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When A ∈ L(H) and B ∈ L(K) are given we denote by MC an operator acting on the Hilbert
space H⊕K of the form

MC :=
(

A C
0 B

)
,

where C ∈ L(K,H). In this paper we characterize the boundedness below of MC . Our
characterization is as follows: MC is bounded below for some C ∈ L(K,H) if and only if
A is bounded below and α(B) ≤ β(A) if R(B) is closed; β(A) = ∞ if R(B) is not closed,

where α(·) and β(·) denote the nullity and the deficiency, respectively. In addition, we show
that if σap(·) and σd(·) denote the approximate point spectrum and the defect spectrum,

respectively, then the passage from σap

(
A 0
0 B

)
to σap(MC) can be described as follows:

σap

(
A 0
0 B

)
= σap(MC) ∪ W for every C ∈ L(K,H),

where W lies in certain holes in σap(A), which happen to be subsets of σd(A) ∩ σap(B).

1 Introduction

The study of upper triangular operator matrices arises naturally from the following fact: if
T is a Hilbert space operator and H is an invariant subspace for T then T has the following
2× 2 upper triangular operator matrix representation:

T =

(
∗ ∗
0 ∗

)
: H⊕H⊥ −→ H⊕H⊥,

and one way to study operators is to see them as entries of simpler operators. The upper
triangular operator matrices (more generally, block operator matrices) have been studied
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by numerous authors. This paper is concerned with the boundedness below of 2× 2 upper
triangular operator matrices.

Let H and K be infinite dimensional separable Hilbert spaces, let L(H,K) denote
the set of bounded linear operators from H to K, and abbreviate L(H,H) to L(H). If
A ∈ L(H) write σ(A) for the spectrum of A. If A ∈ L(H,K) write N(A) for the null space
of A; R(A) for the range of A; α(A) for the nullity of A, i.e., α(A) := dimN(A); β(A)

for the deficiency of A, i.e., β(A) := dimR(A)
⊥
. Recall that an operator A ∈ L(H,K) is

said to be bounded below if there exists k > 0 for which ||x|| ≤ k ||Ax|| for each x ∈ H. If
A ∈ L(H) then the approximate point spectrum, σap(A), and the defect spectrum, σd(A),
of A are defined by

σap(A) := {λ ∈ C : A− λ is not bounded below};
σd(A) := {λ ∈ C : A− λ is not onto}.

If S is a compact subset of C, write intS for the interior points of S; isoS for the isolated
points of S; accS for the accumulation points of S; ∂S for the topological boundary of
S. When A ∈ L(H) and B ∈ L(K) are given we denote by MC an operator acting on
H⊕K of the form

MC :=
(
A C

0 B

)
,

where C ∈ L(K,H). The invertibility, the spectrum and Weyl’s theorem of MC were
considered in [DJ],[HLL], and [Le]. In this paper we characterize the boundedness below
of MC . Our characterization is as follows:

Theorem 1. An 2 × 2 operator matrix MC :=
(
A C

0 B

)
is bounded below for some C ∈

L(K,H) if and only if A is bounded below and{
α(B) ≤ β(A) if R(B) is closed,

β(A) = ∞ if R(B) is not closed.

In Section 1 we give the proof of Theorem 1. In Section 2 we give a description of the

passage from σap

(
A 0

0 B

)
to σap(MC).

1 Proof of Theorem 1

If T ∈ L(H,K) then the reduced minimum modulus of T is defined by (cf. [Ap])

γ(T ) =

{
inf

{
||Tx|| : dist (x, N(T )) = 1

}
if T ̸= 0

0 if T = 0.

Thus γ(T ) > 0 if and only if T has closed non-zero range (cf. [Ap],[Go]). If T ∈ L(H) is a
non-zero operator then we can see ([Ap]) that γ(T ) = inf

(
σ(|T |) \ {0}

)
, where |T | denotes



(T ∗T )
1
2 . Thus we have that γ(T ) = γ(T ∗). From the definition we can also see that if T

is bounded below then ||x|| ≤ 1
γ(T ) ||Tx|| for each x ∈ H.

If MC :=
(
A C

0 B

)
write

(1) MC =
(
I 0

0 B

)(
I C

0 I

)(
A 0

0 I

)
.

Recall ([Ha1, Theorem 3.3.2]) that if S ∈ L(K,H) and T ∈ L(H,K) then

(2) S, T bounded below =⇒ ST bounded below =⇒ T bounded below.

Since
(
I C

0 I

)
is invertible for every C ∈ L(K,H), applying (2) to (1) gives

(3) A,B bounded below =⇒MC bounded below =⇒ A bounded below.

To prove Theorem 1 we establish an auxiliary lemma, which is a result of independent
interest.

Lemma 1. Let T ∈ L(H) and T ̸= 0. Then T satisfies one of the following two conditions:

(i) There exists a unit vector x in N(T )⊥ such that ||Tx|| = γ(T );
(ii) There exists an orthonormal sequence {xn} in N(T )⊥ such that ||Txn|| → γ(T ).

In particular, if R(T ) is not closed then T must satisfy the condition (ii) with γ(T ) = 0.

Proof. Suppose T ̸= 0 and write α := γ(T ) = inf
(
σ(|T |) \ {0}

)
. Let E be the spectral

measure on the Borel subsets of σ(|T |) such that |T | =
∫
z dE(z). There are two cases to

consider.
Case 1: α ∈ acc

(
σ(|T |) \ {0}

)
. In this case, there exists a strictly decreasing sequence

{αn} of elements in σ(|T |) \ {0} such that αn → α. Since the αn’s are distinct, there
exists a sequence {Un} of mutually disjoint open intervals such that αn ∈ Un for all
n ∈ Z+. Define Fn := Un ∩ σ(|T |) (n ∈ Z+). Then the Fn’s are nonempty relatively
open subsets of σ(|T |). Thus E(Fn)H ̸= {0} for each n ∈ Z+. For each n ∈ Z+, choose a
unit vector xn in E(Fn)H. Since the Fn’s are mutually disjoint, it follows that {xn} is an
orthonormal sequence. We will show that xn ∈ N(T )⊥ (n ∈ Z+). If |T | is invertible then
N(T )⊥ = N(|T |)⊥ = H, so evidently, xn ∈ N(T )⊥. Now suppose |T | is not invertible.
Since |T | is a normal operator, |T | is unitarily equivalent to a multiplication operator Mφ.
But since our argument below depends only on the inner product, we may assume without
loss of generality that |T | is a multiplication operator. Let |T | := Mφ. If F0 := {0} then
E(F0) is the multiplication by χφ−1(0). Thus if f ∈ N(|T |) then φf = 0 and hence

(
χφ−1(0)f

)
(x) =

{
0 if f(x) = 0,

f(x) if f(x) ̸= 0,

which shows that E(F0)f = f . Therefore if f ∈ N(|T |) then for each n ∈ Z+,

(f, xn) = (E(F0)f, E(Fn)xn) = (f, E(F0 ∩ Fn)xn) = (f, 0) = 0,



which shows that xn ∈ N(|T |)⊥ for all n ∈ Z+. It thus follows that xn ∈ N(T )⊥. On the
other hand, for each n ≥ 2,

||Txn||2 = (T ∗Txn, xn) ≤ ||(T ∗T )|E(Fn)H|| = r
(
(T ∗T )|E(Fn)H

)
≤

(
sup Fn

)2 ≤
(
sup Un

)2 ≤ α2
n−1,

where r(·) denotes the spectral radius. Therefore we have that α ≤ ||Txn|| ≤ αn−1 (n ≥ 2),
which implies that ||Txn|| → α = γ(T ).

Case 2: α ∈ iso
(
σ(|T |) \ {0}

)
. Let L := E({α}) and M := E

(
σ(|T |) \ {α}

)
. Then H

can be decomposed as H = L⊕M, where L and M are |T |-invariant subspaces, σ(|T | |L) =
{α} and σ(|T | |M) = σ(|T |) \ {α}: more precisely, we can write

|T | =
(
α 0

0 |T | |M

)
: L⊕M −→ L⊕M.

But since ||Tx|| = || |T |x|| for all x ∈ H, it follows that for every unit vector x0 in L,
||Tx0|| = || |T |x0|| = ||αx0|| = α.

For the second assertion suppose γ(T ) = 0 and T ̸= 0. If T satisfies the condition (i)
then there exists a unit vector x ∈ N(T )⊥ such that Tx = 0, giving a contradiction. This
shows that T must satisfy the condition (ii). �

Proof of Theorem 1. We first claim that if A is bounded below and R(B) is closed, then

(4) α(B) ≤ β(A) ⇐⇒ MC is bounded below for some C ∈ L(K,H).

To show this suppose α(B) ≤ β(A). Since dimN(B) ≤ dimR(A)⊥, there exists a isometry
J : N(B) → R(A)⊥. Define an operator C : K → H by

C :=

(
J 0
0 0

)
:

(
N(B)
N(B)⊥

)
→

(
R(A)⊥

R(A)

)
.

Then MC is one-one. Assume to the contrary that MC is not bounded below. Then there

exists a sequence
(
xn
yn

)
of unit vectors in H⊕K for which

(
A C
0 B

)(
xn
yn

)
=

(
Axn + Cyn

Byn

)
−→ 0.

Write yn := αn + βn for n ∈ Z+, where αn ∈ N(B) and βn ∈ N(B)⊥. Since γ(B) > 0
and Byn → 0, it follows that βn → 0. Also by the definition of C, Cyn = C(αn + βn) =
Cαn → 0 and hence αn → 0. Therefore yn → 0 and ||xn|| → 1. But since Axn → 0,
it follows that A is not bounded below, giving a contradiction. This proves that MC is
bounded below.



Conversely, suppose MC is bounded below for some C ∈ L(K,H). Write MC as in

(1). Since
(
I 0

0 B

)(
I C

0 I

)
and

(
A 0

0 I

)
have closed ranges, it follows from an index theorem

of R. Harte [Ha2],[Ha3] that

N
(
A 0

0 I

)⊕
N

((
I 0

0 B

)(
I C

0 I

))⊕
R(MC)

⊥

∼= N(MC)
⊕

R
((

A 0

0 I

))⊥ ⊕
R
((

I 0

0 B

)(
I C

0 I

))⊥
,

which implies that α(B) + β(MC) = β(A) + β
((

I 0

0 B

)(
I C

0 I

))
. Since

β(MC) ≥ β
((

I 0

0 B

)(
I C

0 I

))
,

it follows that α(B) ≤ β(A). This proves (4). We next claim that if A is bounded below
and R(B) is not closed, then

(5) β(A) = ∞ ⇐⇒MC is bounded below for some C ∈ L(K,H).

To show this suppose β(A) = ∞. Then with no restriction on R(B), MC is bounded
below for some C ∈ L(K,H). To see this, observe dimR(A)⊥ = ∞, so there exists an
isomorphism C0 : K → R(A)⊥. Define an operator C : K → H by

C := (C0 0 ) : K →
(
R(A)⊥

R(A)

)
.

Then a straightforward calculation shows that MC is one-one and

γ(MC) = inf
||x||2+||y||2=1

||
(
Ax+ Cy
By

)
||

≥ inf
||x||2+||y||2=1

(
||Ax||2 + ||Cy||2

) 1
2

≥ inf
||x||2+||y||2=1

(
γ(A)2||x||2 + ||y||2

) 1
2

≥ min {1, γ(A)} > 0,

which implies thatMC is bounded below. For the converse, assume β(A) = N <∞. Since
R(B) is not closed it follows from Lemma 1 that there exists an orthonormal sequence
{yn} in N(B)⊥ such that Byn → 0. But since MC is bounded below we have

inf
||x||2+||y||2=1

||
(
A C

0 B

)(
x

y

)
|| = inf

||x||2+||y||2=1
||
(
Ax+Cy

By

)
|| > 0.

We now argue that there exist ϵ > 0 and a subsequence {ynk} of {yn} for which

(6) dist
(
R(A), Cynk

)
> ϵ for all k ∈ Z+.



Indeed, assume to the contrary that dist
(
R(A), Cyn

)
→ 0 as n → ∞. Thus there exists

a sequence {xn} in H such that dist
(
Axn, Cyn

)
→ 0. Let zn := ||

(
xn
yn

)
||−1xn and

wn := ||
(
xn
yn

)
||−1(−yn). Then ||

( zn
wn

)
|| = 1 and ||

(
A C

0 B

) ( zn
wn

)
|| = ||

(
Azn+Cwn
Bwn

)
|| −→

0, giving a contradiction. This proves (6). There is no loss in simplifying the notation and
assuming that

(7) dist
(
R(A), Cyn

)
> ϵ for all n ∈ Z+.

Since β(A) = N , there exists an orthonormal basis {e1, · · · , eN} for R(A)⊥. Let Pm
be the projection from H to ∨{em} for m = 1, · · · , N , where ∨(·) denotes the closed
linear span. If we let Cyn := αn + βn (n ∈ Z+), where αn ∈ R(A) and βn ∈ R(A)⊥,
then by (7), ||βn|| > ϵ for all n ∈ Z+. Observe that

∑∞
n=1 ||

1
nβn|| = ∞ and hence

||
∑∞
n=1 Pm0(

1
nβne

iθn)|| = ∞ for somem0 ∈ {1, · · · , N} and for some θn ∈ [0, 2π) (n ∈ Z+).

Now if we write y :=
∑∞
n=1

1
nyne

iθn , then ||y||2 =
∑∞
n=1

1
n2 <∞ and hence y ∈ K. But

||Cy|| ≥ ||Pm0(Cy)|| = ||
∞∑
n=1

Pm0C(
1

n
yne

iθn)|| = ||
∞∑
n=1

Pm0(
1

n
βne

iθn)|| = ∞,

giving a contradiction. Therefore we must have that β(A) = ∞. This proves (5). Now
Theorem 1 follows from (3), (4) and (5). �

The following corollary is immediate from Theorem 1.

Corollary 1. For a given pair (A,B) of operators we have∩
C∈L(K,H)

σap(MC) = σap(A)
∪

{λ ∈ C : R(B − λ) is closed and β(A− λ) < α(B − λ)}

∪
{λ ∈ C : R(B − λ) is not closed and β(A− λ) <∞}.

The following is the dual statement of Corollary 1.

Corollary 2. For a given pair (A,B) of operators we have∩
C∈L(K,H)

σd(MC) = σd(B)
∪

{λ ∈ C : R(A− λ) is closed and α(B − λ) < β(A− λ)}

∪
{λ ∈ C : R(A− λ) is not closed and α(B − λ) <∞}.

Combining Corollaries 1 and 2 gives:



Corollary 3 ([DJ, Theorem 2]). For a given pair (A,B) of operators we have∩
C∈L(K,H)

σ(MC) = σap(A)
∪
σd(B)

∪
{λ ∈ C : α(B − λ) ̸= β(A− λ)}.

Remark. In many applications, the entries of block operator matrices are unbounded
operators. Section 1 deals only with the bounded case. We expect that an analogue of
Theorem 1 holds for the unbounded case.

2 The passage from σap

(
A 0

0 B

)
to σap(MC)

In [HLL], it was shown that the passage from σ
(
A 0

0 B

)
to σ(MC) is accomplished by

removing certain open subsets of σ(A) ∩ σ(B) from the former, that is, there is equality

(8) σ
(
A 0

0 B

)
= σ(MC) ∪ W,

where W is the union of certain of the holes in σ(MC) which happen to be subsets of
σ(A) ∩ σ(B). However we need not expect the case for the approximate point spectrum

(see Examples 1 and 2 below). The passage from σap

(
A 0

0 B

)
to σap(MC) is more delicate.

Theorem 2. For a given pair (A,B) of operators we have that for every C ∈ L(K,H),

(9) η
(
σap(A) ∪ σap(B)

)
= η

(
σap(MC)

)
,

where η(·) denotes the “polynomially-convex hull”. More precisely,

(10) σap

(
A 0

0 B

)
= σap(MC) ∪ W,

where W lies in certain holes in σap(A), which happen to be subsets of σd(A) ∩ σap(B).
Hence, in particular, rap(MC) is a constant, and furthermore for every C ∈ L(K,H),

(11) r
(
A C

0 B

)
= r

(
A 0

0 B

)
= rap

(
A 0

0 B

)
= rap

(
A C

0 B

)
,

where r(·) and rap(·) denote the spectral radius and the “approximate point spectral radius”.

Proof. First, observe that for a given pair (A,B) of operators we have that for every
C ∈ L(K,H),

(12) σap(A) ⊆ σap(MC) ⊆ σap(A) ∪ σap(B) = σap

(
A 0

0 B

)
:

the first and the second inclusions follow from (3) and the last equality is obvious. We
now claim that for every T ∈ L(H),

(13) η
(
σ(T )

)
= η

(
σap(T )

)
.



Indeed since intσap(T ) ⊆ intσ(T ) and ∂ σ(T ) ⊆ σap(T ), we have that ∂ σ(T ) ⊆ ∂ σap(T ),
which implies that the passage from σap(T ) to σ(T ) is filling in certain holes in σap(T ),
proving (13). Now suppose λ ∈

(
σap(A)∪ σap(B)

)
\ σap(MC). Thus by (12), λ ∈ σap(B) \

σap(A). Since MC −λ is bounded below it follows from Theorem 1 that if R(B−λ) is not
closed then β(A−λ) = ∞, and if instead R(B−λ) is closed then β(A−λ) ≥ α(B−λ) > 0,
where the last inequality comes from the fact that B − λ is not one-one since B − λ is not
bounded below. Therefore λ ∈ σd(A). On the other hand, λ should be in one of the holes
in σap(A): for if this were not so then by (13), A− λ would be invertible, a contradiction.
This proves (9) and (10). The equality (11) follows at once from (9) and (13). �

Recall ([Pe, Definition 4.8]) that an operator A ∈ L(H) is quasitriangular if there
exists a sequence {Pn}∞n=1 of projections of finite rank in L(H) that converges strongly to
the identity and satisfies ||PnAPn − APn|| → 0. Also recall that an operator A ∈ L(H)
is called left-Fredholm if A has closed range and α(A) < ∞ and right-Fredholm if A has
closed range and β(A) <∞. If A is both left- and right-Fredholm, we call it Fredholm. The
index, indA, of a left- or right-Fredholm operator A is defined by indA = α(A) − β(A).
If A ∈ L(H) then the left essential spectrum, σ+

e (A), the right essential spectrum, σ−
e (A),

and the essential spectrum, σe(A), of A are defined by

σ+
e (A) = {λ ∈ C : A− λ is not left-Fredholm};
σ−
e (A) = {λ ∈ C : A− λ is not right-Fredholm};
σe(A) = {λ ∈ C : A− λ is not Fredholm}.

Recall ([Pe, Definition 1.22]) that the spectral picture of an operator A ∈ L(H), denoted
SP(A), is the structure consisting of the set σe(A), the collection of holes and pseudoholes
in σe(A), and the indices associated with these holes and pseudoholes, where a hole in
σe(A) is a nonempty bounded component of C \ σe(A) and a pseudohole in σe(A) is a
nonempty component of σe(A) \ σ+

e (A) or of σe(A) \ σ−
e (A). From the work of Apostol,

Foias and Voiculescu ([Pe, Theorem 1.31]), we have that A is quasitriangular if and only if
the spectral picture of A contains no hole or pseudohole associated with a negative number.
We now have:

Corollary 4. If A is a quasitriangular operator (e.g., A is either compact or cohyponor-
mal) then for every B ∈ L(K) and C ∈ L(K,H),

σap(MC) = σap(A) ∪ σap(B).

Proof. The inclusion ⊆ is the second inclusion in (12). For the reverse inclusion suppose
λ ∈ σap(A) ∪ σap(B). If λ ∈

(
σap(A) ∪ σap(B)

)
\ σap(MC) then by Theorem 2, λ ∈

σd(A)∩ σap(B) and A− λ is bounded below. But since A is quasitriangular, we have that
β(A− λ) ≤ α(A− λ) = 0. Therefore A− λ is invertible, a contradiction. �

We conclude with three examples. We first recall the definition of Toeplitz operators
on the Hardy space H2(T) of the unit circle T = ∂ D in the complex plane. Recall that the



Hilbert space L2(T) has a canonical orthonormal basis given by the trigonometric functions
en(z) = zn, for all n ∈ Z, and that the Hardy space H2(T) is the closed linear span of
{en : n = 0, 1, . . .}. Write C(T) for the set of all continuous complex–valued functions on
T and H∞(T) := L∞ ∩H2. If P denotes the orthogonal projection from L2(T) to H2(T),
then for every φ ∈ L∞(T) the operator Tφ defined by Tφg := P (φg) (g ∈ H2(T)) is called
the Toeplitz operator with symbol φ. For the basic theory of Toeplitz operators, see [Do1],
[Do2], [GGK1], [GGK2], and [Ni].

Example 1. One might expect that in Theorem 2, W is the union of certain of the
holes in σap(MC) together with the closure of some isolated points of σap(B). But this
is not the case. To see this, let φ ∈ H∞ be an inner function (i.e., |φ| = 1 a.e.) with

dim (φH2)⊥ = ∞ (e.g., φ(z) = exp
(
z+λ
z−λ

)
with |λ| = 1), let ψ be any function in C(T)

with ||ψ||∞ < 1, and let J be an isometry from H2 to (φH2)⊥. Define

MJ :=

(
Tφ J
0 Tψ

)
.

Note that Tφ is a non–normal isometry and hence σap(Tφ) = T. Since R(Tφ) ⊥ R(J), it

follows that ||MJ

(
x

y

)
|| ≥ ||

(
x

y

)
|| for all

(
x

y

)
∈ H2⊕H2, which says thatMJ is bounded

below. Observe
γ(MJ) = inf

||
( xn
yn

)
||=1

||MJ

(
xn
yn

)
|| ≥ 1.

Thus by [Go, Theorem V.1.6], we have that for all |λ| < 1(≤ γ(MJ)),

(i) MJ − λ is semi-Fredholm;
(ii) α(MJ − λ) ≤ α(MJ) = 0,

which implies that MJ − λ is bounded below for all |λ| < 1. But since σ(Tψ) is contained
in the polynomially–convex hull of the range of ψ, it follows from our assumption that
σap(Tψ) ⊆ D. Thus by Theorem 2 we have that σap(MJ) = T. Note that σap(Tψ) has

disappeared in the passage from σap

(
Tφ 0

0 Tψ

)
to σap(MJ ).

Example 2. We need not expect a general information for removing in the passage from

σap

(
A 0

0 B

)
to σap(MC). To see this, let Tφ, Tψ, and J be given as in Example 1. Also let

ζ be a function in C(T) such that σap(Tζ) is a compact subset σ of σap(Tψ). We define,
on H2 ⊕H2, A := Tφ ⊕ Tφ, B := Tψ ⊕ Tζ , C := J ⊕ 0 and in turn

MC :=

 Tφ 0 J 0

0 Tφ 0 0

0 0 Tψ 0

0 0 0 Tζ

 .

A straightforward calculation shows

σap

(
A 0

0 B

)
= σap(A) ∪ σap(B) = T ∪ σap(Tψ).



On the other hand, MC is unitarily equivalent to the operator(
Tφ J

0 Tψ

)⊕(
Tφ 0

0 Tζ

)
.

By Example 1 above, σap

(
Tφ J

0 Tψ

)
= T. It therefore follows that

σap(MC) = σap

(
Tφ J

0 Tψ

)∪
σap

(
Tφ 0

0 Tζ

)
= T ∪ σ.

Example 3. One might conjecture that ifMC is bounded below then R(B) is closed. But
this is not the case. For example, in Example 1, take a function ψ ∈ C(T) whose range
includes 0, and consider MC .
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