Y )) = 0, we have Iσ = Dy
for some y ∈ Ad+1(Y ). From the expression forD, it follows that iσ equals the last component
of y, which we denote by yσ. We will show yσ = k̂d(X)/k̂d(X)σ to complete the proof.

By (10), we have DtVσ = 0, i.e., Vσ is orthogonal to each column of D. Then by the
assumption vσ = −1, we obtain

0 = ⟨p+ [σ], Vσ⟩ = ⟨p+ [σ], V + vσ[σ]⟩, or, ⟨p, V ⟩ = 1.

It follows that
(0, . . . , 0, 1)t = D̃tV = D̃tRI = D̃tRD̃y .

Since det D̃tRD̃ = detR · k̂d(X)σ is non-zero, we see that (D̃tRD̃)−1 exists, and it follows
that yσ equals its lower-right corner entry. Also, the cofactor of the lower-right corner entry
of D̃tRD̃ equals det(∂tR∂) = detR · k̂d(X). Therefore, we conclude

Rσ =
1

yσ
=

det D̃tRD̃

det(∂tR∂)
=

k̂d(X)σ

k̂d(X)
.

5.3. High-dimensional Foster’s theorem

Based on our combinatorial formula for simplicial effective resistance (Theorem 5.2), we
presents a high-dimensional analogue of Foster’s theorem [8].

Theorem 5.3. Let (X,R) be a d-dimensional simplicial network with H̃d−1(X) = 0 and
rk ∂X,d = γd. Then ∑

τ∈Xd

cτRτ = γd.

Proof. Summing cT |H̃d−1(XT )|
2
over S := { (T, τ) | T ∈ Td(X) and τ ∈ T} and changing

the order of summation yields

k̂d(X)γd =
∑

(T,τ)∈S

cT |H̃d−1(XT )|2 =
∑
τ∈Xd

cτ k̂d(X)τ

where the first equality follows from the fact |T | = γd for T ∈ Td(X) and (14), and the
second equality from (16). The result is immediate from Theorem 5.2.

A simplicial complex X is called facet-trasitive if X has an automorphism taking any
facet to any other facet. In a facet-transitive complex, effective resistance is clearly constant
on facets, and hence the effective resistance follows from the theorem.

12



Corollary 5.4. Suppose that X is a d-dimensional simplicial complex each of whose d-face
has a unit resistance. If X is facet-transitive, the effective resistance Rσ for σ ∈ Xd equals

Rσ =
γd
|Xd|

.

We apply the corollary to obtain effective resistances in the following three complexes:
skeleta of standard simplexes, complete colorful complexes, and hypercubes.

Example 5.5. Let X be the d-skeleton of a standard (n−1)-simplex on [n] := {1, 2, . . . , n}.
The collection T = {τ ∈ Xd | n ∈ τ} is a d-tree in X, and we have γd = |T | =

(
n−1
d

)
. For

every σ ∈
(

[n]
d+1

)
, its effective resistance Rσ is equal to

Rσ =

(
n−1
d

)(
n

d+1

) =
d+ 1

n
.

Example 5.6. For each d-face σ of a complete colorful complex, we will compute Rσ. For
disjoint vertex sets V1, . . . , Vr (“color classes”) with |V1| = n1, . . . , |Vr| = nr, a complete
colorful complex K := K(n1, n2, . . . , nr) is defined to be a simplicial complex each of whose
faces is a set of vertices with no more than one vertex of each color.

The number of d-faces inK is ed+1(n1, . . . , nr), and γd =
∑d

j=0

(
r−j−1
r−d−1

)
ej(n1−1, . . . , nr−1)

[2, Proposition 1.2], where ej is the j-th elementary symmetric function. For each d-face σ,

Rσ =
( d∑

j=0

(
r − j − 1

r − d− 1

)
ej(n1 − 1, . . . , nr − 1)

)/(
ed+1(n1, . . . , nr)

)
.

Example 5.7. We apply the idea of the proof of Theorem 5.3 to a hypercube. For a
definition of hypercubes, we refer the readers to [6]. A hypercube Qn is the n-fold product
[0, 1] × · · · × [0, 1], where [0, 1] is a cell complex with two 0-cells, 0 and 1, and one 1-cell,
(0, 1). The number of d-cells in Qn is

(
n
d

)
2n−d, and

γd =
n∑

j=d

(
n

j

)(
j − 1

d− 1

)
[1, Theorem 1.5]. We have Rσ = kd(Qn)σ/kd(Qn) for a d-cell σ in Qn. Then Rσ equals

Rσ =
( n∑

j=d

(
n

j

)(
j − 1

d− 1

))/((n
d

)
2n−d

)
.

Moreover, since kd(Qn) =
∏

j=d+1(2j)
(nj)(

j−2
d−1) [6, Corollary 3.5], we have

kd(Qn)σ =
( n∑

j=d

(
n

j

)(
j − 1

d− 1

))/((n
d

)
2n−d

)
·
∏

j=d+1

(2j)(
n
j)(

j−2
d−1).
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Finally, we end the paper with the following intriguing identity forRσ as a high-dimensional
analogue of [15, Theorem 4]. By Theorem 4.2 and Theorem 5.2, we obtain

d∑
j,j′=0

(−1)j+j′gσj ,σj′ =
k̂d(X)σ

k̂d(X)
. (17)
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