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Abstract. In this note we give an example of an ∞-hyponormal operator T

whose Aluthge transform T̃ is not (1 + ε)-hyponormal for any ε > 0 and show

that the sequence {T̃ (n)}∞n=1 of interated Aluthge transforms of T need not
converge in the weak operator topology, which solve two problems in [6].

1. Introduction

Let H be a separable, infinite dimensional complex Hilbert space and L(H) be
the algebra of all bounded linear operators on H. An operator T ∈ L(H) has a

unique polar decomposition T = U |T |, where |T | = (T ∗T )
1
2 and U is a partial

isometry satisfying kerU = kerT and kerU∗ = kerT ∗. If T = U |T | then the Aluthge

transform of T is defined by T̃ = |T | 12U |T | 12 (cf. [1],[6]). An operator T ∈ L(H) is
said to be p-hyponormal if

(1.1) (T ∗T )p − (TT ∗)p ≥ 0, p ∈ (0,∞).

If p = 1, T is hyponormal and if p = 1
2 , T is semi-hyponormal. It is well known that

q-hyponormal operators are p-hyponormal operators for p ≤ q. In particular, T is
said to be∞-hyponormal if (1.1) holds for every p > 0. Notice that the subnormality
for operators is different from the ∞-hyponormality (cf. [7]). In fact, D. Xia ([8])
introduced the notion of semi-hyponormal operators, which was generalized to p-
hyponormal operators (cf. [3],[4]). It is well known ([1]) that if T is p-hyponormal,

then T̃ is (p + 1
2 )-hyponormal for 0 < p < 1

2 ; hyponormal for 1
2 ≤ p ≤ 1. In this

note we show that this result is extremal, in the sense that there is a hyponormal

operator T whose Aluthge transform T̃ is not (1+ε)-hyponormal for any ε > 0; this
answers a question in [6, Problem 1.27] in the negative. In addition, we show that

the sequence {T̃ (n)}∞n=1
∞
n=1 of iterated Aluthge transforms of T need not converge

in the weak operator topology; this answers [6, Conjecture 1.11] in the negative.
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2. The Hyponormality by Aluthge Transform

We adopt an idea of [2]. Let H ≡ ⊕∞
i=−∞Hi, where Hi = C2, and define T on H

by

(2.1) T :=



. . .

. . . 0
C 0

C [0]
D 0

D 0
. . .

. . .


,

where C and D are positive semidefinite matrices in M2(C). Then we have T =
U |T |, where U = B⊗ I2 with the bilateral unweighted shift B on ℓ2(Z), where Z is
the set of integers, and the 2× 2 identity matrix I2, and so

T̃ = |T | 12U |T | 12 =



. . .

. . . 0
C 0

D
1
2C

1
2 [0]

D 0
D 0

. . .
. . .


.

Therefore one can get the following lemma.

Lemma 2.1. Let T be an operator defined as (2.1). Then the following assertions
hold.
(i) T is p-hyponormal ⇐⇒ D2p ≥ C2p for any p > 0.

(ii) T̃ is p-hyponormal ⇐⇒ (C
1
2DC

1
2 )p ≥ C2p and D2p ≥ (D

1
2CD

1
2 )p for any

p > 0.

Proof. Immediate from a straight forward calculation. �

In [6, Problem 1.27] the following question was addressed: If T ∈ L(H) is a

hyponormal operator, is T̃ necessarily (1+ ε)-hyponormal for some ε > 0? We now
answer this question in the negative. In fact we can prove more:

Theorem 2.2. There is an ∞-hyponormal operator T whose Aluthge transform

T̃ is not (1 + ε)-hyponormal for any ε > 0.

Proof. Let Tx be defined by (2.1) with

C =

(
1
2

1
2

1
2

1
2

)
and D =

(
x 0
0 1

)
(x ≥ 1).

Then we have D2p ≥ C2p for any p > 0, and so Tx is ∞-hyponormal for any x ≥ 1.
Observe that

D
1
2CD

1
2 =

1

2

(
x

√
x√

x 1

)
.
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By the mathematical induction we can see that for n = 0, 1, 2, ...,(
D

1
2CD

1
2

) 1
2n

= 2−
1
2n

(
1

1 + x

) 2n−1
2n

(
x

√
x√

x 1

)
.

Thus

D2(1+ 1
2n ) − (D

1
2CD

1
2 )1+

1
2n

=

(
x2(1+ 1

2n ) 0
0 1

)
− 1

2

(
x

√
x√

x 1

)
· 2− 1

2n

(
1

1 + x

) 2n−1
2n

(
x

√
x√

x 1

)
=

(
∗ ∗
∗ 1− ( 12 )

1+ 1
2n (1 + x)

1
2n

)
.

Note that for any n ∈ N we can choose a strictly increasing sequence {xn} of real
numbers such that

(2.2) 1−
(
1

2

)1+ 1
2n

(1 + xn)
1
2n < 0.

Therefore D2(1+ 1
2n ) − (D

1
2CD

1
2 )1+

1
2n is not positive semidefinite for xn satisfying

(2.2). Thus by Lemma 2.1, T̃xn is not (1 + 1
2n )-hyponormal. On the other hand,

note that ∥Tx∥ = x. Let K ≡ ⊕∞
i=1Hi, where Hi = H, and define an operator T on

K by

T = ⊕∞
n=1

1

xn
Txn .

Then by the preceding consideration, T is ∞-hyponormal, but T̃ is not (1 + ε)-
hyponormal for any ε > 0. This completes the proof. �

3. Aluthge Iteration

For T ∈ L(H), we define T̃ (1) := T̃ and T̃ (n+1) := (̃T̃ (n)) for every n ∈ N. In [6,
Conjecture 1.11], the following was conjectured: For every T ∈ L(H) the sequence

{T̃ (n)}∞n=1 converges in the norm topology to a limit T̃L which is a quasinormal

operator. We show that {T̃ (n)}∞n=1 need not converge in the weak operator topology
below.

Let T ≡ Wα be a unilateral weighted shift on ℓ2(Z+) with weight sequence
α ≡ {αn}n∈Z+

, where Z+ := N ∪ {0}, that is, Wαen := αnen+1 for all n ≥ 0,
where {en}∞n=0 is the canonical orthonormal basis for ℓ2(Z+). If U is the unilateral
unweighted shift and D = diag{αn} then T = UD is the polar decomposition of

T . A straightforward calculation shows that T̃ = D
1
2UD

1
2 is a unilateral weighted

shift with weight sequence {√αnαn+1}∞n=0. By induction we can see that

(3.1) T̃ (n)ek =

 n∏
j=0

α
(nj)
j+k

 1
2n

ek+1, for all n ≥ 1,

where
(
n
j

)
= n!

j!(n−j)! .

Lemma 3.1. Suppose that a and b are any distinct positive real numbers. Let
T := Wα be a unilateral weighted shift whose weights are either a or b. Suppose
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that only finitely many weights of T are equal to a. Then the sequence of the first

weights of T̃ (n) converges to b.

Proof. Recall that the first weight of T̃ (n) is

(3.2) α̃
(n)
0 :=

 n∏
j=0

α
(nj)
j

 1
2n

.

Let p be the largest number satisfying αp = a. Then for n > p, we have

log α̃
(n)
0 =

1

2n

n∑
j=0

(
n

j

)
logαj

=
1

2n

 p∑
j=0

(
n

j

)
logαj +

n∑
j=p+1

(
n

j

)
log b


=

1

2n

p∑
j=0

n!

j!(n− j)!
logαj +

1

2n

n∑
j=p+1

(
n

j

)
log b.

Moreover, for j = 1, ..., p, we have

(3.3)
n!

2nj!(n− j)!
=

n · (n− 1) · · · (n− j + 1)

j!2n
≤ np

2n
,

which converges to 0 as n → ∞. Hence since 1
2n

∑n
j=0

(
n
j

)
= 1 for any n ∈ N, by

(3.3) we have

lim
n→∞

log α̃
(n)
0 = lim

n→∞

1

2n

n∑
j=p+1

(
n

j

)
log b

= lim
n→∞

1

2n

n∑
j=0

(
n

j

)
log b

= log b.

Hence the sequence of the first weights of T̃ (n) converges to b. �

Proposition 3.2. Suppose a and b are any distinct positive real numbers. Then
there is a unilateral weighted shift T := Wα with weight sequence α such that the

sequence of the first weights of {T̃ (n)}∞n=1 have two subsequences converging to a
and b, respectively.

Proof. We first take α0 = a. Consider a weight sequence β(1) : a, b, b, .... Then by

Lemma 3.1 with β(1), there is m1 such that |b− β̃
(1)
m1 | < 1

2 , where {β̃(1)
n }∞n=1 is the

sequence of the first weights of {W̃ (n)

β(1)}∞n=1 induced by (3.1). Let

p1 := max{
(
m1

j

)
: 0 ≤ j ≤ m1}

and put α1 = · · · = αp1 = b. And consider a weight sequence γ(1) := {γ(1)
n }∞n=1

with

γ(1)
n =

 a n = 0,
b 1 ≤ n ≤ p1,
a p1 < n.
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By Lemma 3.1 with γ(1), there is n1 such that |a − γ̃
(1)
n1 | < 1

2 , where {γ̃(1)
n }∞n=1 is

the sequence of the first weights of {W̃ (n)

γ(1)}∞n=1. Let

q1 := max{
(
n1

j

)
, p1 + 1 : 0 ≤ j ≤ n1}

and put αp1+1 = ... = αq1 = a. Consider a weight sequence β(2) := {β(2)
n }∞n=1 with

β(2)
n =


a n = 0,
b 1 ≤ n ≤ p1,
a p1 < n ≤ q1,
b q1 < n.

Applying Lemma 3.1 with β(2), we obtain m2 such that |b − β̃
(2)
m2 | < 1

22 , where

{β̃(2)
n }∞n=1 is the sequence of the first weights of {W̃ (n)

β(2)}∞n=1. Let

p2 := max{
(
m2

j

)
, q1 + 1 : 0 ≤ j ≤ m2}.

Put αq1+1 = ... = αp2 = b. Then similarly we may obtain a sequence γ(2) and n2

such that |a − γ̃
(2)
n2 | < 1

22 . Repeating this process alternately with nk and mk, we

have β(k), γ(k), pk, and qk with

qk := max{
(
nk

j

)
, pk + 1 : 0 ≤ j ≤ nk}, k ∈ N,

and

pk+1 := max{
(
mk+1

j

)
, qk + 1 : 0 ≤ j ≤ mk+1}, k ∈ N,

such that

(3.4) |a− γ̃(k)
nk

| < 1

2k
and |b− β̃(k)

mk
| < 1

2k
, k ∈ N.

According to the above construction, we obtain a sequence α with

α :

(p2)︷ ︸︸ ︷
(p1)︷ ︸︸ ︷

a, b, ..., b, a, ..., a︸ ︷︷ ︸
(q1)

, b, ..., b, a, a, ..., a

︸ ︷︷ ︸
(q2)

, ....,

satisfying α̃
(mk)
0 = β̃

(k)
mk and α̃

(nk)
0 = γ̃

(k)
nk , where {α̃(n)

0 }∞n=1 is the sequence of the

first weights of {W̃ (n)
α }∞n=1. Hence by (3.4) we have

|a− α̃
(nk)
0 | < 1

2k
and |b− α̃

(mk)
0 | < 1

2k
, k ∈ N.

Thus the proof is complete. �

The following comes at once from Proposition 3.2.

Corollary 3.3. There exists an operator T such that the sequence {T̃ (n)}∞n=1 does
not converge in the weak operator topology.
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The operator T in the proof in Proposition 3.2 is not hyponormal. We were

unable to decide whether {T̃ (n)}∞n=1 converges in the strong operator topology (or
the weak operator topology) when T is hyponormal.

Theorem 3.4. Let T ≡ Wα be a hyponormal bilateral weighted shift on ℓ2(Z) with
a weight sequence α ≡ {αn}n∈Z. Let a := inf{αn}n∈Z and b := sup{αn}n∈Z. Then

{T̃ (n)}∞n=1 converges to a quasinormal operator in the norm topology if and only if
a = b.

Proof. Since the necessity is obvious, we only consider the sufficiency. Assume

that {T̃ (n)}∞n=1 converges to a quasinormal operator T̃L in the norm topology and
suppose a < b. If U is the bilateral unweighted shift and D = diag{αn} then

T = UD is the polar decomposition of T . Thus T̃ = D
1
2UD

1
2 is also a bilateral

weighted shift, and hence if the sequence {T̃ (n)}∞n=1 converges in the norm topology

to an operator T̃L then T̃L must be a bilateral weighted shift. Note that T is
hyponormal and the spectrum, σ(T ), of T is the annulus {λ : a ≤ |λ| ≤ b}. Thus
for every n, T̃ (n) is hyponormal and σ(T̃ (n)) = σ(T ) (cf. [6, Theorem 1.3]). Note

that since T̃L is a fixed point of the mapping ˜ : L(H) → L(H), it follows that

T̃L is quasinormal (cf. [6, Proposition 1.10]). On the other hand, since σ, a set-
valued function, is a continuous function when restricted to the set of hyponormal
operators (cf. [5]), it follows that

σ(T̃L) = σ(T ) = {λ : a ≤ |λ| ≤ b}.
Observe that a bilateral weighted shift Wβ with weight sequence β ≡ {βn} is
quasinormal if and only if either Wβ is a scalar multiple of the bilateral unweighted
shift or there exists an n0 ∈ Z such that βn = 0 for all n < n0 and βn = βn0 for all
n ≥ n0. Thus the spectrum of a bilateral quasinormal weighted shift is a (possibly

degenerated) circle or a disk with center 0. Thus T̃L is not quasinormal, which is a
contradiction. �

The following example shows the existence of an operator T such that {T̃ (n)}∞n=1

converge in the strong operator topology but not the norm topology.

Example 3.5. Let T ≡ Wα be a hyponormal bilateral weighted shift on ℓ2(Z)
with weight sequence α ≡ {αn}n∈Z, where αn is given by

αn :=

{
1
2 (n < 0),
1 (n ≥ 0).

By Theorem 3.4, {T̃ (n)}∞n=1 does not converge to a quasinormal operator in the

norm topology. In fact SOT-limn→∞ T̃ (n) = B (where B is the bilateral unweighted
shift). Indeed, we first observe that

T̃ (n)ek =

 n∏
j=0

α
(nj)
j+k

 1
2n

ek+1, for all n ∈ Z.

So the weight sequence of T̃ (n) is composed of

α̃
(n)
k :=

 n∏
j=0

α
(nj)
j+k

 1
2n

, k ∈ Z.
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For n > k, we have

| log α̃(n)
−k | = | 1

2n
·

n∑
j=0

(
n

j

)
logαj−k| = | log 2 · 1

2n

k−1∑
j=0

n!

j!(n− j)!
|.

By (3.3) obviously

lim
n→∞

1

2n

k−1∑
j=0

n!

j!(n− j)!
= 0,

for a fixed k ∈ N. Hence limn→∞ α̃
(n)
−k = 1 for each k ∈ N. Since limn→∞ α̃

(n)
k = 1

for k ≥ 0 obviously, SOT-limn→∞ T̃ (n) = B.

If T is quasinormal, obviously {T̃ (n)}∞n=1 converges to T . If T is a hyponormal
weighted shift with weight sequence {αn}∞n=0, which converges to α, then by the

previous argument, T̃ (n) is a weighted shift with weight sequence
 n∏

j=0

α
(nj)
j+k

 1
2n


∞

k=0

for each n ∈ Z+,

whose k-th weight, by a straightforward calculation, converges to α for each k =

0, 1, .... Consequently, {T̃ (n)}∞n=1 converges to αU (where U is the unilateral un-
weighted shift) in the norm topology. Note that αU is quasinormal. Thus we may
revise Conjecture 1.11 in [6] as following.

Conjecture 3.6 ([6]). If T ∈ L(H) is a p-hyponormal operator with 0 < p ≤ ∞,

then {T̃ (n)}∞n=1 converges in the strong operator topology.
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