THE BOUNDEDNESS BELOW OF 2×2 UPPER TRIANGULAR OPERATOR MATRICES

In Sung Hwang and Woo Young Lee ${ }^{1}$

When $A \in \mathcal{L}(\mathcal{H})$ and $B \in \mathcal{L}(\mathcal{K})$ are given we denote by M_{C} an operator acting on the Hilbert space $\mathcal{H} \oplus \mathcal{K}$ of the form

$$
M_{C}:=\left(\begin{array}{cc}
A & C \\
0 & B
\end{array}\right),
$$

where $C \in \mathcal{L}(\mathcal{K}, \mathcal{H})$. In this paper we characterize the boundedness below of M_{C}. Our characterization is as follows: M_{C} is bounded below for some $C \in \mathcal{L}(\mathcal{K}, \mathcal{H})$ if and only if A is bounded below and $\alpha(B) \leq \beta(A)$ if $R(B)$ is closed; $\beta(A)=\infty$ if $R(B)$ is not closed, where $\alpha(\cdot)$ and $\beta(\cdot)$ denote the nullity and the deficiency, respectively. In addition, we show that if $\sigma_{a p}(\cdot)$ and $\sigma_{d}(\cdot)$ denote the approximate point spectrum and the defect spectrum, respectively, then the passage from $\sigma_{a p}\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)$ to $\sigma_{a p}\left(M_{C}\right)$ can be described as follows:

$$
\sigma_{a p}\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right)=\sigma_{a p}\left(M_{C}\right) \cup W \quad \text { for every } C \in \mathcal{L}(\mathcal{K}, \mathcal{H}),
$$

where W lies in certain holes in $\sigma_{a p}(A)$, which happen to be subsets of $\sigma_{d}(A) \cap \sigma_{a p}(B)$.

1 Introduction

The study of upper triangular operator matrices arises naturally from the following fact: if T is a Hilbert space operator and \mathcal{H} is an invariant subspace for T then T has the following 2×2 upper triangular operator matrix representation:

$$
T=\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right): \mathcal{H} \oplus \mathcal{H}^{\perp} \longrightarrow \mathcal{H} \oplus \mathcal{H}^{\perp}
$$

and one way to study operators is to see them as entries of simpler operators. The upper triangular operator matrices (more generally, block operator matrices) have been studied

[^0]by numerous authors. This paper is concerned with the boundedness below of 2×2 upper triangular operator matrices.

Let \mathcal{H} and \mathcal{K} be infinite dimensional separable Hilbert spaces, let $\mathcal{L}(\mathcal{H}, \mathcal{K})$ denote the set of bounded linear operators from \mathcal{H} to \mathcal{K}, and abbreviate $\mathcal{L}(\mathcal{H}, \mathcal{H})$ to $\mathcal{L}(\mathcal{H})$. If $A \in \mathcal{L}(\mathcal{H})$ write $\sigma(A)$ for the spectrum of A. If $A \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ write $N(A)$ for the null space of $A ; R(A)$ for the range of $A ; \alpha(A)$ for the nullity of A, i.e., $\alpha(A):=\operatorname{dim} N(A) ; \beta(A)$ for the deficiency of A, i.e., $\beta(A):=\operatorname{dim} \overline{R(A)}^{\perp}$. Recall that an operator $A \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ is said to be bounded below if there exists $k>0$ for which $\|x\| \leq k\|A x\|$ for each $x \in \mathcal{H}$. If $A \in \mathcal{L}(\mathcal{H})$ then the approximate point spectrum, $\sigma_{a p}(A)$, and the defect spectrum, $\sigma_{d}(A)$, of A are defined by

$$
\begin{aligned}
\sigma_{a p}(A) & :=\{\lambda \in \mathbb{C}: A-\lambda \text { is not bounded below }\} \\
\sigma_{d}(A) & :=\{\lambda \in \mathbb{C}: A-\lambda \text { is not onto }\} .
\end{aligned}
$$

If \mathfrak{S} is a compact subset of \mathbb{C}, write int \mathfrak{S} for the interior points of \mathfrak{S}; iso \mathfrak{S} for the isolated points of \mathfrak{S}; acc \mathfrak{S} for the accumulation points of $\mathfrak{S} ; \partial \mathfrak{S}$ for the topological boundary of \mathfrak{S}. When $A \in \mathcal{L}(\mathcal{H})$ and $B \in \mathcal{L}(\mathcal{K})$ are given we denote by M_{C} an operator acting on $\mathcal{H} \oplus \mathcal{K}$ of the form

$$
M_{C}:=\left(\begin{array}{cc}
A & C \\
0 & B
\end{array}\right),
$$

where $C \in \mathcal{L}(\mathcal{K}, \mathcal{H})$. The invertibility, the spectrum and Weyl's theorem of M_{C} were considered in [DJ],[HLL], and [Le]. In this paper we characterize the boundedness below of M_{C}. Our characterization is as follows:

Theorem 1. An 2×2 operator matrix $M_{C}:=\left(\begin{array}{cc}A & C \\ 0 & B\end{array}\right)$ is bounded below for some $C \in$ $\mathcal{L}(\mathcal{K}, \mathcal{H})$ if and only if A is bounded below and

$$
\begin{cases}\alpha(B) \leq \beta(A) & \text { if } R(B) \text { is closed } \\ \beta(A)=\infty & \text { if } R(B) \text { is not closed. }\end{cases}
$$

In Section 1 we give the proof of Theorem 1. In Section 2 we give a description of the passage from $\sigma_{a p}\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)$ to $\sigma_{a p}\left(M_{C}\right)$.

1 Proof of Theorem 1

If $T \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ then the reduced minimum modulus of T is defined by (cf. [Ap])

$$
\gamma(T)=\left\{\begin{array}{cl}
\inf \{\|T x\|: \operatorname{dist}(x, N(T))=1\} & \text { if } T \neq 0 \\
0 & \text { if } T=0
\end{array}\right.
$$

Thus $\gamma(T)>0$ if and only if T has closed non-zero range (cf. [Ap],[Go]). If $T \in \mathcal{L}(\mathcal{H})$ is a non-zero operator then we can see $([\mathrm{Ap}])$ that $\gamma(T)=\inf (\sigma(|T|) \backslash\{0\})$, where $|T|$ denotes
$\left(T^{*} T\right)^{\frac{1}{2}}$. Thus we have that $\gamma(T)=\gamma\left(T^{*}\right)$. From the definition we can also see that if T is bounded below then $\|x\| \leq \frac{1}{\gamma(T)}\|T x\|$ for each $x \in \mathcal{H}$.

$$
\text { If } M_{C}:=\left(\begin{array}{cc}
A & C \\
0 & B
\end{array}\right) \text { write }
$$

$$
M_{C}=\left(\begin{array}{cc}
I & 0 \tag{1}\\
0 & B
\end{array}\right)\left(\begin{array}{cc}
I & C \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
A & 0 \\
0 & I
\end{array}\right) .
$$

Recall ([Ha1, Theorem 3.3.2]) that if $S \in \mathcal{L}(\mathcal{K}, \mathcal{H})$ and $T \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ then

$$
\begin{equation*}
S, T \text { bounded below } \Longrightarrow S T \text { bounded below } \Longrightarrow T \text { bounded below. } \tag{2}
\end{equation*}
$$

Since $\left(\begin{array}{ll}I & C \\ 0 & I\end{array}\right)$ is invertible for every $C \in \mathcal{L}(\mathcal{K}, \mathcal{H})$, applying (2) to (1) gives
A, B bounded below $\Longrightarrow M_{C}$ bounded below $\Longrightarrow A$ bounded below.

To prove Theorem 1 we establish an auxiliary lemma, which is a result of independent interest.

Lemma 1. Let $T \in \mathcal{L}(\mathcal{H})$ and $T \neq 0$. Then T satisfies one of the following two conditions:
(i) There exists a unit vector x in $N(T)^{\perp}$ such that $\|T x\|=\gamma(T)$;
(ii) There exists an orthonormal sequence $\left\{x_{n}\right\}$ in $N(T)^{\perp}$ such that $\left\|T x_{n}\right\| \rightarrow \gamma(T)$. In particular, if $R(T)$ is not closed then T must satisfy the condition (ii) with $\gamma(T)=0$.
Proof. Suppose $T \neq 0$ and write $\alpha:=\gamma(T)=\inf (\sigma(|T|) \backslash\{0\})$. Let E be the spectral measure on the Borel subsets of $\sigma(|T|)$ such that $|T|=\int z d E(z)$. There are two cases to consider.

Case 1: $\alpha \in \operatorname{acc}(\sigma(|T|) \backslash\{0\})$. In this case, there exists a strictly decreasing sequence $\left\{\alpha_{n}\right\}$ of elements in $\sigma(|T|) \backslash\{0\}$ such that $\alpha_{n} \rightarrow \alpha$. Since the α_{n} 's are distinct, there exists a sequence $\left\{U_{n}\right\}$ of mutually disjoint open intervals such that $\alpha_{n} \in U_{n}$ for all $n \in \mathbb{Z}^{+}$. Define $F_{n}:=U_{n} \cap \sigma(|T|)\left(n \in \mathbb{Z}^{+}\right)$. Then the F_{n} 's are nonempty relatively open subsets of $\sigma(|T|)$. Thus $E\left(F_{n}\right) \mathcal{H} \neq\{0\}$ for each $n \in \mathbb{Z}^{+}$. For each $n \in \mathbb{Z}^{+}$, choose a unit vector x_{n} in $E\left(F_{n}\right) \mathcal{H}$. Since the F_{n} 's are mutually disjoint, it follows that $\left\{x_{n}\right\}$ is an orthonormal sequence. We will show that $x_{n} \in N(T)^{\perp}\left(n \in \mathbb{Z}^{+}\right)$. If $|T|$ is invertible then $N(T)^{\perp}=N(|T|)^{\perp}=\mathcal{H}$, so evidently, $x_{n} \in N(T)^{\perp}$. Now suppose $|T|$ is not invertible. Since $|T|$ is a normal operator, $|T|$ is unitarily equivalent to a multiplication operator M_{φ}. But since our argument below depends only on the inner product, we may assume without loss of generality that $|T|$ is a multiplication operator. Let $|T|:=M_{\varphi}$. If $F_{0}:=\{0\}$ then $E\left(F_{0}\right)$ is the multiplication by $\chi_{\varphi^{-1}(0)}$. Thus if $f \in N(|T|)$ then $\varphi f=0$ and hence

$$
\left(\chi_{\varphi^{-1}(0)} f\right)(x)= \begin{cases}0 & \text { if } f(x)=0 \\ f(x) & \text { if } f(x) \neq 0\end{cases}
$$

which shows that $E\left(F_{0}\right) f=f$. Therefore if $f \in N(|T|)$ then for each $n \in \mathbb{Z}^{+}$,

$$
\left(f, x_{n}\right)=\left(E\left(F_{0}\right) f, E\left(F_{n}\right) x_{n}\right)=\left(f, E\left(F_{0} \cap F_{n}\right) x_{n}\right)=(f, 0)=0,
$$

which shows that $x_{n} \in N(|T|)^{\perp}$ for all $n \in \mathbb{Z}^{+}$. It thus follows that $x_{n} \in N(T)^{\perp}$. On the other hand, for each $n \geq 2$,

$$
\begin{aligned}
\left\|T x_{n}\right\|^{2} & =\left(T^{*} T x_{n}, x_{n}\right) \leq\left\|\left.\left(T^{*} T\right)\right|_{E\left(F_{n}\right) \mathcal{H}}\right\|=r\left(\left.\left(T^{*} T\right)\right|_{E\left(F_{n}\right) \mathcal{H}}\right) \\
& \leq\left(\sup F_{n}\right)^{2} \leq\left(\sup U_{n}\right)^{2} \leq \alpha_{n-1}^{2}
\end{aligned}
$$

where $r(\cdot)$ denotes the spectral radius. Therefore we have that $\alpha \leq\left\|T x_{n}\right\| \leq \alpha_{n-1}(n \geq 2)$, which implies that $\left\|T x_{n}\right\| \rightarrow \alpha=\gamma(T)$.

Case 2: $\alpha \in$ iso $(\sigma(|T|) \backslash\{0\})$. Let $\mathfrak{L}:=E(\{\alpha\})$ and $\mathfrak{M}:=E(\sigma(|T|) \backslash\{\alpha\})$. Then \mathcal{H} can be decomposed as $\mathcal{H}=\mathfrak{L} \oplus \mathfrak{M}$, where \mathfrak{L} and \mathfrak{M} are $|T|$-invariant subspaces, $\sigma\left(\left.|T|\right|_{\mathfrak{L}}\right)=$ $\{\alpha\}$ and $\sigma\left(\left.|T|\right|_{\mathfrak{M}}\right)=\sigma(|T|) \backslash\{\alpha\}$: more precisely, we can write

$$
|T|=\left(\begin{array}{cc}
\alpha & 0 \\
0 & \left.|T|\right|_{\mathfrak{M}}
\end{array}\right): \mathfrak{L} \oplus \mathfrak{M} \longrightarrow \mathfrak{L} \oplus \mathfrak{M} .
$$

But since $\|T x\|=\||T| x\|$ for all $x \in \mathcal{H}$, it follows that for every unit vector x_{0} in \mathfrak{L}, $\left\|T x_{0}\right\|=\left\||T| x_{0}\right\|=\left\|\alpha x_{0}\right\|=\alpha$.

For the second assertion suppose $\gamma(T)=0$ and $T \neq 0$. If T satisfies the condition (i) then there exists a unit vector $x \in N(T)^{\perp}$ such that $T x=0$, giving a contradiction. This shows that T must satisfy the condition (ii).

Proof of Theorem 1. We first claim that if A is bounded below and $R(B)$ is closed, then

$$
\begin{equation*}
\alpha(B) \leq \beta(A) \Longleftrightarrow M_{C} \text { is bounded below for some } C \in \mathcal{L}(\mathcal{K}, \mathcal{H}) \tag{4}
\end{equation*}
$$

To show this suppose $\alpha(B) \leq \beta(A)$. Since $\operatorname{dim} N(B) \leq \operatorname{dim} R(A)^{\perp}$, there exists a isometry $J: N(B) \rightarrow R(A)^{\perp}$. Define an operator $C: \mathcal{K} \rightarrow \mathcal{H}$ by

$$
C:=\left(\begin{array}{ll}
J & 0 \\
0 & 0
\end{array}\right):\binom{N(B)}{N(B)^{\perp}} \rightarrow\binom{R(A)^{\perp}}{R(A)} .
$$

Then M_{C} is one-one. Assume to the contrary that M_{C} is not bounded below. Then there exists a sequence $\binom{x_{n}}{y_{n}}$ of unit vectors in $\mathcal{H} \oplus \mathcal{K}$ for which

$$
\left(\begin{array}{cc}
A & C \\
0 & B
\end{array}\right)\binom{x_{n}}{y_{n}}=\binom{A x_{n}+C y_{n}}{B y_{n}} \longrightarrow 0
$$

Write $y_{n}:=\alpha_{n}+\beta_{n}$ for $n \in \mathbb{Z}^{+}$, where $\alpha_{n} \in N(B)$ and $\beta_{n} \in N(B)^{\perp}$. Since $\gamma(B)>0$ and $B y_{n} \rightarrow 0$, it follows that $\beta_{n} \rightarrow 0$. Also by the definition of $C, C y_{n}=C\left(\alpha_{n}+\beta_{n}\right)=$ $C \alpha_{n} \rightarrow 0$ and hence $\alpha_{n} \rightarrow 0$. Therefore $y_{n} \rightarrow 0$ and $\left\|x_{n}\right\| \rightarrow 1$. But since $A x_{n} \rightarrow 0$, it follows that A is not bounded below, giving a contradiction. This proves that M_{C} is bounded below.

Conversely, suppose M_{C} is bounded below for some $C \in \mathcal{L}(\mathcal{K}, \mathcal{H})$. Write M_{C} as in (1). Since $\left(\begin{array}{ll}I & 0 \\ 0 & B\end{array}\right)\left(\begin{array}{ll}I & C \\ 0 & I\end{array}\right)$ and $\left(\begin{array}{cc}A & 0 \\ 0 & I\end{array}\right)$ have closed ranges, it follows from an index theorem of R. Harte [Ha2],[Ha3] that

$$
\begin{aligned}
N\left(\begin{array}{cc}
A & 0 \\
0 & I
\end{array}\right) & \bigoplus N\left(\left(\begin{array}{ll}
I & 0 \\
0 & B
\end{array}\right)\left(\begin{array}{ll}
I & C \\
0 & I
\end{array}\right)\right) \bigoplus R\left(M_{C}\right)^{\perp} \\
& \cong N\left(M_{C}\right) \bigoplus R\left(\left(\begin{array}{cc}
A & 0 \\
0 & I
\end{array}\right)\right)^{\perp} \bigoplus R\left(\left(\begin{array}{ll}
I & 0 \\
0 & B
\end{array}\right)\left(\begin{array}{cc}
I & C \\
0 & I
\end{array}\right)\right)^{\perp},
\end{aligned}
$$

which implies that $\alpha(B)+\beta\left(M_{C}\right)=\beta(A)+\beta\left(\left(\begin{array}{cc}I & 0 \\ 0 & B\end{array}\right)\left(\begin{array}{cc}I & C \\ 0 & I\end{array}\right)\right)$. Since

$$
\beta\left(M_{C}\right) \geq \beta\left(\left(\begin{array}{ll}
I & 0 \\
0 & B
\end{array}\right)\left(\begin{array}{ll}
I & C \\
0 & I
\end{array}\right)\right),
$$

it follows that $\alpha(B) \leq \beta(A)$. This proves (4). We next claim that if A is bounded below and $R(B)$ is not closed, then

$$
\begin{equation*}
\beta(A)=\infty \Longleftrightarrow M_{C} \text { is bounded below for some } C \in \mathcal{L}(\mathcal{K}, \mathcal{H}) . \tag{5}
\end{equation*}
$$

To show this suppose $\beta(A)=\infty$. Then with no restriction on $R(B), M_{C}$ is bounded below for some $C \in \mathcal{L}(\mathcal{K}, \mathcal{H})$. To see this, observe $\operatorname{dim} R(A)^{\perp}=\infty$, so there exists an isomorphism $C_{0}: \mathcal{K} \rightarrow R(A)^{\perp}$. Define an operator $C: \mathcal{K} \rightarrow \mathcal{H}$ by

$$
C:=\left(\begin{array}{ll}
C_{0} & 0
\end{array}\right): \mathcal{K} \rightarrow\binom{R(A)^{\perp}}{R(A)} .
$$

Then a straightforward calculation shows that M_{C} is one-one and

$$
\begin{aligned}
\gamma\left(M_{C}\right) & =\inf _{\|x\|^{2}+\|y\|^{2}=1}\left\|\binom{A x+C y}{B y}\right\| \\
& \geq \inf _{\|x\|^{2}+\|y\|^{2}=1}\left(\|A x\|^{2}+\|C y\|^{2}\right)^{\frac{1}{2}} \\
& \geq \inf _{\|x\|^{2}+\|y\|^{2}=1}\left(\gamma(A)^{2}\|x\|^{2}+\|y\|^{2}\right)^{\frac{1}{2}} \\
& \geq \min \{1, \gamma(A)\}>0
\end{aligned}
$$

which implies that M_{C} is bounded below. For the converse, assume $\beta(A)=N<\infty$. Since $R(B)$ is not closed it follows from Lemma 1 that there exists an orthonormal sequence $\left\{y_{n}\right\}$ in $N(B)^{\perp}$ such that $B y_{n} \rightarrow 0$. But since M_{C} is bounded below we have

$$
\inf _{\|x\|^{2}+\|y\|^{2}=1}\left\|\left(\begin{array}{cc}
A & C \\
0 & B
\end{array}\right)\binom{x}{y}\right\|=\inf _{\|x\|^{2}+\|y\|^{2}=1}\left\|\binom{A x+C y}{B y}\right\|>0 .
$$

We now argue that there exist $\epsilon>0$ and a subsequence $\left\{y_{n_{k}}\right\}$ of $\left\{y_{n}\right\}$ for which

$$
\begin{equation*}
\operatorname{dist}\left(R(A), C y_{n_{k}}\right)>\epsilon \quad \text { for all } k \in \mathbb{Z}^{+} . \tag{6}
\end{equation*}
$$

Indeed, assume to the contrary that dist $\left(R(A), C y_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Thus there exists a sequence $\left\{x_{n}\right\}$ in \mathcal{H} such that $\operatorname{dist}\left(A x_{n}, C y_{n}\right) \rightarrow 0$. Let $z_{n}:=\left\|\binom{x_{n}}{y_{n}}\right\|^{-1} x_{n}$ and $w_{n}:=\left\|\binom{x_{n}}{y_{n}}\right\|^{-1}\left(-y_{n}\right)$. Then $\left\|\binom{z_{n}}{w_{n}}\right\|=1$ and $\left\|\left(\begin{array}{cc}A & C \\ 0 & B\end{array}\right)\binom{z_{n}}{w_{n}}\right\|=\left\|\binom{A z_{n}+C w_{n}}{B w_{n}}\right\| \longrightarrow$ 0 , giving a contradiction. This proves (6). There is no loss in simplifying the notation and assuming that

$$
\begin{equation*}
\operatorname{dist}\left(R(A), C y_{n}\right)>\epsilon \quad \text { for all } n \in \mathbb{Z}^{+} \tag{7}
\end{equation*}
$$

Since $\beta(A)=N$, there exists an orthonormal basis $\left\{e_{1}, \cdots, e_{N}\right\}$ for $R(A)^{\perp}$. Let P_{m} be the projection from \mathcal{H} to $\vee\left\{e_{m}\right\}$ for $m=1, \cdots, N$, where $\vee(\cdot)$ denotes the closed linear span. If we let $C y_{n}:=\alpha_{n}+\beta_{n}\left(n \in \mathbb{Z}^{+}\right)$, where $\alpha_{n} \in R(A)$ and $\beta_{n} \in R(A)^{\perp}$, then by (7), $\left\|\beta_{n}\right\|>\epsilon$ for all $n \in \mathbb{Z}^{+}$. Observe that $\sum_{n=1}^{\infty}\left\|\frac{1}{n} \beta_{n}\right\|=\infty$ and hence $\left\|\sum_{n=1}^{\infty} P_{m_{0}}\left(\frac{1}{n} \beta_{n} e^{i \theta_{n}}\right)\right\|=\infty$ for some $m_{0} \in\{1, \cdots, N\}$ and for some $\theta_{n} \in[0,2 \pi)\left(n \in \mathbb{Z}^{+}\right)$. Now if we write $y:=\sum_{n=1}^{\infty} \frac{1}{n} y_{n} e^{i \theta_{n}}$, then $\|y\|^{2}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty$ and hence $y \in \mathcal{K}$. But

$$
\|C y\| \geq\left\|P_{m_{0}}(C y)\right\|=\left\|\sum_{n=1}^{\infty} P_{m_{0}} C\left(\frac{1}{n} y_{n} e^{i \theta_{n}}\right)\right\|=\left\|\sum_{n=1}^{\infty} P_{m_{0}}\left(\frac{1}{n} \beta_{n} e^{i \theta_{n}}\right)\right\|=\infty
$$

giving a contradiction. Therefore we must have that $\beta(A)=\infty$. This proves (5). Now Theorem 1 follows from (3), (4) and (5).

The following corollary is immediate from Theorem 1.
Corollary 1. For a given pair (A, B) of operators we have

$$
\bigcap_{C \in \mathcal{L}(\mathcal{K}, \mathcal{H})} \sigma_{a p}\left(M_{C}\right)=\sigma_{a p}(A) \bigcup\{\lambda \in \mathbb{C}: R(B-\lambda) \text { is closed and } \beta(A-\lambda)<\alpha(B-\lambda)\}
$$

$$
\bigcup\{\lambda \in \mathbb{C}: R(B-\lambda) \text { is not closed and } \beta(A-\lambda)<\infty\}
$$

The following is the dual statement of Corollary 1.
Corollary 2. For a given pair (A, B) of operators we have

$$
\begin{gathered}
\bigcap_{C \in \mathcal{L}(\mathcal{K}, \mathcal{H})} \sigma_{d}\left(M_{C}\right)=\sigma_{d}(B) \bigcup\{\lambda \in \mathbb{C}: R(A-\lambda) \text { is closed and } \alpha(B-\lambda)<\beta(A-\lambda)\} \\
\bigcup\{\lambda \in \mathbb{C}: R(A-\lambda) \text { is not closed and } \alpha(B-\lambda)<\infty\}
\end{gathered}
$$

Combining Corollaries 1 and 2 gives:

Corollary 3 ([DJ, Theorem 2]). For a given pair (A, B) of operators we have

$$
\bigcap_{C \in \mathcal{L}(\mathcal{K}, \mathcal{H})} \sigma\left(M_{C}\right)=\sigma_{a p}(A) \bigcup \sigma_{d}(B) \bigcup\{\lambda \in \mathbb{C}: \alpha(B-\lambda) \neq \beta(A-\lambda)\}
$$

Remark. In many applications, the entries of block operator matrices are unbounded operators. Section 1 deals only with the bounded case. We expect that an analogue of Theorem 1 holds for the unbounded case.

2 The passage from $\sigma_{a p}\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)$ to $\sigma_{a p}\left(M_{C}\right)$
In [HLL], it was shown that the passage from $\sigma\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)$ to $\sigma\left(M_{C}\right)$ is accomplished by removing certain open subsets of $\sigma(A) \cap \sigma(B)$ from the former, that is, there is equality

$$
\sigma\left(\begin{array}{cc}
A & 0 \tag{8}\\
0 & B
\end{array}\right)=\sigma\left(M_{C}\right) \cup W,
$$

where W is the union of certain of the holes in $\sigma\left(M_{C}\right)$ which happen to be subsets of $\sigma(A) \cap \sigma(B)$. However we need not expect the case for the approximate point spectrum (see Examples 1 and 2 below). The passage from $\sigma_{a p}\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)$ to $\sigma_{a p}\left(M_{C}\right)$ is more delicate.
Theorem 2. For a given pair (A, B) of operators we have that for every $C \in \mathcal{L}(\mathcal{K}, \mathcal{H})$,

$$
\begin{equation*}
\eta\left(\sigma_{a p}(A) \cup \sigma_{a p}(B)\right)=\eta\left(\sigma_{a p}\left(M_{C}\right)\right) \tag{9}
\end{equation*}
$$

where $\eta(\cdot)$ denotes the "polynomially-convex hull". More precisely,

$$
\sigma_{a p}\left(\begin{array}{cc}
A & 0 \tag{10}\\
0 & B
\end{array}\right)=\sigma_{a p}\left(M_{C}\right) \cup W,
$$

where W lies in certain holes in $\sigma_{a p}(A)$, which happen to be subsets of $\sigma_{d}(A) \cap \sigma_{a p}(B)$. Hence, in particular, $r_{a p}\left(M_{C}\right)$ is a constant, and furthermore for every $C \in \mathcal{L}(\mathcal{K}, \mathcal{H})$,

$$
r\left(\begin{array}{cc}
A & C \tag{11}\\
0 & B
\end{array}\right)=r\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right)=r_{a p}\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right)=r_{a p}\left(\begin{array}{cc}
A & C \\
0 & B
\end{array}\right),
$$

where $r(\cdot)$ and $r_{\text {ap }}(\cdot)$ denote the spectral radius and the "approximate point spectral radius". Proof. First, observe that for a given pair (A, B) of operators we have that for every $C \in \mathcal{L}(\mathcal{K}, \mathcal{H})$,

$$
\sigma_{a p}(A) \subseteq \sigma_{a p}\left(M_{C}\right) \subseteq \sigma_{a p}(A) \cup \sigma_{a p}(B)=\sigma_{a p}\left(\begin{array}{cc}
A & 0 \tag{12}\\
0 & B
\end{array}\right):
$$

the first and the second inclusions follow from (3) and the last equality is obvious. We now claim that for every $T \in \mathcal{L}(\mathcal{H})$,

$$
\begin{equation*}
\eta(\sigma(T))=\eta\left(\sigma_{a p}(T)\right) \tag{13}
\end{equation*}
$$

Indeed since int $\sigma_{a p}(T) \subseteq \operatorname{int} \sigma(T)$ and $\partial \sigma(T) \subseteq \sigma_{a p}(T)$, we have that $\partial \sigma(T) \subseteq \partial \sigma_{a p}(T)$, which implies that the passage from $\sigma_{a p}(T)$ to $\sigma(T)$ is filling in certain holes in $\sigma_{a p}(T)$, proving (13). Now suppose $\lambda \in\left(\sigma_{a p}(A) \cup \sigma_{a p}(B)\right) \backslash \sigma_{a p}\left(M_{C}\right)$. Thus by (12), $\lambda \in \sigma_{a p}(B) \backslash$ $\sigma_{a p}(A)$. Since $M_{C}-\lambda$ is bounded below it follows from Theorem 1 that if $R(B-\lambda)$ is not closed then $\beta(A-\lambda)=\infty$, and if instead $R(B-\lambda)$ is closed then $\beta(A-\lambda) \geq \alpha(B-\lambda)>0$, where the last inequality comes from the fact that $B-\lambda$ is not one-one since $B-\lambda$ is not bounded below. Therefore $\lambda \in \sigma_{d}(A)$. On the other hand, λ should be in one of the holes in $\sigma_{a p}(A)$: for if this were not so then by (13), $A-\lambda$ would be invertible, a contradiction. This proves (9) and (10). The equality (11) follows at once from (9) and (13).

Recall ([Pe, Definition 4.8]) that an operator $A \in \mathcal{L}(\mathcal{H})$ is quasitriangular if there exists a sequence $\left\{P_{n}\right\}_{n=1}^{\infty}$ of projections of finite rank in $\mathcal{L}(\mathcal{H})$ that converges strongly to the identity and satisfies $\left\|P_{n} A P_{n}-A P_{n}\right\| \rightarrow 0$. Also recall that an operator $A \in \mathcal{L}(\mathcal{H})$ is called left-Fredholm if A has closed range and $\alpha(A)<\infty$ and right-Fredholm if A has closed range and $\beta(A)<\infty$. If A is both left- and right-Fredholm, we call it Fredholm. The index, ind A, of a left- or right-Fredholm operator A is defined by ind $A=\alpha(A)-\beta(A)$. If $A \in \mathcal{L}(\mathcal{H})$ then the left essential spectrum, $\sigma_{e}^{+}(A)$, the right essential spectrum, $\sigma_{e}^{-}(A)$, and the essential spectrum, $\sigma_{e}(A)$, of A are defined by

$$
\begin{aligned}
\sigma_{e}^{+}(A) & =\{\lambda \in \mathbb{C}: A-\lambda \text { is not left-Fredholm }\} \\
\sigma_{e}^{-}(A) & =\{\lambda \in \mathbb{C}: A-\lambda \text { is not right-Fredholm }\} \\
\sigma_{e}(A) & =\{\lambda \in \mathbb{C}: A-\lambda \text { is not Fredholm }\}
\end{aligned}
$$

Recall ([Pe, Definition 1.22]) that the spectral picture of an operator $A \in \mathcal{L}(\mathcal{H})$, denoted $\mathcal{S P}(A)$, is the structure consisting of the set $\sigma_{e}(A)$, the collection of holes and pseudoholes in $\sigma_{e}(A)$, and the indices associated with these holes and pseudoholes, where a hole in $\sigma_{e}(A)$ is a nonempty bounded component of $\mathbb{C} \backslash \sigma_{e}(A)$ and a pseudohole in $\sigma_{e}(A)$ is a nonempty component of $\sigma_{e}(A) \backslash \sigma_{e}^{+}(A)$ or of $\sigma_{e}(A) \backslash \sigma_{e}^{-}(A)$. From the work of Apostol, Foias and Voiculescu ([Pe, Theorem 1.31]), we have that A is quasitriangular if and only if the spectral picture of A contains no hole or pseudohole associated with a negative number. We now have:

Corollary 4. If A is a quasitriangular operator (e.g., A is either compact or cohyponormal) then for every $B \in \mathcal{L}(\mathcal{K})$ and $C \in \mathcal{L}(\mathcal{K}, \mathcal{H})$,

$$
\sigma_{a p}\left(M_{C}\right)=\sigma_{a p}(A) \cup \sigma_{a p}(B)
$$

Proof. The inclusion \subseteq is the second inclusion in (12). For the reverse inclusion suppose $\lambda \in \sigma_{a p}(A) \cup \sigma_{a p}(B)$. If $\lambda \in\left(\sigma_{a p}(A) \cup \sigma_{a p}(B)\right) \backslash \sigma_{a p}\left(M_{C}\right)$ then by Theorem $2, \lambda \in$ $\sigma_{d}(A) \cap \sigma_{a p}(B)$ and $A-\lambda$ is bounded below. But since A is quasitriangular, we have that $\beta(A-\lambda) \leq \alpha(A-\lambda)=0$. Therefore $A-\lambda$ is invertible, a contradiction.

We conclude with three examples. We first recall the definition of Toeplitz operators on the Hardy space $H^{2}(\mathbb{T})$ of the unit circle $\mathbb{T}=\partial \mathbb{D}$ in the complex plane. Recall that the

Hilbert space $L^{2}(\mathbb{T})$ has a canonical orthonormal basis given by the trigonometric functions $e_{n}(z)=z^{n}$, for all $n \in \mathbb{Z}$, and that the Hardy space $H^{2}(\mathbb{T})$ is the closed linear span of $\left\{e_{n}: n=0,1, \ldots\right\}$. Write $C(\mathbb{T})$ for the set of all continuous complex-valued functions on \mathbb{T} and $H^{\infty}(\mathbb{T}):=L^{\infty} \cap H^{2}$. If P denotes the orthogonal projection from $L^{2}(\mathbb{T})$ to $H^{2}(\mathbb{T})$, then for every $\varphi \in L^{\infty}(\mathbb{T})$ the operator T_{φ} defined by $T_{\varphi} g:=P(\varphi g)\left(g \in H^{2}(\mathbb{T})\right)$ is called the Toeplitz operator with symbol φ. For the basic theory of Toeplitz operators, see [Do1], [Do2], [GGK1], [GGK2], and [Ni].
Example 1. One might expect that in Theorem 2, W is the union of certain of the holes in $\sigma_{a p}\left(M_{C}\right)$ together with the closure of some isolated points of $\sigma_{a p}(B)$. But this is not the case. To see this, let $\varphi \in H^{\infty}$ be an inner function (i.e., $|\varphi|=1$ a.e.) with $\operatorname{dim}\left(\varphi H^{2}\right)^{\perp}=\infty$ (e.g., $\varphi(z)=\exp \left(\frac{z+\lambda}{z-\lambda}\right)$ with $|\lambda|=1$), let ψ be any function in $C(\mathbb{T})$ with $\|\psi\|_{\infty}<1$, and let J be an isometry from H^{2} to $\left(\varphi H^{2}\right)^{\perp}$. Define

$$
M_{J}:=\left(\begin{array}{cc}
T_{\varphi} & J \\
0 & T_{\psi}
\end{array}\right) .
$$

Note that T_{φ} is a non-normal isometry and hence $\sigma_{a p}\left(T_{\varphi}\right)=\mathbb{T}$. Since $R\left(T_{\varphi}\right) \perp R(J)$, it follows that $\left\|M_{J}\binom{x}{y}\right\| \geq\left\|\binom{x}{y}\right\|$ for all $\binom{x}{y} \in H^{2} \oplus H^{2}$, which says that M_{J} is bounded below. Observe

$$
\gamma\left(M_{J}\right)=\inf _{\left\|\binom{x_{n}}{y_{n}}\right\|=1}\left\|M_{J}\binom{x_{n}}{y_{n}}\right\| \geq 1 .
$$

Thus by [Go, Theorem V.1.6], we have that for all $|\lambda|<1\left(\leq \gamma\left(M_{J}\right)\right)$,
(i) $M_{J}-\lambda$ is semi-Fredholm;
(ii) $\alpha\left(M_{J}-\lambda\right) \leq \alpha\left(M_{J}\right)=0$,
which implies that $M_{J}-\lambda$ is bounded below for all $|\lambda|<1$. But since $\sigma\left(T_{\psi}\right)$ is contained in the polynomially-convex hull of the range of ψ, it follows from our assumption that $\sigma_{a p}\left(T_{\psi}\right) \subseteq \mathbb{D}$. Thus by Theorem 2 we have that $\sigma_{a p}\left(M_{J}\right)=\mathbb{T}$. Note that $\sigma_{a p}\left(T_{\psi}\right)$ has disappeared in the passage from $\sigma_{a p}\left(\begin{array}{cc}T_{\varphi} & 0 \\ 0 & T_{\psi}\end{array}\right)$ to $\sigma_{a p}\left(M_{J}\right)$.

Example 2. We need not expect a general information for removing in the passage from $\sigma_{a p}\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)$ to $\sigma_{a p}\left(M_{C}\right)$. To see this, let T_{φ}, T_{ψ}, and J be given as in Example 1. Also let ζ be a function in $C(\mathbb{T})$ such that $\sigma_{a p}\left(T_{\zeta}\right)$ is a compact subset σ of $\sigma_{a p}\left(T_{\psi}\right)$. We define, on $H^{2} \oplus H^{2}, A:=T_{\varphi} \oplus T_{\varphi}, B:=T_{\psi} \oplus T_{\zeta}, C:=J \oplus 0$ and in turn

$$
M_{C}:=\left(\begin{array}{cccc}
T_{\varphi} & 0 & J & 0 \\
0 & T_{\varphi} & 0 & 0 \\
0 & 0 & T_{\psi} & 0 \\
0 & 0 & 0 & T_{\zeta}
\end{array}\right) .
$$

A straightforward calculation shows

$$
\sigma_{a p}\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right)=\sigma_{a p}(A) \cup \sigma_{a p}(B)=\mathbb{T} \cup \sigma_{a p}\left(T_{\psi}\right) .
$$

On the other hand, M_{C} is unitarily equivalent to the operator

$$
\left(\begin{array}{cc}
T_{\varphi} & J \\
0 & T_{\psi}
\end{array}\right) \bigoplus\left(\begin{array}{cc}
T_{\varphi} & 0 \\
0 & T_{\zeta}
\end{array}\right)
$$

By Example 1 above, $\sigma_{a p}\left(\begin{array}{cc}T_{\varphi} & J \\ 0 & T_{\psi}\end{array}\right)=\mathbb{T}$. It therefore follows that

$$
\sigma_{a p}\left(M_{C}\right)=\sigma_{a p}\left(\begin{array}{cc}
T_{\varphi} & J \\
0 & T_{\psi}
\end{array}\right) \bigcup \sigma_{a p}\left(\begin{array}{cc}
T_{\varphi} & 0 \\
0 & T_{\zeta}
\end{array}\right)=\mathbb{T} \cup \sigma .
$$

Example 3. One might conjecture that if M_{C} is bounded below then $R(B)$ is closed. But this is not the case. For example, in Example 1, take a function $\psi \in C(\mathbb{T})$ whose range includes 0 , and consider M_{C}.

References

[Ap] C. Apostol, The reduced minimum modulus, Michigan Math. J. 32 (1985), 279-294.
[Do1] R.G. Douglas, Banach Algebra Techniques in Operator Theory, Academic press, New York, 1972.
[Do2] R.G. Douglas, Banach Algebra Techniques in the Theory of Toeplitz Operators, CBMS 15, Providence: AMS, 1973.
[DJ] H.K. Du and P. Jin, Perturbation of spectrums of 2×2 operator matrices, Proc. Amer. Math. Soc. 121 (1994), 761-776.
[GGK1] I. Gohberg, S. Goldberg and M.A. Kaashoek, Classes of Linear Operators, Vol I, OT 49, Birkhäuser, Basel, 1990.
[GGK2] I. Gohberg, S. Goldberg and M.A. Kaashoek, Classes of Linear Operators, Vol II, OT 63, Birkhäuser, Basel, 1993.
[Go] S. Goldberg, Unbounded Linear Operators, McGraw-Hill, New York, 1966.
[HLL] J.K. Han, H.Y. Lee and W.Y. Lee, Invertible completions of 2×2 upper triangular operator matrices, Proc. Amer. Math. Soc. 128 (2000), 119-123.
[Ha1] R.E. Harte, Invertibility and Singularity for Bounded Linear Operators, Dekker, New York, 1988.
[Ha2] R.E. Harte, The ghost of an index theorem, Proc. Amer. Math. Soc. 106 (1989), 1031-1033.
[Ha3] R.E. Harte, The ghost of an index theorem II (preprint 1999).
[Le] W.Y. Lee, Weyl's theorem for operator matrices, Int. Eq. Op. Th. 32 (1998), 319-331.
[Ni] N.K. Nikolskii, Treatise on the Shift Operator, Springer, New York, 1986.
[Pe] C.M. Pearcy, Some Recent Developments in Operator Theory, CBMS 36, Providence:AMS, 1978.

Department of Mathematics
Sungkyunkwan University
Suwon 440-746, Korea
E-mail: (In Sung Hwang) ishwang@math.skku.ac.kr
(Woo Young Lee) wylee@yurim.skku.ac.kr
1991 Mathematics Subject Classification. Primary 47A10, 47A55

[^0]: ${ }^{1}$ Supported in part by the KOSEF through the GARC at Seoul National University and the BSRI-1998-015-D00028.

