
HYPONORMAL TOEPLITZ OPERATORS WITH RATIONAL SYMBOLS

In Sung Hwang∗, Woo Young Lee†

∗ Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea
(e-mail:ihwang@skku.edu)

† Department of Mathematics, Seoul National University, Seoul 151-742, Korea
(e-mail:wylee@math.snu.ac.kr)

Mathematics Subject Classification (2000): 47B20, 47B35

Abstract. In this paper we consider the self-commutators of Toeplitz operators Tϕ with
rational symbols ϕ using the classical Hermite-Fejér interpolation problem. Our main the-
orem is as follows. Let ϕ = g + f ∈ L∞ and let f = θa and g = θb, where θ is a finite
Blaschke product of degree d and a, b ∈ H(θ) := H2 ª θH2. Then H(θ) is a reducing sub-
space of [T ∗ϕ, Tϕ], and [T ∗ϕ, Tϕ] has the following representation relative to the direct sum
H(θ)⊕H(θ)⊥:

[T ∗ϕ, Tϕ] = A(a)∗WM(ϕ)W ∗A(a)
⊕

0∞,

where A(a) := PH(θ)Ma |H(θ) (Ma is the multiplication operator with symbol a), W is the
unitary operator from Cd onto H(θ) defined by W := (φ1, · · · , φd) ({φj} is an orthonormal
basis for H(θ)), and M(ϕ) is a matrix associated with the classical Hermite-Fejér interpo-
lation problem. Hence, in particular, Tϕ is hyponormal if and only if M(ϕ) is positive.
Moreover the rank of the self-commutator [T ∗ϕ, Tϕ] is given by rank [T ∗ϕ, Tϕ] = rank M(ϕ).

1 Introduction

For ϕ in L∞(T) of the unit circle T = ∂D, the Toeplitz operator with symbol ϕ is the operator
Tϕ on the Hardy space H2(T) of the unit circle given by

Tϕf := P (ϕf) (f ∈ H2(T)),

where P denotes the orthogonal projection that maps L2(T) onto H2(T). A bounded linear
operator A is called hyponormal if its self-commutator [A∗, A] := A∗A − AA∗ is positive
(semidefinite). Normal Toeplitz operators were characterized by a property of their symbols
in the early 1960’s by A. Brown and P. Halmos [BH] and 25 years passed before the exact na-
ture of the relationship between the symbol ϕ ∈ L∞ and the positivity of the self-commutator
[T ∗ϕ, Tϕ] was understood (via Cowen’s theorem [Co]). We shall employ an equivalent variant
of Cowen’s theorem [Co], that was first proposed by Nakazi and Takahashi [NT].

This work was supported by a grant (R14-2003-006-01000-0) from the Korea Research Foundation.

Typeset by AMS-TEX

1



2

Cowen’s Theorem. For ϕ ∈ L∞, write

E(ϕ) := {k ∈ H∞ : ||k||∞ ≤ 1 and ϕ− kϕ ∈ H∞} .

Then Tϕ is hyponormal if and only if E(ϕ) is nonempty.

Cowen’s theorem is to recast the operator-theoretic problem of hyponormality for Toeplitz
operators into the problem of finding a solution with specified properties to a certain func-
tional equation involving the operator’s symbol. This approach has been put to use in
the works [CL], [FL], [Gu1], [Gu2], [GS], [HL], [NT], [Zhu] to study Toeplitz operators on
H2(T). Particular attention has been paid to Toeplitz operators with polynomial symbols.
In particular, K. Zhu [Zhu] has applied Cowen’s criterion and Schur’s algorithm [Sch] to the
Schur function ΦN to obtain an abstract characterization of those polynomial symbols that
correspond to hyponormal Toeplitz operators.

On the other hand, a function ϕ ∈ L∞ is said to be of bounded type (or in the Nevanlinna
class) if there are functions ψ1, ψ2 in H∞(D) such that

ϕ(z) =
ψ1(z)
ψ2(z)

for almost all z in T. Evidently, rational functions in L∞ are of bounded type. In this
paper we present an explicit description of the self-commutators of Toeplitz operators with
bounded type symbols associated with a finite Blaschke product (or equivalently, rational
symbols).

2 Preliminaries and auxiliary lemmas

Let J be the unitary operator on L2 defined by

J(f)(z) = zf(z).

For ϕ ∈ L∞, the operator on H2 defined by

Hϕf = J(I − P )(ϕf)

is called the Hankel operator Hϕ with symbol ϕ. If we define the function ṽ by ṽ(z) := v(z),
then Hϕ can be viewed as the operator on H2 defined by

(1.1) 〈zuv, ϕ〉 = 〈Hϕu, ṽ〉 for all v ∈ H∞.

The following is a basic connection between Hankel and Toeplitz operators ([Ni]):

Tϕψ − TϕTψ = H∗
ϕHψ (ϕ,ψ ∈ L∞) and HϕTh = Hϕh = T ∗ehHϕ (h ∈ H∞).

From this we can see that if k ∈ E(ϕ) then

[T ∗ϕ, Tϕ] = H∗
ϕHϕ −H∗

ϕHϕ = H∗
ϕHϕ −H∗

k ϕHk ϕ = H∗
ϕ(1− TekT ∗ek )Hϕ.
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If θ is an inner function, the degree of θ, denoted by deg(θ), is defined as n if θ is a finite
Blaschke product of the form

θ(z) = eiξ
n∏

j=1

z − βj

1− βjz
(|βj | < 1 for j = 1, · · · , n),

otherwise the degree of θ is infinite. For an inner function θ, write

H(θ) := H2 ª θH2.

Note that kerHθ = θH2 and ran H∗
θ

= H(θ). It was shown [Ab, Lemma 6] that if Tϕ is
hyponormal and ϕ is not in H∞ then

ϕ is of bounded type ⇐⇒ ϕ is of bounded type.

In [Ab], it was also shown that

ϕ is of bounded type ⇐⇒ kerHϕ 6= {0} ⇐⇒ ϕ = θb,

where θ is an inner function and b ∈ H∞ satisfies that the inner parts of b and θ are coprime.
So we have

(1.2) kerHθb = θH2 and cl ran Hθb = H(θ̃).

On the other hand, when we study the hyponormality of Toeplitz operators Tϕ with symbols
ϕ, we may assume that ϕ(0) = 0 because the hyponormality of an operator is invariant
under translation by scalars. Thus if ϕ = g + f ∈ L∞ (f, g ∈ H2), then we will assume
that f(0) = g(0) = 0 throughout the paper. Therefore we can see (cf. [GS], [Gu2]) that if
ϕ = g + f ∈ L∞ (f, g ∈ H2) is of bounded type and Tϕ is hyponormal then we can write

(1.3) f = θ1θ2a and g = θ1b

for some inner functions θ1 and θ2, where a ∈ H(θ1θ2) and b ∈ H(θ1).

To prove the main result we need several auxiliary lemmas. The first lemma gives a way
to compute the rank of a product of two Hankel operators.

Lemma 2.1 (Axler-Chang-Sarason Theorem [ACS]). For ϕ,ψ ∈ L∞,

rank (H∗
ϕHψ) = min{rank (Hϕ), rank (Hψ)}.

The next result is a characterization of hyponormal Toeplitz operators whose self-commutator
is of finite rank.

Lemma 2.2 (Nakazi-Takahashi Theorem [NT]). A Toeplitz operator Tϕ is hyponormal
and [T ∗ϕ, Tϕ] is a finite rank operator if and only if there exits a finite Blaschke product k in
E(ϕ). In this case, we can choose k such that deg (k) = rank [T ∗ϕ, Tϕ].

For a subspace M of H2, let PM be the orthogonal projection onto M. Then we have:
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Lemma 2.3. If f = θ1θ2a for a ∈ H(θ1θ2) then

θ2Pθ2H2(f) = P (θ1a) = θ1PH(θ1)(a) + c for some constant c.

Proof. Let g ∈ H2 be arbitrary. Then

〈θ2Pθ2H2(f), g〉 = 〈Pθ2H2(θ1θ2a), θ2g〉 = 〈θ1θ2a, θ2g〉 = 〈P (θ1a), g〉.
Therefore we have that P (θ1a) = θ2Pθ2H2(f). For the second equality, let a1 := PH(θ1)(a)
and a2 := a− a1. Then we have

P (θ1a) = P (θ1a1) + P (θ1a2) = θ1a1 + P (θ1a2).

But since H(θ1θ2) = H(θ1) ⊕ θ1H(θ2) for inner functions θ1 and θ2, it follows that a2 ∈
θ1H(θ2). Therefore we can conclude that P (θ1a2) ∈ P (H(θ2)) ∈ C. This completes the
proof. ¤

Lemma 2.4. Let ϕ = g+f ∈ L∞. If f = θ1θ2a and g = θ1b for a ∈ H(θ1θ2) and b ∈ H(θ1),
then θ1H(θ2) ⊆ ran [T ∗ϕ, Tϕ] ⊆ H(θ1θ2).

Proof. Observe that

(2.1) [T ∗ϕ, Tϕ] = H∗
f
Hf −H∗

g Hg = H∗
θ1θ2a

Hθ1θ2a −H∗
θ1b

Hθ1b.

Since cl ran (H∗
θ1θ2a

Hθ1θ2a) = cl ran H∗
θ1θ2a

= H(θ1θ2) and cl ran (H∗
θ1b

Hθ1b) = H(θ1), we can
see that θ1H(θ2) ⊆ ran [T ∗ϕ, Tϕ] ⊆ H(θ1θ2). ¤

Lemma 2.5. Let ϕ = g + f ∈ L∞, where f and g are in H2. If ϕ is of bounded type and
Tϕ is hyponormal then

rank [T ∗ϕ, Tϕ] = min {deg(k) : k is an inner function in E(ϕ)}.

Proof. If ϕ is of bounded type such that Tϕ is hyponormal then E(ϕ) contains at least an
inner function (see [Le]). If E(ϕ) has no finite Blaschke product then by Lemma 2.2 we have
that for all k in E(ϕ), rank [T ∗ϕ, Tϕ] = ∞ = deg (k). If instead E(ϕ) has a finite Blaschke
product then it suffices to show that there exists an inner function k in E(ϕ) such that
rank (Hk) ≤ rank(Hf ). We assume to the contrary that rank (Hf ) < rank (Hk) for all inner
functions k in E(ϕ). Since k is an inner function we have that

[T ∗ϕ, Tϕ] = H∗
f
Hf −H∗

g Hg = H∗
f
Hf −H∗

kf
Hkf = H∗

f
HkH∗

k
Hf .

By Lemma 2.1 we see that

rank [T ∗ϕ, Tϕ] = rank (H∗
f
Hk) = min {rank (Hf ), rank (Hk)}.

But since rank (Hf ) < deg (k), it follows that rank [T ∗ϕ, Tϕ] < deg (k), which contradicts
Lemma 2.2. This completes the proof. ¤

The following lemma is a slight extension of [Gu2, Corollary 3.5], in which the rank of the
self-commutator is finite.
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Lemma 2.6. Let ϕ = g + f ∈ L∞, where f and g are in H2. Assume that

(2.2) f = θ1θ2a and g = θ1b

for a ∈ H(θ1θ2) and b ∈ H(θ1). Let ψ := θ1PH(θ1)(a) + g. Then Tϕ is hyponormal if and
only if Tψ is. Moreover, in the cases where Tϕ is hyponormal,

rank [T ∗ϕ, Tϕ] = deg (θ2) + rank [T ∗ψ, Tψ].

Proof. The first assertion follows at once from [Gu2, Corollary 3.5] together with Lemma
2.3.

For the rank formula, note that E(ϕ) = {k1θ2 : k1 ∈ E(ψ)}. Therefore by Lemma 2.5 we
have that rank [T ∗ϕ, Tϕ] = deg(θ2) + rank [T ∗ψ, Tψ]. ¤

3 Main results

In view of Lemma 2.6, when we study the hyponormality of Toeplitz operators with bounded
type symbols ϕ, we may assume that the symbol ϕ = g + f ∈ L∞ is of the form

(3.1) f = θa and g = θb,

where θ is an inner function and a, b ∈ H(θ) such that the inner parts of a, b and θ are
coprime.

On the other hand, if ϕ = g + f ∈ L∞, where f and g are rational functions then we
can show that ϕ can be written in the form (3.1) with a finite Blaschke product θ. C. Gu
[Gu1] showed that if ϕ = g +f ∈ L∞, where f and g are rational functions then the problem
determining the hyponormality of Tϕ is exactly the tangential Hermite-Fejér interpolation
problem. By comparison, using the classical Hermite-Fejér interpolation problem, we will
give an explicit description of the self-commutator [T ∗ϕ, Tϕ].

To begin with, let θ be a finite Blaschke product of degree d. We can write

(3.2) θ = eiξ
n∏

k=1

(
B̃k

)mk

(where B̃k :=
z − αk

1− αkz
).

So d =
∑n

k=1 mk. For our purpose, rewrite θ as in the form θ = eiξ
∏d

j=1 Bj , where

Bj := B̃k if
k−1∑

l=0

ml < j ≤
k∑

l=0

ml

and, for notational convenience, m0 := 0. For example, the first Balschke product B̃1 is
repeated m1 times and so on. Let

(3.3) φj :=
qj

1− αjz
Bj−1Bj−2 · · ·B1 (1 ≤ j ≤ d),

where φ1 := q1(1 − α1z)−1 and qj := (1 − |αj |2) 1
2 . It is well known that {φj}d

1 is an
orthonormal basis for H(θ) (cf. [FF,Theorem X.1.5]).
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Let ϕ = g + f ∈ L∞, where g = θb and f = θa for a, b ∈ H(θ) and write

C(ϕ) := {k ∈ H∞ : ϕ− kϕ ∈ H∞}.
Then k is in C(ϕ) if and only if θb− kθa ∈ H2, or equivalently,

(3.4) b− ka ∈ θH2.

Note that θ(n)(αi) = 0 for all 0 ≤ n < mi. Thus the condition (3.4) is equivalent to the
following equation: for all 1 ≤ i ≤ n,

(3.5)




ki,0

ki,1

ki,2

...
ki,mi−2

ki,mi−1




=




ai,0 0 0 0 · · · 0
ai,1 ai,0 0 0 · · · 0
ai,2 ai,1 ai,0 0 · · · 0
...

. . . . . . . . . . . .
...

ai,mi−2 ai,mi−3
. . . . . . ai,0 0

ai,mi−1 ai,mi−2 . . . ai,2 ai,1 ai,0




−1 


bi,0

bi,1

bi,2

...
bi,mi−2

bi,mi−1




,

where

ki,j :=
k(j)(αi)

j!
, ai,j :=

a(j)(αi)
j!

and bi,j :=
b(j)(αi)

j!
.

Thus k is in C(ϕ) if and only if k is a function in H∞ for which

(3.6)
k(j)(αi)

j!
= ki,j (1 ≤ i ≤ n, 0 ≤ j < mi),

where the ki,j are determined by the equation (3.5). If in addition ||k||∞ ≤ 1 is required
then this is exactly the classical Hermite-Fejér interpolation problem.

To construct a polynomial k(z) = p(z) satisfying (3.6), let pi(z) be the polynomial of
order d−mi defined by

pi(z) :=
n∏

k=1
k 6=i

( z − αk

αi − αk

)mk

.

Also consider the polynomial p(z) of degree d− 1 defined by

(3.7) p(z) :=
n∑

i=1

(
k′i,0 + k′i,1(z − αi) + k′i,2(z − αi)2 + · · ·+ k′i,mi−1(z − αi)mi−1

)
pi(z),

where the k′i,j are obtained by the following equations:

k′i,j = kij −
j−1∑

k=0

k′i,k p
(j−k)
i (αi)

(j − k)!
(1 ≤ i ≤ n; 0 ≤ j < mi) and k′i,0 = ki,0 (1 ≤ i ≤ n).

Then p(z) satisfies (3.6) (See [FF]). But p(z) may not be contractive.
On the other hand, if ψ is a function in H∞, let A(ψ) be the operator on H(θ) defined dy

(3.8) A(ψ) := PH(θ)Mψ |H(θ),

where Mψ is the multiplication operator with symbol ψ. Now let W be the unitary operator
from Cd onto H(θ) defined by

W := (φ1, φ2, · · · , φd),

where the φj are the functions in (3.3).

We then have:
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Lemma 3.1. ([FF, Theorems X.1.5 and X.5.6]) Let θ be the Blaschke product in (3.2) and
let {φj}d

1 be the orthonormal basis for H(θ) in (3.3). Then A(z) = PH(θ)Mz |H(θ) is unitarily
equivalent to the lower triangular matrix M on Cd defined by




α1 0 0 0 0 · · · 0
q1q2 α2 0 0 0 · · · 0

−q1α1q3 q2q3 α3 0 0 · · · 0
q1α2α3q4 −q2α3q4 q3q4 α4 0 · · · 0

−q1α2α3α4q5 q2α3α4q5 −q3α4q5 q4q5 α5
. . . 0

...
...

...
. . . . . . . . . 0

(−1)dq1

(∏d−1
j=2 αj

)
qd (−1)d−1q2

(∏d−1
j=3 αj

)
qd · · · · · · −qd−2αd−1qd qd−1qd αd




.

Moreover, if p is a polynomial defined in (3.7) then A(p)W = Wp(M).

Our main theorem now follows:

Theorem 3.2. Let ϕ = g + f ∈ L∞ and let f = θa and g = θb, where θ is a finite Blaschke
product and a, b ∈ H(θ). Then H(θ) is a reducing subspace of [T ∗ϕ, Tϕ], and [T ∗ϕ, Tϕ] has the
following representation relative to the direct sum H(θ)⊕H(θ)⊥:

(3.9) [T ∗ϕ, Tϕ] = A(a)∗WM(ϕ)W ∗A(a)
⊕

0∞,

where A(a) is invertible and M(ϕ) := IH(θ) − p(M)∗p(M). Hence, in particular, Tϕ is
hyponormal if and only if M(ϕ) is positive. Moreover the rank of the self-commutator [T ∗ϕ, Tϕ]
is given by

rank [T ∗ϕ, Tϕ] = rankM(ϕ).

Proof. From the proof of Lemma 2.4 we can see that ran [T ∗ϕ.Tϕ] ⊆ H(θ). Therefore H(θ) is
a reducing subspace of [T ∗ϕ, Tϕ].

Towards the equality (3.9), let u and v be in H(θ). Suppose k = p is a polynomial in
(3.7). Since kerHθ = θH2, we have that Hθku = Hθ(PH(θ)(ku)). Note that H∗

θ
Hθ is the

projection onto H(θ). Thus we have that

〈
HeθekHθku, v

〉
=

〈
Hθku,Hθkv

〉

=
〈
PH(θ)ku, PH(θ)kv

〉
(3.10)

=
〈
A(k)u,A(k)v

〉
.

Thus by Lemma 3.1 we have that

(3.11) HeθekHθk|H(θ) = A(k)∗A(k) = Wk(M)∗k(M)W ∗.

Hence by (3.11) we get

(
H∗

θ
Hθ −HeθekHθk

)|H(θ) = W
(
IH(θ) − k(M)∗k(M)

)
W ∗.
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Since k satisfies the equality (3.5) and hence ϕ− kϕ ∈ H∞, it follows that

[T ∗ϕ, Tϕ]|H(θ) =
(
H∗

f
Hf −H∗

g Hg

)|H(θ)

=
(
H∗

f
Hf −H∗

kf
Hkf

)|H(θ)

=
(
H∗

θa
Hθa −H∗

kθa
Hkθa

)|H(θ)

= T ∗a (H∗
θ
Hθ −H∗

θk
Hθk)Ta|H(θ)

= A(a)∗W
(
IH(θ) − p(M)∗p(M)

)
W ∗A(a)

= A(a)∗WM(ϕ)W ∗A(a),

which gives (3.9).
For the invertibility of A(a), suppose A(a)∗f = 0 for some f ∈ H(θ). Then PH(θ)(af) = 0

and hence
af = θg for some g ∈ H2,

or equivalently, aθf = g. Note that θf ∈ H2⊥ and hence aθf ∈ H2⊥ ∩H2 = {0}. Thus we
have f = 0, which implies that A(a)∗ is 1-1. Since A(a) is a finite dimensional operator,
A(a) is invertible. This completes the proof. ¤

Example 3.3. C. Gu [Gu1] showed that if ϕ = f + g ∈ L∞, where f and g are rational
functions then the problem determining the hyponormality of Tϕ is exactly the tangential
Hermite-Fejér interpolation problem. In fact we can show that this problem is equivalent
to our problem. However our solution has an advantage which gives an explicit description
of the self-commutator [T ∗ϕ, Tϕ] even though this method is not simpler than the method of
[Gu1]. To see this consider the function ϕ = g + f , where

f(z) := 3
z − 1

2

1− 1
2z

+ 2
z − 1

3

1− 1
3z

+
13
6

and g(z) :=
z − 1

2

1− 1
2z

+
z − 1

3

1− 1
3z

+
5
6
.

Thus if θ := z− 1
2

1− 1
2 z
· z− 1

3
1− 1

3 z
then

a := 3
z − 1

3

1− 1
3z

+2
z − 1

2

1− 1
2z

+
13
6

z − 1
2

1− 1
2z
· z − 1

3

1− 1
3z

and b :=
z − 1

3

1− 1
3z

+
z − 1

2

1− 1
2z

+
5
6

z − 1
2

1− 1
2z
· z − 1

3

1− 1
3z

are in H(θ), and f = θa and g = θb. So a straightforward calculation shows that p(z)

satisfying (3.8) is given by p(z) = −z + 5
6 and M =

( 1
2 0√
6

3
1
3

)
. Thus we have that

M(ϕ) := I − p(M)∗p(M) =
(

1 0
0 1

)
−

(
7
9 −

√
6

6

−
√

6
6

1
4

)
=

(
2
9

1√
6

1√
6

3
4

)
.

Since φ1 =
√

3
2

1
1− 1

2 z
and φ2 = 2

√
2

3
1

1− 1
3 z
· z− 1

2
1− 1

2 z
form a basis for H(θ), we have that

[T ∗ϕ, Tϕ] = A(a)∗WMϕW ∗A(a)
⊕

0∞

=
(

3
5 2

√
6

0 − 2
5

) (
2
9

1√
6

1√
6

3
4

)( 3
5 0

2
√

6 − 2
5

) ⊕
0∞

=

(
512
25 − 16

√
6

25

− 16
√

6
25

3
25

) ⊕
0∞.
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By comparison, the tangential Hermite-Fejér matrix induced by ϕ is given by (using the
notations in [Gu1])

A∗ΓA−B∗ΓB =




0 0 0
0 24 24
0 24 24


 .

Corollary 3.4. Let ϕ = g + f ∈ L∞ and let f = θa and g = θb, where θ is a finite Blaschke
product and a, b ∈ H(θ). If Tϕ is hyponormal and rank [T ∗ϕ, Tϕ] < deg(θ) then E(ϕ) has
exactly one element.

Proof. Suppose rank([T ∗ϕ, Tϕ]) < deg(θ). By Theorem 3.2 we have that

rank
(
IH(θ) − p(M)∗p(M)

)
< deg (θ).

Therefore the norm of p(M) should be one. By an argument of [FF, p.302] - there exists a
unique solution k to (3.7) such that ||k||∞ ≤ 1 if and only if ||p(M)|| = 1, E(ϕ) has exactly
one element. ¤

Theorem 3.5. Let ϕ = g + f ∈ L∞ and let f = θa and g = θb, where θ is a finite Blaschke
product and a, b ∈ H(θ). Let θ1 be a factor of θ and let

ϕθ1 := θ1PH(θ1)(b) + θ1PH(θ1)(a).

If Tϕ is hyponormal then Tϕθ1
is. Moreover, in the cases where Tϕ is hyponormal, the rank

of [T ∗ϕθ1
, Tϕθ1

] is given by

rank [T ∗ϕθ1
, Tϕθ1

] =
{

rank [T ∗ϕ, Tϕ] if rank [T ∗ϕ, Tϕ] < deg (θ1)

deg (θ1) if rank [T ∗ϕ, Tϕ] ≥ deg (θ1).

Proof. Let a1 := PH(θ1)(a), b1 := PH(θ1)(b), a2 := a−a1 and b2 := b−b1. If Tϕ is hyponormal
then by Cowen’s theorem there exists a function k ∈ H∞ with ||k||∞ ≤ 1 for which

θb− kθa = h for some h ∈ H2,

or equivalently,

θ
(
b1 + b2 − k(a1 + a2)

)
= h ⇐⇒ θ(b1 − ka1)− θ(b2 − ka2) = h

⇐⇒ θ1(b1 − ka1)− θ1(b2 − ka2) = θ2h,

where θ := θ1θ2. Since b1 and b2 are orthogonal and b1 ∈ H(θ1), it follows that b2 ∈ θ1H
2.

Thus θ1b2 ∈ H2. Similarly, we have that θ1a2 ∈ H2. Therefore we have that

θ1(b1 − ka1) = θ1(b2 − ka2) + θ2h ∈ H2,

or
θ1PH(θ1)(b)− kθ1PH(θ1)(a) ∈ H2.
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Therefore by Cowen’s theorem Tϕθ1
is hyponormal.

For the rank formula, suppose that rank [T ∗ϕ, Tϕ] < deg(θ1). By the Nakazi-Takahashi
theorem, there exists a finite Blaschke product k ∈ H∞ such that deg(k) = rank [T ∗ϕ, Tϕ] <
deg(θ1). Since E(ϕ) ⊆ E(ϕθ1) it follows k ∈ E(ϕθ1). By Lemma 2.5 and Corollary 3.4 we
have that

rank [T ∗ϕ, Tϕ] = deg(k) = rank [T ∗ϕθ1
, Tϕθ1

].

For the other case we will show that if rank [T ∗ϕθ1
, Tϕθ1

] < deg(θ1) then rank [T ∗ϕ, Tϕ] <

deg(θ1). To prove this suppose rank [T ∗ϕθ1
, Tϕθ1

] < deg(θ1). By Corollary 3.4, E(ϕθ1) has
exactly one element. Since E(ϕ) ⊆ E(ϕθ1), E(ϕ) also consists of one element and hence by
Lemma 2.5 we have that

rank [T ∗ϕ, Tϕ] = rank [T ∗ϕθ1
, Tϕθ1

] < deg(θ1).

This completes the proof. ¤

Corollary 3.6. Suppose that ϕ is a trigonometric polynomial of the form ϕ(z) =
∑N

n=−N anzn,
where a−N and aN are nonzero. Let ϕj := Tzj ϕ + Tzj ϕ. If Tϕ is hyponormal then Tϕj is
hyponormal for each j = 0, 1, 2, · · · , N . In the cases where Tϕ is hyponormal we have

rank [T ∗ϕj
, Tϕj ] =

{
N − j if rank [T ∗ϕ, Tϕ] ≥ N − j

rank [T ∗ϕ, Tϕ] if rank [T ∗ϕ, Tϕ] < N − j.

Proof. This follows at once from Theorem 3.5. ¤

Acknowledgement. The authors are grateful to the referee for several helpful suggestions.
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