Quadratic hyponormality and 2-hyponormality for Toeplitz operators

Sang Hoon Lee and Woo Young Lee

Abstract

In this note we prove the conjecture given in [CLL]: Let $0<\alpha<1$ and let ψ be the conformal map of the unit disk onto the interior of the ellipse with vertices $\pm(1+\alpha) i$ and passing through $\pm(1-\alpha)$. If $\varphi=\psi+\lambda \bar{\psi}$ then T_{φ} is quadratically hyponormal if and only if T_{φ} is 2 -hyponormal.

Mathematics Subject Classification (2000). Primary 47B20, 47B35; Secondary 47B37.
Keywords. Toeplitz operators, subnormal, 2-hyponormal, quadratically hyponormal.

Let $\mathcal{L}(\mathcal{H})$ denote the algebra of bounded linear operators acting on a complex Hilbert space \mathcal{H}. An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be normal if $T^{*} T=T T^{*}$, hyponormal if $T^{*} T \geq T T^{*}$, and subnormal if T has a normal extension, i.e., $T=\left.N\right|_{\mathcal{H}}$, where N is a normal operator on some Hilbert space $\mathcal{K} \supseteq \mathcal{H}$. Evidently, normal \Rightarrow subnormal \Rightarrow hyponormal. Recall that the Hilbert space $L^{2}(\mathbb{T})$ has a canonical orthonormal basis given by the trigonometric functions $e_{n}(z)=z^{n}$, for all $n \in \mathbb{Z}$, and that the Hardy space $H^{2}(\mathbb{T})$ is the closed linear span of $\left\{e_{n}\right.$: $n=0,1, \cdots\}$. An element $f \in L^{2}(\mathbb{T})$ is said to be analytic if $f \in H^{2}(\mathbb{T})$, and co-analytic if $f \in L^{2}(\mathbb{T}) \ominus H^{2}(\mathbb{T})$. If P denotes the orthogonal projection from $L^{2}(\mathbb{T})$ to $H^{2}(\mathbb{T})$, then for every $\varphi \in L^{\infty}(\mathbb{T})$ the operators T_{φ} on $H^{2}(\mathbb{T})$ defined by

$$
T_{\varphi} g:=P(\varphi g) \quad\left(g \in H^{2}(\mathbb{T})\right)
$$

is called the Toeplitz operator with symbol φ.
The Bram-Halmos criterion for subnormality states that an operator T is subnormal if and only if

$$
\sum_{i, j}\left(T^{i} x_{j}, T^{j} x_{i}\right) \geq 0
$$

[^0]for all finite collections $x_{0}, x_{1}, \cdots, x_{k} \in \mathcal{H}$ ([Bra],[Con, II.1.9]). It is easy to see that this is equivalent to the following positivity test:
\[

\left($$
\begin{array}{cccc}
I & T^{*} & \cdots & T^{* k} \tag{0.1}\\
T & T^{*} T & \cdots & T^{* k} T \\
\vdots & \vdots & \ddots & \vdots \\
T^{k} & T^{*} T^{k} & \cdots & T^{* k} T^{k}
\end{array}
$$\right) \geq 0 \quad(all k \geq 1)
\]

Condition (0.1) provides a measure of the gap between hyponormality and subnormality. In fact, the positivity condition (0.1) for $k=1$ is equivalent to the hyponormality of T, while subnormality requires the validity of (0.1) for all k. If we denote by $[A, B]:=A B-B A$ the commutator of two operators A and B, and if we define T to be k-hyponormal whenever the $k \times k$ operator matrix

$$
M_{k}(T):=\left(\left[T^{* j}, T^{i}\right]\right)_{i, j=1}^{k}
$$

is positive, or equivalently, the $(k+1) \times(k+1)$ operator matrix in (0.1) is positive (via the operator version of Choleski's Algorithm), then the Bram-Halmos criterion can be rephrased as saying that T is subnormal if and only if T is $k-$ hyponormal for every $k \geq 1$ ([CMX]).

Recall ([Ath], [CMX],[CoS]) that $T \in \mathcal{L}(\mathcal{H})$ is said to be weakly k-hyponormal if

$$
L S\left(T, T^{2}, \cdots, T^{k}\right):=\left\{\sum_{j=1}^{k} \alpha_{j} T^{j}: \alpha=\left(\alpha_{1}, \cdots, \alpha_{k}\right) \in \mathbb{C}^{k}\right\}
$$

consists entirely of hyponormal operators. If $k=2$ then T is called quadratically hyponormal, and if $k=3$ then T is said to be cubically hyponormal. Similarly, $T \in \mathcal{L}(\mathcal{H})$ is said to be polynomially hyponormal if $p(T)$ is hyponormal for every polynomial $p \in \mathbb{C}[z]$. It is known that k-hyponormal \Rightarrow weakly k-hyponormal, but the converse is not true in general. The classes of (weakly) k-hyponormal operators have been studied in an attempt to bridge the gap between subnormality and hyponormality (cf. [Cu1], [Cu2], [CuF], [CuL1], [CuL2], [CMX], [DPY], [McCP]).

On the other hand, P.R. Halmos ([Hal]) suggested the following problem (Halmos's Problem 5):

Is every subnormal Toeplitz operator either normal or analytic?
As we know, this problem was answered in the negative by C. Cowen and J. Long [CoL]. They constructed a symbol φ for which T_{φ} is unitarily equivalent to a weighted shift.

Theorem 1. ([CoL],[Cow2]) Let $0<\alpha<1$ and let ψ be a conformal map of the unit disk onto the interior of the ellipse with vertices $\pm(1+\alpha) i$ and passing through $\pm(1-\alpha)$. If $\varphi=\left(1-\alpha^{2}\right)^{-1}(\psi+\alpha \bar{\psi})$, then T_{φ} is subnormal but neither normal nor analytic.

Directly connected with the Halmos's Problem 5 is the following problem:
Which Toeplitz operators are subnormal ?
As a first inquiry we posed the following question in [CuL1], [CuL3]:
Is every 2-hyponormal Toeplitz operator subnormal?
In [CuL1] it was shown that every 2-hyponormal Toeplitz operator with a trigonometric polynomial symbol is subnormal. However the question (1.1) was answered in the negative in [CLL]: there is a gap between 2-hyponormality and subnormality for Toeplitz operators. This answer also uses the symbol constructed in [CoL].

Theorem 2. ([CLL, Theorem 6]) Let $0<\alpha<1$ and let ψ be the conformal map of the unit disk onto the interior of the ellipse with vertices $\pm(1+\alpha) i$ and passing through $\pm(1-\alpha)$. Let $\varphi=\psi+\lambda \bar{\psi}$ and let T_{φ} be the corresponding Toeplitz operator on H^{2}. Then
(i) T_{φ} is hyponormal if and only if λ is in the closed unit disk $|\lambda| \leq 1$.
(ii) T_{φ} is subnormal if and only if $\lambda=\alpha$ or λ is in the circle $\left|\lambda-\frac{\alpha\left(1-\alpha^{2 k}\right)}{1-\alpha^{2 k+2}}\right|=$ $\frac{\alpha^{k}\left(1-\alpha^{2}\right)}{1-\alpha^{2 k+2}}$ for $k=0,1,2 \cdots$.
(iii) T_{φ} is 2-hyponormal if and only if λ is in the unit circle $|\lambda|=1$ or in the closed disk $\left|\lambda-\frac{\alpha}{1+\alpha^{2}}\right| \leq \frac{\alpha}{1+\alpha^{2}}$.

We were tempted to consider the gap between quadratic hyponormality and 2-hyponormality for Toeplitz operators. So in [CLL], we proposed the following:
Conjecture. In Theorem 2, we have that T_{φ} is quadratically hyponormal if and only of T_{φ} is 2-hyponormal.

In the sequel we prove the above conjecture. We begin with:
Lemma 3. Let T be a weighted shift. Then $T+\lambda T^{*}$ is (weakly) k-hyponormal if and only if $T+|\lambda| T^{*}$ is (weakly) k-hyponormal.

Proof. This follows from the observation that $T+\lambda T^{*}$ is unitarily equivalent to $e^{\frac{i \theta}{2}}\left(T+|\lambda| T^{*}\right)$ with $|\lambda|=\lambda e^{-i \theta}($ cf. [Cow1, Lemma 2.1]).

We now have:
Theorem 4. For $0<\alpha<1$, let $T \equiv W_{\beta}$ be the weighted shift with weight sequence $\beta=\left\{\beta_{n}\right\}_{n=0}^{\infty}$, where

$$
\begin{equation*}
\beta_{n}:=\left(\sum_{j=0}^{n} \alpha^{2 j}\right)^{\frac{1}{2}} \tag{4.1}
\end{equation*}
$$

If $S_{\lambda}:=T+\lambda T^{*}(\lambda \in \mathbb{C})$, then
(i) S_{λ} is hyponormal if and only if $|\lambda| \leq 1$.
(ii) S_{λ} is subnormal if and only if $\lambda=0$ or $|\lambda|=\alpha^{k}$ for some $k=0,1,2, \cdots$.
(iii) S_{λ} is 2-hyponormal if and only if $|\lambda|=1$ or $|\lambda| \leq \alpha$.
(iv) S_{λ} is quadratically hyponormal if and only if $|\lambda|=1$ or $|\lambda| \leq \alpha$.

Proof. The statements (i) - (iii) are known from [Cow1,Theorem 2.3] and [CLL, Theorem 5]. Thus it suffices to focus on the assertion (iv). Let D be the diagonal operator, $D:=\operatorname{diag}\left(\alpha^{n}\right)$ Then we have

$$
\left[T^{*}, T\right]=D^{2} \quad \text { and } \quad\left[S_{\lambda}^{*}, S_{\lambda}\right]=\left(1-|\lambda|^{2}\right)\left[T^{*}, T\right]=\left(1-|\lambda|^{2}\right) D^{2}
$$

Define

$$
A_{l}:=\alpha^{l} T+\frac{\lambda}{\alpha^{l}} T^{*} \quad(l=0, \pm 1, \pm 2, \cdots)
$$

Then we have

$$
\begin{equation*}
D A_{l}=A_{l+1} D \quad \text { and } \quad A_{l}^{*} D=D A_{l+1}^{*} \quad(l=0, \pm 1, \pm 2, \cdots) \tag{4.2}
\end{equation*}
$$

Towards statement(iv), observe that if $|\lambda|=1$ or $|\lambda| \leq \alpha$ then by (iii) S_{λ} is quadratically hyponormal.

For the converse, we may assume $\lambda \geq 0$, in view of Lemma 3 . We suppose that S_{λ} is quadratically hyponormal and $\lambda \neq 1$. We must show that $\lambda \leq \alpha$. Evidently, $\left[S_{\lambda}^{* 2}, S_{\lambda}^{2}\right] \geq 0$. Write

$$
\begin{aligned}
C & :=\frac{1}{1-\lambda^{2}}\left[S_{\lambda}^{* 2}, S_{\lambda}^{2}\right] \\
V & :=\left(1+\alpha^{2}\right)\left[T^{*}, T\right]^{\frac{1}{2}}\left(\frac{\lambda}{\alpha^{2}} T+T^{*}\right)
\end{aligned}
$$

Note that

$$
V=\frac{1+\alpha^{2}}{\alpha} D A_{1}^{*}
$$

Then a straightforward calculation shows that (cf. [CLL, Proof of Theorem 5])

$$
C-V^{*} V=\frac{\left(1+\alpha^{2}\right)\left(\alpha^{2}-\lambda^{2}\right)}{\alpha^{2}}\left[T^{*}, T\right]^{2}
$$

Thus we have that by (4.2)

$$
\begin{aligned}
{\left[S_{\lambda}^{* 2}, S_{\lambda}^{2}\right] } & =\left(1-\lambda^{2}\right) C \\
& =\left(1-\lambda^{2}\right)\left(V^{*} V+\frac{\left(1+\alpha^{2}\right)\left(\alpha^{2}-\lambda^{2}\right)}{\alpha^{2}}\left[T^{*}, T\right]^{2}\right) \\
& =\left(1-\lambda^{2}\right)\left(\frac{\left(1+\alpha^{2}\right)^{2}}{\alpha^{2}} A_{1} D^{2} A_{1}^{*}+\frac{\left(1+\alpha^{2}\right)\left(\alpha^{2}-\lambda^{2}\right)}{\alpha^{2}} D^{4}\right) \\
& =\frac{\left(1-\lambda^{2}\right)\left(1+\alpha^{2}\right)^{2}}{\alpha^{2}} D\left(S_{\lambda} S_{\lambda}^{*}+\frac{\alpha^{2}-\lambda^{2}}{1+\alpha^{2}} D^{2}\right) D
\end{aligned}
$$

From the observation that if D is positive and injective then $D T D \geq 0$ if and only if $T \geq 0$, we can see that

$$
\begin{aligned}
{\left[S_{\lambda}^{* 2}, S_{\lambda}^{2}\right] \geq 0 } & \Longleftrightarrow S_{\lambda} S_{\lambda}^{*}+\frac{\alpha^{2}-\lambda^{2}}{1+\alpha^{2}} D^{2} \geq 0 \\
& \Longleftrightarrow\left\langle\left(S_{\lambda} S_{\lambda}^{*}+\frac{\alpha^{2}-\lambda^{2}}{1+\alpha^{2}} D^{2}\right) x, x\right\rangle \geq 0 \quad \text { for all } x \in \ell_{2}
\end{aligned}
$$

Note that Ker S_{λ}^{*} is nontrivial: more precisely,

$$
\operatorname{Ker} S_{\lambda}^{*}=\bigvee\left\{\left(1,0,-\lambda \frac{\beta_{0}}{\beta_{1}}, 0, \lambda^{2} \frac{\beta_{0} \beta_{2}}{\beta_{1} \beta_{3}}, 0,-\lambda^{3} \frac{\beta_{0} \beta_{2} \beta_{4}}{\beta_{1} \beta_{3} \beta_{5}}, \cdots\right)\right\}
$$

So if we take $x(\neq 0) \in \operatorname{Ker} S_{\lambda}^{*}$, then

$$
\left\langle\left(S_{\lambda} S_{\lambda}^{*}+\frac{\alpha^{2}-\lambda^{2}}{1+\alpha^{2}} D^{2}\right) x, x\right\rangle=\frac{\alpha^{2}-\lambda^{2}}{1+\alpha^{2}}\|D x\|^{2}
$$

Thus if $\left[S_{\lambda}^{* 2}, S_{\lambda}^{2}\right] \geq 0$ then we have that $\frac{\alpha^{2}-\lambda^{2}}{1+\alpha^{2}}\|D x\|^{2} \geq 0$, and hence $\lambda \leq \alpha$, which proves the result.

We therefore have:
Corollary 5. Let $0<\alpha<1$ and let ψ be the conformal map of the unit disk onto the interior of the ellipse with vertices $\pm(1+\alpha) i$ and passing through $\pm(1-\alpha)$. If $\varphi=\psi+\lambda \bar{\psi}$ then T_{φ} is quadratically hyponormal if and only if T_{φ} is 2-hyponormal.
Proof. It was shown in [CoL] that $T_{\psi+\alpha \bar{\psi}}$ is unitarily equivalent to $\left(1-\alpha^{2}\right)^{\frac{3}{2}} T$, where T is the weighted shift in Theorem 4 . Thus T_{ψ} is unitarily equivalent to $\left(1-\alpha^{2}\right)^{\frac{1}{2}}\left(T-\alpha T^{*}\right)$, so T_{φ} is unitarily equivalent to

$$
\left(1-\alpha^{2}\right)^{\frac{1}{2}}(1-\lambda \alpha)\left(T+\frac{\lambda-\alpha}{1-\lambda \alpha} T^{*}\right) \quad(\text { cf. [Cow1, Theorem 2.4] })
$$

Therefore the result follows at once from Theorem 4.

We conclude with:
Problem 6. Find the values of λ for which S_{λ} in Theorem 4 is a cubically hyponormal operator. More generally, determine the set

$$
\mathfrak{H}_{k} \equiv\left\{\lambda \in \mathbb{C}: S_{\lambda} \text { is weakly } k \text {-hyponormal }\right\}
$$

$\operatorname{In}[\mathrm{CuP}]$ it was shown that there exists a non-subnormal polynomially hyponormal operator. Also in $[\mathrm{McCP}]$ it was shown that there exists a non-subnormal polynomially hyponormal operator if and only if there exists one which is a weighted shift although no concrete weighted shift has yet been found. We would be tempted to consider this gap for Toeplitz operators. At present we guess that, in Theorem 4,
S_{λ} is polynomially hyponormal $\Longleftrightarrow S_{\lambda}$ is 2-hyponormal.

If indeed this were true then we would get a concrete example of Toeplitz operator which is polynomially hyponormal but not subnormal. In fact, we were unable to decide whether or not there exists a non-subnormal polynomially hyponormal Toeplitz operator.

References

[Ath] A. Athavale, On joint hyponormality of operators, Proc. Amer. Math. Soc., 103(1988), 417-423.
[Bra] J. Bram, Subnormal operators, Duke Math. J., 22(1955), 75-94.
[Con] J. Conway, The Theory of Subnormal Operators, Mathematical Surveys and Monographs, vol. 36, Amer. Math. Soc., Providence, 1991.
[CoS] J.B. Conway and W. Szymanski, Linear combinations of hyponormal operators, Rocky Mountain J. Math. 18(1988), 695-705.
[Cow1] C. Cowen, More subnormal Toeplitz operators, J. Reine Angew. Math., 367(1986), 215-219.
[Cow2] C. Cowen, Hyponormal and subnormal Toeplitz operators, Surveys of Some Recent Results in Operator Theory, I (J.B. Conway and B.B. Morrel, eds.), Pitman Research Notes in Mathematics, 171(1988), 155-167.
[CoL] C. Cowen and J. Long, Some subnormal Toeplitz operators, J. Reine Angew. Math., 351(1984), 216-220.
[Cu1] R. Curto, Quadratically hyponormal weighted shifts, Integral Equations Operator Theory 13(1990), 49-66.
[Cu2] R. Curto, Joint hyponormality: A bridge between hyponormality and subnormality, Proc. Symposia Pure Math. 51(1990), 69-91.
[CuF] R. Curto and L. Fialkow, Recursively generated weighted shifts and the subnormal completion problem, Integral Equations Operator Theory 17(1993), 202-246.
[CLL] R. Curto, S.H. Lee and W.Y. Lee, Subnormality and 2-hyponormality for Toeplitz operators, Integral Equations Operator Theory, 44 (2002), 138-148.
[CuL1] R. Curto and W.Y. Lee, Joint hyponormality of Toeplitz pairs, Mem. Amer. Math. Soc., 150, no. 712, Providence, 2001.
[CuL2] R. Curto and W.Y. Lee, Towards a model theory for 2 -hyponormal operators, Integral Equations Operator Theory, 44(2002), 290-315.
[CuL3] R. Curto and W.Y. Lee, Subnormality and k-hyponormality of Toeplitz operators: A brief survey and open questions, Operator theory and Banach algebras (Rabat, 1999), 73-81, Theta, Bucharest, 2003.
[CMX] R. Curto, P. Muhly and J. Xia, Hyponormal pairs of commuting operators, Operator Theory: Adv. Appl. 35(1988), 1-22.
[CuP] R. Curto and M. Putinar, Nearly subnormal operators and moments problems, J. Funct. Anal. 115(1993), 480-497.
[DPY] R.G. Douglas, V.I. Paulsen, and K. Yan, Operator theory and algebraic geometry, Bull. Amer. Math. Soc. (N.S.) 20(1989), 67-71.
[Hal] P.R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc., 76(1970), 887-933.
[McCP] S. McCullough and V. Paulsen, A note on joint hyponormality, Proc. Amer. Math. Soc., 107(1989), 187-195.

Sang Hoon Lee
Department of Mathematics
Seoul National University
Seoul 151-742, Korea
e-mail: shlee@math.skku.ac.kr
Woo Young Lee
Department of Mathematics
Seoul National University
Seoul 151-742, Korea
e-mail: wylee@math.snu.ac.kr

[^0]: Supported by a grant (R14-2003-006-01000-0) from the Korea Research Foundation.

