THE BOUNDEDNESS BELOW OF 2×2 UPPER TRIANGULAR OPERATOR MATRICES

In Sung Hwang and Woo Young Lee¹

When $A \in \mathcal{L}(\mathcal{H})$ and $B \in \mathcal{L}(\mathcal{K})$ are given we denote by M_C an operator acting on the Hilbert space $\mathcal{H} \oplus \mathcal{K}$ of the form

$$M_C := \left(\begin{smallmatrix} A & C \\ 0 & B \end{smallmatrix} \right),$$

where $C \in \mathcal{L}(\mathcal{K}, \mathcal{H})$. In this paper we characterize the boundedness below of M_C . Our characterization is as follows: M_C is bounded below for some $C \in \mathcal{L}(\mathcal{K}, \mathcal{H})$ if and only if A is bounded below and $\alpha(B) \leq \beta(A)$ if R(B) is closed; $\beta(A) = \infty$ if R(B) is not closed, where $\alpha(\cdot)$ and $\beta(\cdot)$ denote the nullity and the deficiency, respectively. In addition, we show that if $\sigma_{ap}(\cdot)$ and $\sigma_d(\cdot)$ denote the approximate point spectrum and the defect spectrum, respectively, then the passage from $\sigma_{ap} \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ to $\sigma_{ap}(M_C)$ can be described as follows:

$$\sigma_{ap} \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} = \sigma_{ap}(M_C) \cup W \quad \text{for every } C \in \mathcal{L}(\mathcal{K}, \mathcal{H}),$$

where W lies in certain holes in $\sigma_{ap}(A)$, which happen to be subsets of $\sigma_d(A) \cap \sigma_{ap}(B)$.

1 Introduction

The study of upper triangular operator matrices arises naturally from the following fact: if T is a Hilbert space operator and \mathcal{H} is an invariant subspace for T then T has the following 2×2 upper triangular operator matrix representation:

$$T = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} : \mathcal{H} \oplus \mathcal{H}^{\perp} \longrightarrow \mathcal{H} \oplus \mathcal{H}^{\perp},$$

and one way to study operators is to see them as entries of simpler operators. The upper triangular operator matrices (more generally, block operator matrices) have been studied

¹Supported in part by the KOSEF through the GARC at Seoul National University and the BSRI-1998-015-D00028.

by numerous authors. This paper is concerned with the boundedness below of 2×2 upper triangular operator matrices.

Let \mathcal{H} and \mathcal{K} be infinite dimensional separable Hilbert spaces, let $\mathcal{L}(\mathcal{H}, \mathcal{K})$ denote the set of bounded linear operators from \mathcal{H} to \mathcal{K} , and abbreviate $\mathcal{L}(\mathcal{H}, \mathcal{H})$ to $\mathcal{L}(\mathcal{H})$. If $A \in \mathcal{L}(\mathcal{H})$ write $\sigma(A)$ for the spectrum of A. If $A \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ write N(A) for the null space of A; R(A) for the range of A; $\alpha(A)$ for the nullity of A, i.e., $\alpha(A) := \dim N(A)$; $\beta(A)$ for the deficiency of A, i.e., $\beta(A) := \dim \overline{R(A)}^{\perp}$. Recall that an operator $A \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ is said to be *bounded below* if there exists k > 0 for which $||x|| \leq k ||Ax||$ for each $x \in \mathcal{H}$. If $A \in \mathcal{L}(\mathcal{H})$ then the approximate point spectrum, $\sigma_{ap}(A)$, and the defect spectrum, $\sigma_d(A)$, of A are defined by

> $\sigma_{ap}(A) := \{ \lambda \in \mathbb{C} : A - \lambda \text{ is not bounded below} \};$ $\sigma_d(A) := \{ \lambda \in \mathbb{C} : A - \lambda \text{ is not onto} \}.$

If \mathfrak{S} is a compact subset of \mathbb{C} , write int \mathfrak{S} for the interior points of \mathfrak{S} ; iso \mathfrak{S} for the isolated points of \mathfrak{S} ; acc \mathfrak{S} for the accumulation points of \mathfrak{S} ; $\partial \mathfrak{S}$ for the topological boundary of \mathfrak{S} . When $A \in \mathcal{L}(\mathcal{H})$ and $B \in \mathcal{L}(\mathcal{K})$ are given we denote by M_C an operator acting on $\mathcal{H} \oplus \mathcal{K}$ of the form

$$M_C := \begin{pmatrix} A & C \\ 0 & B \end{pmatrix},$$

where $C \in \mathcal{L}(\mathcal{K}, \mathcal{H})$. The invertibility, the spectrum and Weyl's theorem of M_C were considered in [DJ],[HLL], and [Le]. In this paper we characterize the boundedness below of M_C . Our characterization is as follows:

Theorem 1. An 2 × 2 operator matrix $M_C := \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$ is bounded below for some $C \in \mathcal{L}(\mathcal{K}, \mathcal{H})$ if and only if A is bounded below and

$$\left\{ \begin{array}{ll} \alpha(B) \leq \beta(A) & \quad \textit{if } R(B) \textit{ is closed}, \\ \beta(A) = \infty & \quad \textit{if } R(B) \textit{ is not closed}. \end{array} \right.$$

In Section 1 we give the proof of Theorem 1. In Section 2 we give a description of the passage from $\sigma_{ap}\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ to $\sigma_{ap}(M_C)$.

1 Proof of Theorem 1

If $T \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ then the *reduced minimum modulus* of T is defined by (cf. [Ap])

$$\gamma(T) = \begin{cases} \inf\{||Tx|| : \operatorname{dist}(x, N(T)) = 1\} & \operatorname{if} T \neq 0 \\ 0 & \operatorname{if} T = 0. \end{cases}$$

Thus $\gamma(T) > 0$ if and only if T has closed non-zero range (cf. [Ap],[Go]). If $T \in \mathcal{L}(\mathcal{H})$ is a non-zero operator then we can see ([Ap]) that $\gamma(T) = \inf(\sigma(|T|) \setminus \{0\})$, where |T| denotes

 $(T^*T)^{\frac{1}{2}}$. Thus we have that $\gamma(T) = \gamma(T^*)$. From the definition we can also see that if T is bounded below then $||x|| \leq \frac{1}{\gamma(T)} ||Tx||$ for each $x \in \mathcal{H}$.

If $M_C := \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$ write

(1)
$$M_C = \begin{pmatrix} I & 0 \\ 0 & B \end{pmatrix} \begin{pmatrix} I & C \\ 0 & I \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & I \end{pmatrix}$$

Recall ([Ha1, Theorem 3.3.2]) that if $S \in \mathcal{L}(\mathcal{K}, \mathcal{H})$ and $T \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ then

(2) S, T bounded below $\Longrightarrow ST$ bounded below $\Longrightarrow T$ bounded below.

Since $\begin{pmatrix} I & C \\ 0 & I \end{pmatrix}$ is invertible for every $C \in \mathcal{L}(\mathcal{K}, \mathcal{H})$, applying (2) to (1) gives

(3) A, B bounded below $\Longrightarrow M_C$ bounded below $\Longrightarrow A$ bounded below.

To prove Theorem 1 we establish an auxiliary lemma, which is a result of independent interest.

Lemma 1. Let $T \in \mathcal{L}(\mathcal{H})$ and $T \neq 0$. Then T satisfies one of the following two conditions:

- (i) There exists a unit vector x in $N(T)^{\perp}$ such that $||Tx|| = \gamma(T)$;
- (ii) There exists an orthonormal sequence $\{x_n\}$ in $N(T)^{\perp}$ such that $||Tx_n|| \to \gamma(T)$.

In particular, if R(T) is not closed then T must satisfy the condition (ii) with $\gamma(T) = 0$.

Proof. Suppose $T \neq 0$ and write $\alpha := \gamma(T) = \inf(\sigma(|T|) \setminus \{0\})$. Let *E* be the spectral measure on the Borel subsets of $\sigma(|T|)$ such that $|T| = \int z \, dE(z)$. There are two cases to consider.

Case 1: $\alpha \in acc(\sigma(|T|) \setminus \{0\})$. In this case, there exists a strictly decreasing sequence $\{\alpha_n\}$ of elements in $\sigma(|T|) \setminus \{0\}$ such that $\alpha_n \to \alpha$. Since the α_n 's are distinct, there exists a sequence $\{U_n\}$ of mutually disjoint open intervals such that $\alpha_n \in U_n$ for all $n \in \mathbb{Z}^+$. Define $F_n := U_n \cap \sigma(|T|)$ $(n \in \mathbb{Z}^+)$. Then the F_n 's are nonempty relatively open subsets of $\sigma(|T|)$. Thus $E(F_n)\mathcal{H} \neq \{0\}$ for each $n \in \mathbb{Z}^+$. For each $n \in \mathbb{Z}^+$, choose a unit vector x_n in $E(F_n)\mathcal{H}$. Since the F_n 's are mutually disjoint, it follows that $\{x_n\}$ is an orthonormal sequence. We will show that $x_n \in N(T)^{\perp}$ $(n \in \mathbb{Z}^+)$. If |T| is invertible then $N(T)^{\perp} = N(|T|)^{\perp} = \mathcal{H}$, so evidently, $x_n \in N(T)^{\perp}$. Now suppose |T| is not invertible. Since |T| is a normal operator, |T| is unitarily equivalent to a multiplication operator M_{φ} . But since our argument below depends only on the inner product, we may assume without loss of generality that |T| is a multiplication operator. Let $|T| := M_{\varphi}$. If $F_0 := \{0\}$ then $E(F_0)$ is the multiplication by $\chi_{\varphi^{-1}(0)}$. Thus if $f \in N(|T|)$ then $\varphi f = 0$ and hence

$$(\chi_{\varphi^{-1}(0)}f)(x) = \begin{cases} 0 & \text{if } f(x) = 0, \\ f(x) & \text{if } f(x) \neq 0, \end{cases}$$

which shows that $E(F_0)f = f$. Therefore if $f \in N(|T|)$ then for each $n \in \mathbb{Z}^+$,

$$(f, x_n) = (E(F_0)f, E(F_n)x_n) = (f, E(F_0 \cap F_n)x_n) = (f, 0) = 0$$

which shows that $x_n \in N(|T|)^{\perp}$ for all $n \in \mathbb{Z}^+$. It thus follows that $x_n \in N(T)^{\perp}$. On the other hand, for each $n \geq 2$,

$$||Tx_n||^2 = (T^*Tx_n, x_n) \le ||(T^*T)|_{E(F_n)\mathcal{H}}|| = r((T^*T)|_{E(F_n)\mathcal{H}})$$

$$\le (\sup F_n)^2 \le (\sup U_n)^2 \le \alpha_{n-1}^2,$$

where $r(\cdot)$ denotes the spectral radius. Therefore we have that $\alpha \leq ||Tx_n|| \leq \alpha_{n-1}$ $(n \geq 2)$, which implies that $||Tx_n|| \to \alpha = \gamma(T)$.

Case 2: $\alpha \in iso(\sigma(|T|) \setminus \{0\})$. Let $\mathfrak{L} := E(\{\alpha\})$ and $\mathfrak{M} := E(\sigma(|T|) \setminus \{\alpha\})$. Then \mathcal{H} can be decomposed as $\mathcal{H} = \mathfrak{L} \oplus \mathfrak{M}$, where \mathfrak{L} and \mathfrak{M} are |T|-invariant subspaces, $\sigma(|T||_{\mathfrak{L}}) = \{\alpha\}$ and $\sigma(|T||_{\mathfrak{M}}) = \sigma(|T|) \setminus \{\alpha\}$: more precisely, we can write

$$|T| = \begin{pmatrix} \alpha & 0 \\ 0 & |T| \mid_{\mathfrak{M}} \end{pmatrix} : \mathfrak{L} \oplus \mathfrak{M} \longrightarrow \mathfrak{L} \oplus \mathfrak{M}.$$

But since ||Tx|| = |||T|x|| for all $x \in \mathcal{H}$, it follows that for every unit vector x_0 in \mathfrak{L} , $||Tx_0|| = |||T|x_0|| = ||\alpha x_0|| = \alpha$.

For the second assertion suppose $\gamma(T) = 0$ and $T \neq 0$. If T satisfies the condition (i) then there exists a unit vector $x \in N(T)^{\perp}$ such that Tx = 0, giving a contradiction. This shows that T must satisfy the condition (ii).

Proof of Theorem 1. We first claim that if A is bounded below and R(B) is closed, then

(4) $\alpha(B) \leq \beta(A) \iff M_C \text{ is bounded below for some } C \in \mathcal{L}(\mathcal{K}, \mathcal{H}).$

To show this suppose $\alpha(B) \leq \beta(A)$. Since dim $N(B) \leq \dim R(A)^{\perp}$, there exists a isometry $J: N(B) \to R(A)^{\perp}$. Define an operator $C: \mathcal{K} \to \mathcal{H}$ by

$$C := \begin{pmatrix} J & 0 \\ 0 & 0 \end{pmatrix} : \begin{pmatrix} N(B) \\ N(B)^{\perp} \end{pmatrix} \to \begin{pmatrix} R(A)^{\perp} \\ R(A) \end{pmatrix}$$

Then M_C is one-one. Assume to the contrary that M_C is not bounded below. Then there exists a sequence $\begin{pmatrix} x_n \\ y_n \end{pmatrix}$ of unit vectors in $\mathcal{H} \oplus \mathcal{K}$ for which

$$\begin{pmatrix} A & C \\ 0 & B \end{pmatrix} \begin{pmatrix} x_n \\ y_n \end{pmatrix} = \begin{pmatrix} Ax_n + Cy_n \\ By_n \end{pmatrix} \longrightarrow 0$$

Write $y_n := \alpha_n + \beta_n$ for $n \in \mathbb{Z}^+$, where $\alpha_n \in N(B)$ and $\beta_n \in N(B)^{\perp}$. Since $\gamma(B) > 0$ and $By_n \to 0$, it follows that $\beta_n \to 0$. Also by the definition of C, $Cy_n = C(\alpha_n + \beta_n) = C\alpha_n \to 0$ and hence $\alpha_n \to 0$. Therefore $y_n \to 0$ and $||x_n|| \to 1$. But since $Ax_n \to 0$, it follows that A is not bounded below, giving a contradiction. This proves that M_C is bounded below. Conversely, suppose M_C is bounded below for some $C \in \mathcal{L}(\mathcal{K}, \mathcal{H})$. Write M_C as in (1). Since $\begin{pmatrix} I & 0 \\ 0 & B \end{pmatrix} \begin{pmatrix} I & C \\ 0 & I \end{pmatrix}$ and $\begin{pmatrix} A & 0 \\ 0 & I \end{pmatrix}$ have closed ranges, it follows from an index theorem of R. Harte [Ha2],[Ha3] that

$$N\begin{pmatrix} A & 0 \\ 0 & I \end{pmatrix} \bigoplus N\left(\begin{pmatrix} I & 0 \\ 0 & B \end{pmatrix} \begin{pmatrix} I & C \\ 0 & I \end{pmatrix}\right) \bigoplus R(M_C)^{\perp}$$
$$\cong N(M_C) \bigoplus R\left(\begin{pmatrix} A & 0 \\ 0 & I \end{pmatrix}\right)^{\perp} \bigoplus R\left(\begin{pmatrix} I & 0 \\ 0 & B \end{pmatrix} \begin{pmatrix} I & C \\ 0 & I \end{pmatrix}\right)^{\perp},$$

which implies that $\alpha(B) + \beta(M_C) = \beta(A) + \beta\left(\begin{pmatrix} I & 0 \\ 0 & B \end{pmatrix}\begin{pmatrix} I & C \\ 0 & I \end{pmatrix}\right)$. Since

$$\beta(M_C) \ge \beta\left(\begin{pmatrix}I & 0\\ 0 & B\end{pmatrix}\begin{pmatrix}I & C\\ 0 & I\end{pmatrix}\right),$$

it follows that $\alpha(B) \leq \beta(A)$. This proves (4). We next claim that if A is bounded below and R(B) is not closed, then

(5) $\beta(A) = \infty \iff M_C$ is bounded below for some $C \in \mathcal{L}(\mathcal{K}, \mathcal{H})$.

To show this suppose $\beta(A) = \infty$. Then with no restriction on R(B), M_C is bounded below for some $C \in \mathcal{L}(\mathcal{K}, \mathcal{H})$. To see this, observe dim $R(A)^{\perp} = \infty$, so there exists an isomorphism $C_0 : \mathcal{K} \to R(A)^{\perp}$. Define an operator $C : \mathcal{K} \to \mathcal{H}$ by

$$C := \begin{pmatrix} C_0 & 0 \end{pmatrix} : \mathcal{K} \to \begin{pmatrix} R(A)^{\perp} \\ R(A) \end{pmatrix}$$

Then a straightforward calculation shows that M_C is one-one and

$$\gamma(M_C) = \inf_{||x||^2 + ||y||^2 = 1} || \begin{pmatrix} Ax + Cy \\ By \end{pmatrix} ||$$

$$\geq \inf_{||x||^2 + ||y||^2 = 1} \left(||Ax||^2 + ||Cy||^2 \right)^{\frac{1}{2}}$$

$$\geq \inf_{||x||^2 + ||y||^2 = 1} \left(\gamma(A)^2 ||x||^2 + ||y||^2 \right)^{\frac{1}{2}}$$

$$\geq \min \{1, \gamma(A)\} > 0,$$

which implies that M_C is bounded below. For the converse, assume $\beta(A) = N < \infty$. Since R(B) is not closed it follows from Lemma 1 that there exists an orthonormal sequence $\{y_n\}$ in $N(B)^{\perp}$ such that $By_n \to 0$. But since M_C is bounded below we have

$$\inf_{||x||^2 + ||y||^2 = 1} \left| \left(\begin{pmatrix} A & C \\ 0 & B \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \right| \right| = \inf_{||x||^2 + ||y||^2 = 1} \left| \left(\begin{pmatrix} Ax + Cy \\ By \end{pmatrix} \right| \right| > 0$$

We now argue that there exist $\epsilon > 0$ and a subsequence $\{y_{n_k}\}$ of $\{y_n\}$ for which

(6)
$$\operatorname{dist}\left(R(A), Cy_{n_k}\right) > \epsilon \quad \text{for all } k \in \mathbb{Z}^+$$

Indeed, assume to the contrary that dist $(R(A), Cy_n) \to 0$ as $n \to \infty$. Thus there exists a sequence $\{x_n\}$ in \mathcal{H} such that dist $(Ax_n, Cy_n) \to 0$. Let $z_n := || \begin{pmatrix} x_n \\ y_n \end{pmatrix} ||^{-1}x_n$ and $w_n := || \begin{pmatrix} x_n \\ y_n \end{pmatrix} ||^{-1}(-y_n)$. Then $|| \begin{pmatrix} z_n \\ w_n \end{pmatrix} || = 1$ and $|| \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} \begin{pmatrix} z_n \\ w_n \end{pmatrix} || = || \begin{pmatrix} Az_n + Cw_n \\ Bw_n \end{pmatrix} || \to 0$, giving a contradiction. This proves (6). There is no loss in simplifying the notation and assuming that

(7)
$$\operatorname{dist} (R(A), Cy_n) > \epsilon \quad \text{for all } n \in \mathbb{Z}^+.$$

Since $\beta(A) = N$, there exists an orthonormal basis $\{e_1, \dots, e_N\}$ for $R(A)^{\perp}$. Let P_m be the projection from \mathcal{H} to $\vee \{e_m\}$ for $m = 1, \dots, N$, where $\vee (\cdot)$ denotes the closed linear span. If we let $Cy_n := \alpha_n + \beta_n$ $(n \in \mathbb{Z}^+)$, where $\alpha_n \in R(A)$ and $\beta_n \in R(A)^{\perp}$, then by (7), $||\beta_n|| > \epsilon$ for all $n \in \mathbb{Z}^+$. Observe that $\sum_{n=1}^{\infty} ||\frac{1}{n}\beta_n|| = \infty$ and hence $||\sum_{n=1}^{\infty} P_{m_0}(\frac{1}{n}\beta_n e^{i\theta_n})|| = \infty$ for some $m_0 \in \{1, \dots, N\}$ and for some $\theta_n \in [0, 2\pi)$ $(n \in \mathbb{Z}^+)$. Now if we write $y := \sum_{n=1}^{\infty} \frac{1}{n} y_n e^{i\theta_n}$, then $||y||^2 = \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty$ and hence $y \in \mathcal{K}$. But

$$||Cy|| \ge ||P_{m_0}(Cy)|| = ||\sum_{n=1}^{\infty} P_{m_0}C(\frac{1}{n}y_n e^{i\theta_n})|| = ||\sum_{n=1}^{\infty} P_{m_0}(\frac{1}{n}\beta_n e^{i\theta_n})|| = \infty,$$

giving a contradiction. Therefore we must have that $\beta(A) = \infty$. This proves (5). Now Theorem 1 follows from (3), (4) and (5).

The following corollary is immediate from Theorem 1.

Corollary 1. For a given pair (A, B) of operators we have

$$\bigcap_{C \in \mathcal{L}(\mathcal{K},\mathcal{H})} \sigma_{ap}(M_C) = \sigma_{ap}(A) \bigcup \{\lambda \in \mathbb{C} : R(B-\lambda) \text{ is closed and } \beta(A-\lambda) < \alpha(B-\lambda) \}$$
$$\bigcup \{\lambda \in \mathbb{C} : R(B-\lambda) \text{ is not closed and } \beta(A-\lambda) < \infty \}.$$

The following is the dual statement of Corollary 1.

Corollary 2. For a given pair (A, B) of operators we have

$$\bigcap_{C \in \mathcal{L}(\mathcal{K}, \mathcal{H})} \sigma_d(M_C) = \sigma_d(B) \bigcup \{ \lambda \in \mathbb{C} : R(A - \lambda) \text{ is closed and } \alpha(B - \lambda) < \beta(A - \lambda) \} \bigcup \{ \lambda \in \mathbb{C} : R(A - \lambda) \text{ is not closed and } \alpha(B - \lambda) < \infty \}.$$

Combining Corollaries 1 and 2 gives:

Corollary 3 ([DJ, Theorem 2]). For a given pair (A, B) of operators we have

$$\bigcap_{C \in \mathcal{L}(\mathcal{K}, \mathcal{H})} \sigma(M_C) = \sigma_{ap}(A) \bigcup \sigma_d(B) \bigcup \{\lambda \in \mathbb{C} : \alpha(B - \lambda) \neq \beta(A - \lambda)\}.$$

Remark. In many applications, the entries of block operator matrices are unbounded operators. Section 1 deals only with the bounded case. We expect that an analogue of Theorem 1 holds for the unbounded case.

2 The passage from $\sigma_{ap} \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ to $\sigma_{ap}(M_C)$

In [HLL], it was shown that the passage from $\sigma\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ to $\sigma(M_C)$ is accomplished by removing certain open subsets of $\sigma(A) \cap \sigma(B)$ from the former, that is, there is equality

(8)
$$\sigma\left(\begin{smallmatrix}A & 0\\ 0 & B\end{smallmatrix}\right) = \sigma(M_C) \,\cup\, W,$$

where W is the union of certain of the holes in $\sigma(M_C)$ which happen to be subsets of $\sigma(A) \cap \sigma(B)$. However we need not expect the case for the approximate point spectrum (see Examples 1 and 2 below). The passage from $\sigma_{ap} \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ to $\sigma_{ap}(M_C)$ is more delicate.

Theorem 2. For a given pair (A, B) of operators we have that for every $C \in \mathcal{L}(\mathcal{K}, \mathcal{H})$,

(9)
$$\eta \big(\sigma_{ap}(A) \cup \sigma_{ap}(B) \big) = \eta \big(\sigma_{ap}(M_C) \big),$$

where $\eta(\cdot)$ denotes the "polynomially-convex hull". More precisely,

(10)
$$\sigma_{ap} \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} = \sigma_{ap}(M_C) \cup W,$$

where W lies in certain holes in $\sigma_{ap}(A)$, which happen to be subsets of $\sigma_d(A) \cap \sigma_{ap}(B)$. Hence, in particular, $r_{ap}(M_C)$ is a constant, and furthermore for every $C \in \mathcal{L}(\mathcal{K}, \mathcal{H})$,

(11)
$$r\begin{pmatrix} A & C \\ 0 & B \end{pmatrix} = r\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} = r_{ap}\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} = r_{ap}\begin{pmatrix} A & C \\ 0 & B \end{pmatrix},$$

where $r(\cdot)$ and $r_{ap}(\cdot)$ denote the spectral radius and the "approximate point spectral radius". *Proof.* First, observe that for a given pair (A, B) of operators we have that for every $C \in \mathcal{L}(\mathcal{K}, \mathcal{H})$,

(12)
$$\sigma_{ap}(A) \subseteq \sigma_{ap}(M_C) \subseteq \sigma_{ap}(A) \cup \sigma_{ap}(B) = \sigma_{ap}\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}:$$

the first and the second inclusions follow from (3) and the last equality is obvious. We now claim that for every $T \in \mathcal{L}(\mathcal{H})$,

(13)
$$\eta(\sigma(T)) = \eta(\sigma_{ap}(T)).$$

Indeed since $\operatorname{int} \sigma_{ap}(T) \subseteq \operatorname{int} \sigma(T)$ and $\partial \sigma(T) \subseteq \sigma_{ap}(T)$, we have that $\partial \sigma(T) \subseteq \partial \sigma_{ap}(T)$, which implies that the passage from $\sigma_{ap}(T)$ to $\sigma(T)$ is filling in certain holes in $\sigma_{ap}(T)$, proving (13). Now suppose $\lambda \in (\sigma_{ap}(A) \cup \sigma_{ap}(B)) \setminus \sigma_{ap}(M_C)$. Thus by (12), $\lambda \in \sigma_{ap}(B) \setminus \sigma_{ap}(A)$. Since $M_C - \lambda$ is bounded below it follows from Theorem 1 that if $R(B - \lambda)$ is not closed then $\beta(A - \lambda) = \infty$, and if instead $R(B - \lambda)$ is closed then $\beta(A - \lambda) \ge \alpha(B - \lambda) > 0$, where the last inequality comes from the fact that $B - \lambda$ is not one-one since $B - \lambda$ is not bounded below. Therefore $\lambda \in \sigma_d(A)$. On the other hand, λ should be in one of the holes in $\sigma_{ap}(A)$: for if this were not so then by (13), $A - \lambda$ would be invertible, a contradiction. This proves (9) and (10). The equality (11) follows at once from (9) and (13).

Recall ([Pe, Definition 4.8]) that an operator $A \in \mathcal{L}(\mathcal{H})$ is quasitriangular if there exists a sequence $\{P_n\}_{n=1}^{\infty}$ of projections of finite rank in $\mathcal{L}(\mathcal{H})$ that converges strongly to the identity and satisfies $||P_nAP_n - AP_n|| \to 0$. Also recall that an operator $A \in \mathcal{L}(\mathcal{H})$ is called *left-Fredholm* if A has closed range and $\alpha(A) < \infty$ and *right-Fredholm* if A has closed range and $\beta(A) < \infty$. If A is both left- and right-Fredholm, we call it *Fredholm*. The *index*, ind A, of a left- or right-Fredholm operator A is defined by ind $A = \alpha(A) - \beta(A)$. If $A \in \mathcal{L}(\mathcal{H})$ then the left essential spectrum, $\sigma_e^+(A)$, the right essential spectrum, $\sigma_e^-(A)$, and the essential spectrum, $\sigma_e(A)$, of A are defined by

 $\sigma_e^+(A) = \{\lambda \in \mathbb{C} : A - \lambda \text{ is not left-Fredholm}\};\\ \sigma_e^-(A) = \{\lambda \in \mathbb{C} : A - \lambda \text{ is not right-Fredholm}\};\\ \sigma_e(A) = \{\lambda \in \mathbb{C} : A - \lambda \text{ is not Fredholm}\}.$

Recall ([Pe, Definition 1.22]) that the spectral picture of an operator $A \in \mathcal{L}(\mathcal{H})$, denoted $\mathcal{SP}(A)$, is the structure consisting of the set $\sigma_e(A)$, the collection of holes and pseudoholes in $\sigma_e(A)$, and the indices associated with these holes and pseudoholes, where a *hole* in $\sigma_e(A)$ is a nonempty bounded component of $\mathbb{C} \setminus \sigma_e(A)$ and a *pseudohole* in $\sigma_e(A)$ is a nonempty component of $\sigma_e(A) \setminus \sigma_e^+(A)$ or of $\sigma_e(A) \setminus \sigma_e^-(A)$. From the work of Apostol, Foias and Voiculescu ([Pe, Theorem 1.31]), we have that A is quasitriangular if and only if the spectral picture of A contains no hole or pseudohole associated with a negative number. We now have:

Corollary 4. If A is a quasitriangular operator (e.g., A is either compact or cohyponormal) then for every $B \in \mathcal{L}(\mathcal{K})$ and $C \in \mathcal{L}(\mathcal{K}, \mathcal{H})$,

$$\sigma_{ap}(M_C) = \sigma_{ap}(A) \cup \sigma_{ap}(B).$$

Proof. The inclusion \subseteq is the second inclusion in (12). For the reverse inclusion suppose $\lambda \in \sigma_{ap}(A) \cup \sigma_{ap}(B)$. If $\lambda \in (\sigma_{ap}(A) \cup \sigma_{ap}(B)) \setminus \sigma_{ap}(M_C)$ then by Theorem 2, $\lambda \in \sigma_d(A) \cap \sigma_{ap}(B)$ and $A - \lambda$ is bounded below. But since A is quasitriangular, we have that $\beta(A - \lambda) \leq \alpha(A - \lambda) = 0$. Therefore $A - \lambda$ is invertible, a contradiction. \Box

We conclude with three examples. We first recall the definition of Toeplitz operators on the Hardy space $H^2(\mathbb{T})$ of the unit circle $\mathbb{T} = \partial \mathbb{D}$ in the complex plane. Recall that the Hilbert space $L^2(\mathbb{T})$ has a canonical orthonormal basis given by the trigonometric functions $e_n(z) = z^n$, for all $n \in \mathbb{Z}$, and that the Hardy space $H^2(\mathbb{T})$ is the closed linear span of $\{e_n : n = 0, 1, \ldots\}$. Write $C(\mathbb{T})$ for the set of all continuous complex-valued functions on \mathbb{T} and $H^{\infty}(\mathbb{T}) := L^{\infty} \cap H^2$. If P denotes the orthogonal projection from $L^2(\mathbb{T})$ to $H^2(\mathbb{T})$, then for every $\varphi \in L^{\infty}(\mathbb{T})$ the operator T_{φ} defined by $T_{\varphi}g := P(\varphi g) \ (g \in H^2(\mathbb{T}))$ is called the *Toeplitz operator* with symbol φ . For the basic theory of Toeplitz operators, see [Do1], [Do2], [GGK1], [GGK2], and [Ni].

Example 1. One might expect that in Theorem 2, W is the union of certain of the holes in $\sigma_{ap}(M_C)$ together with the closure of some isolated points of $\sigma_{ap}(B)$. But this is not the case. To see this, let $\varphi \in H^{\infty}$ be an inner function (i.e., $|\varphi| = 1$ a.e.) with $\dim (\varphi H^2)^{\perp} = \infty$ (e.g., $\varphi(z) = \exp\left(\frac{z+\lambda}{z-\lambda}\right)$ with $|\lambda| = 1$), let ψ be any function in $C(\mathbb{T})$ with $||\psi||_{\infty} < 1$, and let J be an isometry from H^2 to $(\varphi H^2)^{\perp}$. Define

$$M_J := \begin{pmatrix} T_\varphi & J \\ 0 & T_\psi \end{pmatrix}.$$

Note that T_{φ} is a non-normal isometry and hence $\sigma_{ap}(T_{\varphi}) = \mathbb{T}$. Since $R(T_{\varphi}) \perp R(J)$, it follows that $||M_J\begin{pmatrix}x\\y\end{pmatrix}|| \geq ||\begin{pmatrix}x\\y\end{pmatrix}||$ for all $\begin{pmatrix}x\\y\end{pmatrix} \in H^2 \oplus H^2$, which says that M_J is bounded below. Observe

$$\gamma(M_J) = \inf_{\substack{||\binom{x_n}{y_n}||=1}} ||M_J\binom{x_n}{y_n}|| \ge 1.$$

Thus by [Go, Theorem V.1.6], we have that for all $|\lambda| < 1 \leq \gamma(M_J)$,

(i) $M_J - \lambda$ is semi-Fredholm;

(ii) $\alpha(M_J - \lambda) \le \alpha(M_J) = 0$,

which implies that $M_J - \lambda$ is bounded below for all $|\lambda| < 1$. But since $\sigma(T_{\psi})$ is contained in the polynomially–convex hull of the range of ψ , it follows from our assumption that $\sigma_{ap}(T_{\psi}) \subseteq \mathbb{D}$. Thus by Theorem 2 we have that $\sigma_{ap}(M_J) = \mathbb{T}$. Note that $\sigma_{ap}(T_{\psi})$ has disappeared in the passage from $\sigma_{ap}\begin{pmatrix} T_{\varphi} & 0\\ 0 & T_{\psi} \end{pmatrix}$ to $\sigma_{ap}(M_J)$.

Example 2. We need not expect a general information for removing in the passage from $\sigma_{ap}\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ to $\sigma_{ap}(M_C)$. To see this, let T_{φ} , T_{ψ} , and J be given as in Example 1. Also let ζ be a function in $C(\mathbb{T})$ such that $\sigma_{ap}(T_{\zeta})$ is a compact subset σ of $\sigma_{ap}(T_{\psi})$. We define, on $H^2 \oplus H^2$, $A := T_{\varphi} \oplus T_{\varphi}$, $B := T_{\psi} \oplus T_{\zeta}$, $C := J \oplus 0$ and in turn

$$M_C := \begin{pmatrix} T_{\varphi} & 0 & J & 0 \\ 0 & T_{\varphi} & 0 & 0 \\ 0 & 0 & T_{\psi} & 0 \\ 0 & 0 & 0 & T_{\zeta} \end{pmatrix}$$

A straightforward calculation shows

$$\sigma_{ap}\begin{pmatrix} A & 0\\ 0 & B \end{pmatrix} = \sigma_{ap}(A) \cup \sigma_{ap}(B) = \mathbb{T} \cup \sigma_{ap}(T_{\psi}).$$

On the other hand, M_C is unitarily equivalent to the operator

$$\left(\begin{array}{cc} T_{\varphi} & J \\ 0 & T_{\psi} \end{array}\right) \bigoplus \left(\begin{array}{cc} T_{\varphi} & 0 \\ 0 & T_{\zeta} \end{array}\right).$$

By Example 1 above, $\sigma_{ap} \begin{pmatrix} T_{\varphi} & J \\ 0 & T_{\psi} \end{pmatrix} = \mathbb{T}$. It therefore follows that

$$\sigma_{ap}(M_C) = \sigma_{ap} \begin{pmatrix} T_{\varphi} & J \\ 0 & T_{\psi} \end{pmatrix} \bigcup \sigma_{ap} \begin{pmatrix} T_{\varphi} & 0 \\ 0 & T_{\zeta} \end{pmatrix} = \mathbb{T} \cup \sigma.$$

Example 3. One might conjecture that if M_C is bounded below then R(B) is closed. But this is not the case. For example, in Example 1, take a function $\psi \in C(\mathbb{T})$ whose range includes 0, and consider M_C .

References

- [Ap] C. Apostol, The reduced minimum modulus, Michigan Math. J. **32** (1985), 279–294.
- [Do1] R.G. Douglas, Banach Algebra Techniques in Operator Theory, Academic press, New York, 1972.
- [Do2] R.G. Douglas, Banach Algebra Techniques in the Theory of Toeplitz Operators, CBMS 15, Providence: AMS, 1973.
- [DJ] H.K. Du and P. Jin, Perturbation of spectrums of 2 × 2 operator matrices, Proc. Amer. Math. Soc. 121 (1994), 761–776.
- [GGK1] I. Gohberg, S. Goldberg and M.A. Kaashoek, Classes of Linear Operators, Vol I, OT 49, Birkhäuser, Basel, 1990.
- [GGK2] I. Gohberg, S. Goldberg and M.A. Kaashoek, Classes of Linear Operators, Vol II, OT 63, Birkhäuser, Basel, 1993.
- [Go] S. Goldberg, Unbounded Linear Operators, McGraw-Hill, New York, 1966.
- [HLL] J.K. Han, H.Y. Lee and W.Y. Lee, Invertible completions of 2 × 2 upper triangular operator matrices, Proc. Amer. Math. Soc. 128 (2000), 119–123.
- [Ha1] R.E. Harte, Invertibility and Singularity for Bounded Linear Operators, Dekker, New York, 1988.
- [Ha2] R.E. Harte, The ghost of an index theorem, Proc. Amer. Math. Soc. 106 (1989), 1031–1033.
- [Ha3] R.E. Harte, The ghost of an index theorem II (preprint 1999).
- [Le] W.Y. Lee, Weyl's theorem for operator matrices, Int. Eq. Op. Th. 32 (1998), 319–331.
- [Ni] N.K. Nikolskii, Treatise on the Shift Operator, Springer, New York, 1986.
- [Pe] C.M. Pearcy, Some Recent Developments in Operator Theory, CBMS 36, Providence: AMS, 1978.

Department of Mathematics

Sungkyunkwan University

Suwon 440-746, Korea

E-mail: (In Sung Hwang) ishwang@math.skku.ac.kr

(Woo Young Lee) wylee@yurim.skku.ac.kr

1991 Mathematics Subject Classification. Primary 47A10, 47A55