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Abstract. In this paper we consider the self-commutators of Toeplitz operators T, with
rational symbols ¢ using the classical Hermite-Fejér interpolation problem. Our main the-
orem is as follows. Let ¢ = g+ f € L™ and let f = 0a and g = 6b, where 0 is a finite
Blaschke product of degree d and a,b € H(0) := H> © 0H?. Then H() is a reducing sub-
space of [T},T,], and [T;,T,] has the following representation relative to the direct sum

H(0) @ H(0)*:
(2. T,] = Aa)* WM ()W Ala) €D O

where A(a) := Pyg)Ma |19y (M, is the multiplication operator with symbol a), W is the
unitary operator from C? onto H(6) defined by W := (¢1,--+ ,¢4) ({¢;} is an orthonormal
basis for H(#)), and M (p) is a matrix associated with the classical Hermite-Fejér interpo-
lation problem. Hence, in particular, T, is hyponormal if and only if M(yp) is positive.
Moreover the rank of the self-commutator [T7;,7,] is given by rank [T7;, T,;] = rank M ().

1 Introduction

For ¢ in L®(T) of the unit circle T = 9D, the Toeplitz operator with symbol ¢ is the operator
T,, on the Hardy space H?(T) of the unit circle given by

Tof = P(of) (f € HX(T)),

where P denotes the orthogonal projection that maps L?(T) onto H?(T). A bounded linear
operator A is called hyponormal if its self-commutator [A*, A] := A*A — AA* is positive
(semidefinite). Normal Toeplitz operators were characterized by a property of their symbols
in the early 1960’s by A. Brown and P. Halmos [BH] and 25 years passed before the exact na-
ture of the relationship between the symbol ¢ € L and the positivity of the self-commutator
[T, T,] was understood (via Cowen’s theorem [Co]). We shall employ an equivalent variant
of Cowen’s theorem [Co], that was first proposed by Nakazi and Takahashi [NT].
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Cowen’s Theorem. For p € L, write
E(p) ={ke H® : ||k||loo <1 and ¢ — kp € H*}.

Then T, is hyponormal if and only if £(yp) is nonempty.

Cowen’s theorem is to recast the operator-theoretic problem of hyponormality for Toeplitz
operators into the problem of finding a solution with specified properties to a certain func-
tional equation involving the operator’s symbol. This approach has been put to use in
the works [CL], [FL], [Gul], [Gu2], [GS], [HL], [NT], [Zhu] to study Toeplitz operators on
H?(T). Particular attention has been paid to Toeplitz operators with polynomial symbols.
In particular, K. Zhu [Zhu] has applied Cowen’s criterion and Schur’s algorithm [Sch] to the
Schur function ® 5 to obtain an abstract characterization of those polynomial symbols that
correspond to hyponormal Toeplitz operators.

On the other hand, a function ¢ € L is said to be of bounded type (or in the Nevanlinna
class) if there are functions 11,9 in H*°(ID) such that

_ ()
P2(2)

for almost all z in T. Evidently, rational functions in L* are of bounded type. In this
paper we present an explicit description of the self-commutators of Toeplitz operators with
bounded type symbols associated with a finite Blaschke product (or equivalently, rational
symbols).

¢(2)

2 Preliminaries and auxiliary lemmas

Let J be the unitary operator on L? defined by

J(f)(2) =Zf(2).

For ¢ € L™, the operator on H? defined by

Hof = J(I = P)(pf)

is called the Hankel operator H, with symbol ¢. If we define the function v by v(z) := v(Z),
then H, can be viewed as the operator on H? defined by

(1.1) (zuv, ) = (Hyu,v) for allv e H™.

The following is a basic connection between Hankel and Toeplitz operators ([Ni]):
Top —T,Ty = HzHy (p,9 € L) and HpTh = Hyp =TgH, (h€ H™).

From this we can see that if £ € £(p) then

[15,T,) = HsHy — HiH, = HiHy — HyisHip = H(1 — TeT7) Hy.
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If 0 is an inner function, the degree of 6, denoted by deg(f), is defined as n if 6 is a finite
Blaschke product of the form

0(z) = e’ i i|<1forj=1,---,n),
@=cTI{gh  (sl<imon )

otherwise the degree of 6 is infinite. For an inner function 6, write
H(0) := H? © 6H>.

Note that ker Hy = §H? and ran Hj = H(0). It was shown [Ab, Lemma 6] that if T, is
hyponormal and ¢ is not in H* then

v is of bounded type <= P is of bounded type.
In [Ab], it was also shown that
¢ is of bounded type <= ker H, # {0} <= ¢ = 0b,

where # is an inner function and b € H satisfies that the inner parts of b and 6 are coprime.
So we have

(1.2) ker Hy, = 0H? and clran Hy, = H(6).

On the other hand, when we study the hyponormality of Toeplitz operators T, with symbols
¢, we may assume that ¢(0) = 0 because the hyponormality of an operator is invariant
under translation by scalars. Thus if ¢ = g+ f € L* (f,g € H?), then we will assume
that f(0) = ¢g(0) = 0 throughout the paper. Therefore we can see (cf. [GS], [Gu2]) that if
=g+ f € L>® (f,g € H?) is of bounded type and T, is hyponormal then we can write

(13) f=610a and g=60b
for some inner functions ; and 05, where a € H(6162) and b € H(6,).

To prove the main result we need several auxiliary lemmas. The first lemma gives a way
to compute the rank of a product of two Hankel operators.

Lemma 2.1 (Axler-Chang-Sarason Theorem [ACS]). For ¢, € L™,

rank (H;Hy) = min{rank (H,), rank (Hy)}.

The next result is a characterization of hyponormal Toeplitz operators whose self-commutator
is of finite rank.

Lemma 2.2 (Nakazi-Takahashi Theorem [NT]). A Toeplitz operator T,, is hyponormal
and [T;,TSD] 18 a finite rank operator if and only if there exits a finite Blaschke product k in
E(p). In this case, we can choose k such that deg (k) = rank [T}, T,].

For a subspace M of H?, let Py be the orthogonal projection onto M. Then we have:
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Lemma 2.3. If f = 0,07a fOT’ a <€ H(9102) then

02 Py, pi2(f) = P(61@) = 01 Pyp,)(a) + ¢ for some constant c.

Proof. Let g € H? be arbitrary. Then
(02Pp,12(f), 9) = (Po,r>(0102a), O29) = (01620, b29) = (P(61a), g).

Therefore we have that P(61@) = 03Py, p2(f). For the second equality, let ay := Pyq,)(a)
and as := a — a;. Then we have

But since H(0162) = H(01) ® 61H(h2) for inner functions #; and 6o, it follows that as €

01H(02). Therefore we can conclude that P(6i1az) € P(H(#2)) € C. This completes the
proof. O

Lemma 2.4. Let o =g+ f € L. If f = 01602a and g = 61b for a € H(0162) and b € H(y),
then 01 H(02) C ran [Ty, Ty C H(0102).

Proof. Observe that

(2.1) (17, T,] = HiHy — HyHy = HY - Hyo — Hy Hi,
Since clran (H;lTQaHma) = clran Hy - = H(6102) and clran (H;ijEb) = H(6,), we can
see that 917‘((02) Q ran [T;7Tg0] Q H(Qlez) O

Lemma 2.5. Let ¢ =g+ f € L™, where f and g are in H?. If ¢ is of bounded type and
T, 1is hyponormal then

rank [T, T,] = min {deg(k) : k is an inner function in E(p)}.

Proof. 1f ¢ is of bounded type such that T, is hyponormal then £(¢) contains at least an
inner function (see [Le]). If £(¢) has no finite Blaschke product then by Lemma 2.2 we have
that for all k in £(p), rank [T5;,T,] = oo = deg (k). If instead £(p) has a finite Blaschke
product then it suffices to show that there exists an inner function k in £(y) such that
rank (Hy) < rank(Hy). We assume to the contrary that rank (Hy) < rank (Hp) for all inner

f
functions k in £(y). Since k is an inner function we have that

(15, T,] = H}Hf — H;Hg = H}Hf — H;:?Hk? = H}HEH%HF
By Lemma 2.1 we see that

rank [T, T,,| = rank (H%HE) = min {rank (Hy), rank (Hp)}.

But since rank (H7) < deg(k), it follows that rank [T7,T,] < deg(k), which contradicts

Lemma 2.2. This completes the proof. O

The following lemma is a slight extension of [Gu2, Corollary 3.5], in which the rank of the
self-commutator is finite.



Lemma 2.6. Let o =G+ f € L>, where f and g are in H?. Assume that

(22) f=0610a and g=06b
for a € H(0102) and b € H(01). Let ¢ := 01Pyp,)(a) +g. Then T, is hyponormal if and
only if Ty, 1s. Moreover, in the cases where T, is hyponormal,

rank [T7, T,] = deg (02) + rank [T}, Tyy].

Proof. The first assertion follows at once from [Gu2, Corollary 3.5] together with Lemma
2.3.

For the rank formula, note that £(¢) = {k162 : k1 € E(¢0)}. Therefore by Lemma 2.5 we
have that rank [T, T,,] = deg(2) + rank [T}, Ty]. O

3 Main results

In view of Lemma 2.6, when we study the hyponormality of Toeplitz operators with bounded
type symbols ¢, we may assume that the symbol ¢ =g+ f € L™ is of the form

(3.1) f=0a and g=0b,

where 6 is an inner function and a,b € H(f#) such that the inner parts of a,b and 6 are
coprime.

On the other hand, if ¢ = g+ f € L, where f and g are rational functions then we
can show that ¢ can be written in the form (3.1) with a finite Blaschke product 6. C. Gu
[Gul] showed that if ¢ = g+ f € L, where f and g are rational functions then the problem
determining the hyponormality of T, is exactly the tangential Hermite-Fejér interpolation
problem. By comparison, using the classical Hermite-Fejér interpolation problem, we will
give an explicit description of the self-commutator [T;, T,].

To begin with, let 8 be a finite Blaschke product of degree d. We can write

(3.2) 6 =e* ﬁ (E)mk (where By := S )
k=1

1—ogz’

So d =Y, _, mi. For our purpose, rewrite 6 as in the form 6 = et H;l:l Bj, where

k—1 k
B; =B if Zml <7J §Zml
1=0 1=0
and, for notational convenience, mg := 0. For example, the first Balschke product /3; is
repeated m; times and so on. Let
4q;j :
3.3 =—*—B, 1B 5---B 1<5<d
(3:3) ; 1_@231]2 1 (1<) <d),
where ¢1 == ¢1(1 —a72z)"! and ¢; = (1 — |ozj|2)%. It is well known that {¢,}¢ is an

orthonormal basis for H(6) (cf. [FF,Theorem X.1.5]).



Let o =g+ f € L, where g = 0b and f = 6a for a,b € H(0) and write
Clp):={k€e H® :p—kp e H®}.
Then k is in C(¢p) if and only if b — kfa € H?, or equivalently,
(3.4) b—kacOH?

Note that (™ (a;) = 0 for all 0 < n < m;. Thus the condition (3.4) is equivalent to the
following equation: for all 1 <i <mn,
1

ki,O a;.0 0 0 0 s 0 - bi,O
kiq a;,1 a;.0 0 o .- 0 b1
ki ai,2 aip  aio 0 -+ 0 bio
(3.5) - ,
Rim;—2 Gimi—2 Gim;—3 - - aig 0 bi,mi—2
Kim;—1 Aim;—1  Aim;—2 -+ Qi2 Qi1 Q40 bi,m;—1
where ) ¥ )
kY9 (o aV) (o bV (o
i,j = (' ), Qi 5 = (' ) and b@j = ,(' )
J: J: J:
Thus k is in C(yp) if and only if & is a function in H*® for which
G
4!

where the k; ; are determined by the equation (3.5). If in addition ||k||oc < 1 is required
then this is exactly the classical Hermite-Fejér interpolation problem.
To construct a polynomial k(z) = p(z) satisfying (3.6), let p;(z) be the polynomial of

order d — m; defined by
pi(z) = H (;—_C:fk)mk.

k=1
ki

Also consider the polynomial p(z) of degree d — 1 defined by

n

(3.7)  p(z):= Z(k;,o + k;,l(z — ;) + k§,2(2 - az‘)z +eeet k;,mi—l(z - ai)mi_1> pi(2),
i=1

where the k; ; are obtained by the following equations:
Sk ()
kg’j:kij_kzw (1<i<n; 0<j<m;) and k‘é’ozk‘w (1<i<n).
=0
Then p(z) satisfies (3.6) (See [FF]). But p(z) may not be contractive.
On the other hand, if ¢ is a function in H*, let A(¢)) be the operator on H(#) defined dy

(3.8) A() = Pro)My |n0)
where My, is the multiplication operator with symbol 7). Now let W be the unitary operator
from C? onto H(6) defined by

W= (¢1, 02, , a),

where the ¢; are the functions in (3.3).

We then have:
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Lemma 3.1. ([FF, Theorems X.1.5 and X.5.6]) Let 6 be the Blaschke product in (3.2) and
let {¢;}{ be the orthonormal basis for H() in (3.3). Then A(z) = P\ M. |1(0) is unitarily
equivalent to the lower triangular matriz M on C¢ defined by

oq 0 0 0 0 0
q192 (e% 0 0 0 0
—q101q3 4293 Qs 0 0 0
q102003q4 —(q20i3q4 4394 oy 0 0
—(q10200300445 (200300445 —q3004q5 G495 as 0
: : : . . . 0

(_1)d Hdilf (_1)d—1 Hdilf — a1
T j=2 %3 | dd 42 j=3 %5 | dd dd—20d—19d qd—19d 4

Moreover, if p is a polynomial defined in (3.7) then A(p)W = Wp(M).

Our main theorem now follows:

Theorem 3.2. Let ¢ =g+ f € L™ and let f = 0a and g = 0b, where 0 is a finite Blaschke
product and a,b € H(0). Then H(0) is a reducing subspace of [T3;,T,], and [T}, T,] has the

following representation relative to the direct sum H(0) ® H(0)*:
(39) (T3, T,] = Ala) WM ()7 Ala) D) 0

where A(a) is invertible and M(p) := Iygy — p(M)*p(M). Hence, in particular, T, is
hyponormal if and only if M (¢) is positive. Moreover the rank of the self-commutator [T, T,]
s given by

rank [T7,T,] = rank M ().

Proof. From the proof of Lemma 2.4 we can see that ran [T;.T,] C H(¢). Therefore H(0) is
a reducing subspace of [T, T,].

Towards the equality (3.9), let u and v be in H(#). Suppose k = p is a polynomial in
(3.7). Since ker Hy = 9H?, we have that Hgu = Hg(Ppg)(ku)). Note that HZ Hy is the
projection onto H(#). Thus we have that

<H§§H§ku7 v) = (Hgu, Hg,v)
(310) = <PH(9)]C’LL, Pf)-((g)k’l}>
= (A(k)u, A(k)v).
Thus by Lemma 3.1 we have that
(3.11) Hogg Hyy lru(0) = A(K)" A(k) = WE(M) k(M)W
Hence by (3.11) we get

(Hy Hg — Hgo Hy ) (o) = W (Irgo) — k(M) k(M) W™
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Since k satisfies the equality (3.5) and hence ¢ — kg € H™, it follows that
T35, Tollroy = (HpHy — Hy Hg) o)
= (H7Hy — Hy7H 7))
= (HgaHaa - HZ%Hk?a) |H(9)
= T, (Hg Hg — Hg, Hgy ) Tul o)
= A(a) W (Ino) — p(M)"p(M))W* A(a)
= A(a)" WM(p)W" A(a),
which gives (3.9).
For the invertibility of A(a), suppose A(a)* f = 0 for some f € H(f). Then Py (af) =0
and hence
af =06g for some g € H?,
or equivalently, @df = g. Note that f € H2" and hence adf ¢ H2 N H? = {0}. Thus we

have f = 0, which implies that A(a)* is 1-1. Since A(a) is a finite dimensional operator,
A(a) is invertible. This completes the proof. O

Example 3.3. C. Gu [Gul] showed that if ¢ = f 4+ g € L, where f and g are rational
functions then the problem determining the hyponormality of T, is exactly the tangential
Hermite-Fejér interpolation problem. In fact we can show that this problem is equivalent
to our problem. However our solution has an advantage which gives an explicit description
of the self-commutator [T}, T,] even though this method is not simpler than the method of
[Gul]. To see this consider the function ¢ = g+ f, where

— 3 -3 13 z—32 2-1 5
f(z):=3 —fz+ —l3z+€ and g(z)::1—122+1—13z+6'
2 3 2 3
Thus if 6 := 12_15 IZ_ 2 then
1 1 1 1 1 1 1 1
-3 z—5 13z—35 z—3 z—3 zZ—3 bz—35 z—3
a:=3 3+2 2_+_7 2 3 and b := 3+ 2_’_7 2 3
1—%7: 1—%2 61—%2 1—%,2 1—%,2 1—%2 61—%2 1—§z

are in H(#), and f = 6a and g = 6b. So a straightforward calculation shows that p(z)

1
5 0
satisfying (3.8) is given by p(z) = —z + 2 and M = ( \% > Thus we have that

1
3 3
. 10 T 3 X
M(so):zl—p(M)p(M)=<O 1)-( Ve 16>=<? A
6 1 VG
Since ¢ = @ 1_1%Z and ¢o = 2‘3/5 1_1%2 . f_}i form a basis for H(6), we have that
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By comparison, the tangential Hermite-Fejér matrix induced by ¢ is given by (using the
notations in [Gul])

0 0 O
ATA-BTB=|0 24 24
0 24 24

Corollary 3.4. Let o =g+ f € L™ and let f = 0a and g = 0b, where 0 is a finite Blaschke
product and a,b € H(0). If T, is hyponormal and rank [T3;,T,] < deg(0) then E(p) has
exactly one element.

Proof. Suppose rank([T3;, T,]) < deg(#). By Theorem 3.2 we have that
rank (I3g) — p(M)*p(M)) < deg ().

Therefore the norm of p(M) should be one. By an argument of [FF, p.302] - there exists a
unique solution & to (3.7) such that ||k||c < 1 if and only if |[p(M)|| = 1, £(¢) has exactly
one element. O

Theorem 3.5. Let ¢ =g+ f € L™ and let f = 0a and g = b, where 0 is a finite Blaschke
product and a,b € H(0). Let 01 be a factor of 6 and let

o, = 971P'H(91)<b) + 91P’H(91)(a)'
If T, is hyponormal then Ty, is. Moreover, in the cases where Ty, is hyponormal, the rank

of [T;BI’TSDGJ is given by

rank [T, Ty,

| = { rank [T, T,] if rank [T, T,] < deg (61)
deg (61) if rank [T}, T,] > deg (61).

Proof. Let ay := Py g,)(a), by := Pyyp,)(b), az := a—ay and by := b—0by. If T, is hyponormal
then by Cowen’s theorem there exists a function k € H* with ||k||c < 1 for which

0b — kfa = h for some h € H?,
or equivalently,

5(191 + by — k‘(CLl + ag)) =h<— 5(()1 — kal) — a(bg — kag) =h
<~ E(bl — l{:al) — a(bg — k)ag) = 05h,

where 6 := 016>. Since by and by are orthogonal and b; € H(61), it follows that by € 6 H2.
Thus 01b, € H?. Similarly, we have that §;as € H?. Therefore we have that

E(bl — kal) = E(bg — kag) + 62h € HQ,

or

01 Pry(p,)(b) — kb1 Pyy(p,y(a) € H?.
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Therefore by Cowen’s theorem T, is hyponormal.

For the rank formula, suppose that rank [T}, T,] < deg(f1). By the Nakazi-Takahashi
theorem, there exists a finite Blaschke product & € H* such that deg(k) = rank [T}, T,,] <
deg(f1). Since E(p) C E(ypp,) it follows k € E(pp,). By Lemma 2.5 and Corollary 3.4 we
have that

rank [T, T,] = deg(k) = rank [T;gl,ngl].

For the other case we will show that if rank [T} ,T,, ] < deg(f1) then rank[T7,T,] <
deg(01). To prove this suppose rank [T;, Ty, ] < deg(61). By Corollary 3.4, £(pp,) has
exactly one element. Since E(¢) C E(py,), E(¢) also consists of one element and hence by

Lemma 2.5 we have that

rank [T, Ty] = rank [T, , Ty, | < deg(f1).

®oq’
This completes the proof. O
Corollary 3.6. Suppose that ¢ is a trigonometric polynomial of the form p(z) = Z,]j:_N anz",
where a_n and ay are nonzero. Let p; = Tzip + Tz, If T, is hyponormal then T, is
hyponormal for each j =0,1,2,--- ,N. In the cases where T, is hyponormal we have
N—3 if rank|[T* T, ] >N —j
rank [T, T,,] = J f [T5: Tl 2 J
i rank [T, T, ] if rank [T3;,T,] < N — j.
Proof. This follows at once from Theorem 3.5. 0
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