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Abstract. In this article we introduce a notion of ‘division’ for rational functions and then
give a criterion for hyponormality of Tg+f (f, g are rational functions) in the cases where g
divides f . Furthermore we show that we may assume, without loss of generality, that g divides
f when we consider the hyponormality of Tg+f .

1 Introduction

A bounded linear operator A on a Hilbert space H is said to be hyponormal if its selfcom-
mutator [A∗, A] = A∗A − AA∗ is positive semidefinite. Recall that given ϕ ∈ L∞(T), the
Toeplitz operator with symbol ϕ is the operator Tϕ on the Hardy space H2(T) of the unit
circle T = ∂D in the complex plane C defined by

Tϕf = P (ϕ · f),

where f ∈ H2(T) and P denotes the orthogonal projection that maps L2(T) onto H2(T).
Normal Toeplitz operators were characterized by a property of their symbols in the early
1960’s by A. Brown and P. Halmos [BH]. The problem of determining which symbols induce
hyponormal Toeplitz operators was completely solved by C. Cowen [Co] in 1988. Here we
shall employ an equivalent variant of Cowen’s theorem that was proposed by T. Nakazi and
K. Takahashi in [NT].

Cowen’s theorem. ([Co], [NT]) Suppose that ϕ ∈ L∞(T) is arbitrary and put

E(ϕ) := {k ∈ H∞(T) : ||k||∞ ≤ 1 and ϕ− kϕ ∈ H∞(T)} .
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Then Tϕ is hyponormal if and only if the set E(ϕ) is nonempty.

Cowen’s method is to recast the operator-theoretic problem of hyponormality for Toeplitz
operators into the problem of finding a solution of a certain functional equation involving
its symbol.

A function ϕ ∈ L∞ is said to be of bounded type (or in the Nevanlinna class) if there are
functions ψ1, ψ2 in H∞(D) such that

ϕ(z) =
ψ1(z)
ψ2(z)

for almost all z in T. Evidently, rational functions in L∞ are of bounded type.
For an inner function θ, write

H(θ) := H2 ª θH2.

Note that kerHθ = θH2 and ran H∗
θ

= H(θ). It was shown [Ab, Lemma 6] that if Tϕ is
hyponormal and ϕ is not in H∞ then

ϕ is of bounded type ⇐⇒ ϕ is of bounded type.

In [Ab], it was also shown that

ϕ is of bounded type ⇐⇒ kerHϕ 6= {0} ⇐⇒ ϕ = θb,

where b ∈ H∞ and θ is an inner function such that the inner parts of b and θ are relatively
prime. Therefore we can see (cf. [GS], [Gu2]) that if ϕ = g + f (f, g ∈ H2) is of bounded
type and Tϕ is hyponormal then we can write

f = θ1θ2a and g = θ1b

for some inner functions θ1 and θ2, where a ∈ H(θ1θ2) and b ∈ H(θ1). Here we assume
that the inner parts of a and θ1θ2 are relatively prime and also the inner parts of b and θ1

are relatively prime.

Let θ be a finite Blaschke product of degree d. We can write

(1) θ = eiξ
n∏

i=1

Bni
i ,

where Bi(z) := z−αi

1−αiz
, (|αi| < 1), ni ≥ 1 and

∑n
i=1 ni = d. Let θ = eiξ

∏d
j=1 Bj and

each zero of θ be repeated according to its multiplicity. Note that this Blaschke product is
precisely the same Blaschke product in (1). Let

(2) φj :=
dj

1− αjz
Bj−1Bj−2 · · ·B1 (1 ≤ j ≤ d),

where φ1 := d1(1− α1z)−1 and dj := (1− |αj |2) 1
2 . It is well known that {φj}d

j=1 forms an
orthonormal basis for H(θ) (cf. [FF,Theorem X.1.5]).
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Let f ∈ H∞ be a rational function such that f(0) = 0. Then we may write

f = pm(z) +
n∑

i=1

li−1∑

j=0

aij

(1− αiz)li−j
(0 < |αi| < 1),

where pm(z) denotes a polynomial of degree m. Let

θ = zm
n∏

i=1

Bli
i ,

where Bi(z) := z−αi

1−αiz
. Observe that

aij

1− αiz
=

αiaij

1− |αi|2
( z − αi

1− αiz
+

1
αi

)
.

Letting a := θf , we can see that a ∈ H(θ) and f = θa. Thus if ϕ = g + f ∈ L∞, where
f and g are rational functions with f(0) = g(0) = 0 and if Tϕ is hyponormal, then we can
write

f = θ1θ2a, g = θ1b

for some finite Blaschke products θ1, θ2 and a ∈ H(θ1θ2) and b ∈ H(θ1), where the inner
parts of a and θ1θ2 are relatively prime and the inner parts of b and θ1 are relatively prime.

It was shown in [Zhu] that the hyponormality of Tϕ with polynomial symbols ϕ can be
reduced to a Carathéodory-Schur interpolation problem (also see [HL] for another criterion).
By comparison, it was observed in [Gu1] that the hyponormality of Tϕ with rational symbols
ϕ can be reduced to a tangential Hermite-Fejér interpolation problem. In this article we
define the division f

g for rational functions f, g and present a criterion for hyponormality
of Tg+f when g divides f , where f, g are rational functions. Furthermore we show that
the condition “g divides f” can be assumed without loss of generality when we study the
hyponormality of Tg+f .

2 Main Results

We need several auxiliary lemmas to understand the main results.

Lemma 1. If θ1 is a Blaschke product and θ2 is an inner function then

(3) H(θ1θ2) ⊂ H(θ1) · H(zθ2).

In particular, if θ1 and θ2 are finite Blaschke products then

(4) H(θ1θ2) = H(θ1) · H(zθ2).

Proof. We first observe that for any inner functions θ1 and θ2,

H(θ1θ2) = θ2H(θ1) +H(θ2),
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and hence

H(θ1) · H(zθ2) = H(θ1) ·
[
θ2H(z) +H(θ2)

]
= θ2H(θ1) +H(θ1) · H(θ2).

We now claim that if θ1 is a Blaschke product then

(5) H(θ2) ⊂ H(θ1) · H(zθ2).

Towards (5), let θ1 be a Blaschke product of degree N (possibly, infinite). Then we can
write

θ1 = eiξ1

N∏

i=1

Bi,

where Bi(z) = z−αi

1−αiz
(|αi| < 1). We write H2

0 := {zf : f ∈ H2} and L := {f : f ∈ L} for
L ⊂ L2(T). Then for any inner function θ,

(6) H(θ) = {f ∈ H2 : θf ∈ H2
0}.

Suppose f ∈ H(θ2). Then we have that

(1− α1z)f ∈ H(zθ2) ⇐⇒ zθ2(1− α1z)f ∈ H2
0

⇐⇒ zθ2f − θ2α1f ∈ H2
0 ,

which implies that f ∈ H(θ1) · H(zθ2). This proves (5). Hence from (5), we have that

H(θ2) ⊂ H(θ1) · H(zθ2) = θ2H(θ1) +H(θ1) · H(θ2),

which implies that H(θ1θ2) ⊂ H(θ1) · H(zθ2). This proves (3).
Further if θ1 and θ2 are finite Blaschke products then by (6), H(θ1) · H(zθ2) ⊂ H(θ1θ2),

which together with (3) proves (4). ¤

The inclusion (3) of Lemma 1 need not hold if θ1 is a singular inner function even though
θ2 is a finite Blaschke product. For example, if θ1 = e

z+1
z−1 and θ2 = z, then evidently,

1 ∈ H(θ1θ2), whereas 1 /∈ H(θ1) · H(zθ2). Indeed,

1 ∈ H(θ1) · H(zθ2) =⇒ 1 ∈ H(θ1) · (a + bz) for some a, b ∈ C
=⇒ 1

a + bz
∈ H(θ1)

=⇒ 1
1− cz

∈ H(θ1) for some |c| < 1

=⇒
〈
e

z+1
z−1 ,

1
1− cz

〉
= 0

=⇒ e
c+1
c−1 = 0,

a contradiction. Hence 1 /∈ H(θ1) · H(zθ2).
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Lemma 2. If θ is an inner function then

H(zθ) = {θc : c ∈ H(zθ)} = H2 ∩ {θc : c ∈ H2}.

Proof. Evidently, H(zθ) ⊇ {θc : c ∈ H(zθ)}. Note that

f ∈ H(zθ) =⇒ zθf ∈ H2
0 =⇒ f ∈ zθH2

0 =⇒ f ∈ θH2.

Therefore f = θc for some c ∈ H2 and hence c = θf . Observe that zθc = zθθf = zf ∈ H2
0 .

Thus c ∈ H(zθ), which proves the first equality. For the second equality, it suffices to prove
that if θc ∈ H2 then c ∈ H(zθ). This follows at once from the observation:

θc ∈ H2 =⇒ zθc ∈ H2
0 =⇒ c ∈ H(zθ),

which completes the proof. ¤

Lemma 3. Let f = θ1θ2a and g = θ1b for a ∈ H(θ1θ2) and b ∈ H(θ1). Then

f

g
∈ H(zθ2) ⇐⇒ a

b
∈ H(zθ2).

Proof. Write φ := f
g and ψ := a

b . Observe that φ = θ1θ2a

θ1b
= θ2ψ, which implies that

ψ = θ2φ. Note that
φ ∈ H2 ⇐⇒ θ2ψ ∈ H2 ⇐⇒ zθ2ψ ∈ H2

0 .

Therefore

φ ∈ H(zθ2) ⇐⇒ φ ∈ H2 and zθ2φ ∈ H2
0

⇐⇒ zθ2ψ ∈ H2
0 and ψ ∈ H2

⇐⇒ ψ ∈ H(zθ2).

¤

The following lemma is used in proving the main theorem.

Lemma 4. ([Gu2, Corollary 3.5]) Let ϕ = g + f ∈ L∞, where f = θ1θ2a and g = θ1b for
a ∈ H(θ1θ2) and b ∈ H(θ1). Let

ϕ′ := θ1b + θ1PH(θ1)(a).

Then Tϕ is hyponormal if and only if Tϕ′ is. Moreover, E(ϕ) = {kθ2 : k ∈ E(ϕ′)}.

Lemma 4 says that when we study the hyponormality of Toeplitz operators Tϕ with
bounded type symbols ϕ, we may assume that the symbol ϕ = g + f ∈ L∞ is of the form

f = θa and g = θb,
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where θ is an inner function and a, b ∈ H(θ).

In view of Lemmas 1 and 3 we can introduce a notion of “division” for rational functions.

Definition 5. Let f = θ1θ2a and g = θ1b for a ∈ H(θ1θ2) and b ∈ H(θ1), where the θi

are finite Blaschke products for i = 1, 2. We shall say that g divides f if f
g ∈ H(zθ2), or

equivalently, a
b ∈ H(zθ2).

We examine Definition 5 for the cases of polynomials. For example if f =
∑N

j=1 ajz
j

and g =
∑n

j=1 bjz
j , put

θ1 := zn, θ2 := zN−n, a :=
N−1∑

j=0

aN−jz
j , and b :=

n−1∑

j=0

bn−jz
j .

Then
f = θ1θ2a, g = θ1b, a ∈ H(θ1θ2), and b ∈ H(θ1).

Thus g divides f if and only if a
b ∈ H(zθ2) = H(zN−n+1), i.e., a

b =
∑N−n

j=0 cjz
j ∈

H(zN−n+1) for some cj (0 ≤ j ≤ N − n). This exactly coincides with the usual con-
cept of division for polynomials.

We then have:

Theorem 6. Let ϕ = g + f ∈ L∞, where f = θ1θ2a and g = θ1b for a ∈ H(θ1θ2) and
b ∈ H(θ1) with finite Blaschke products θ1 and θ2. If g divides f and ψ := a

b ∈ H(zθ2) then
the following are equivalent:

(i) Tϕ is hyponormal;
(ii) There exists a function k ∈ H∞ with ||k||∞ ≤ 1 such that kψ ∈ 1 + θ1H

2.

(iii) Tζ is hyponormal, where ζ = θ1 + θ1PH(zθ1)(ψ).
Moreover if Tϕ is hyponormal then |ψ(α)| ≥ 1 for each zero α of θ1. In particular, if
θ1 = θ2 then

(7) Tϕ is hyponormal ⇐⇒ Tθ1+θ1ψ is hyponormal.

Proof. (i) ⇔ (ii): Let ϕ′ := θ1PH(θ1)(a)+ g. Then by Lemma 4 we have that E(ϕ) = {kθ2 :
k ∈ E(ϕ′)}. Therefore

Tϕ is hyponormal ⇐⇒ ∃k′ ∈ E(ϕ) ⇐⇒ θ1b− k′θ1θ2a ∈ H2 and ||k′||∞ ≤ 1

⇐⇒ θ1b− kθ1a ∈ H2 and ||k||∞ ≤ 1 (k′ = kθ2)

⇐⇒ b(1− kψ) ∈ θ1H
2 and ||k||∞ ≤ 1

But since the inner parts of b and θ1 are relatively prime and by assumption, ψ ∈ H2, it
follows that

k′ ∈ E(ϕ) ⇐⇒ 1− kψ ∈ θ1H
2 and ||k||∞ ≤ 1

⇐⇒ kψ ∈ 1 + θ1H
2 and ||k||∞ ≤ 1.
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(ii) ⇔ (iii): Observe that

kψ ∈ 1 + θ1H
2 ⇐⇒ θ1 − kθ1ψ ∈ H2

⇐⇒ θ1 − kθ1ψ ∈ H2

⇐⇒ θ1 − kP (θ1ψ) ∈ H2.

But since P (θ1ψ) = θ1PH(zθ1)(ψ), it follows that Tϕ is hyponormal if and only if T
θ1+θ1PH(zθ1)(ψ)

is hyponormal.
On the other hand, if Tϕ is a hyponormal operator and if θ1(α) = 0 then by (ii)

k(α)ψ(α) = 1 =⇒ k(α) =
1

ψ(α)
,

which implies that |ψ(α)| ≥ 1 since ||k||∞ ≤ 1. The last assertion (7) follows at once from
the observation that if θ1 = θ2 then PH(zθ1)(ψ) = ψ. ¤

Example 7. Let

ϕ = z
8∏

j=1

(Bj − 1
2
) +

8
7
z

9∏

j=1

(Bj − 1
2
),

where Bj(z) = z+ 1
2

1+ 1
2 z

(1 ≤ j ≤ 9). Then Tϕ is not hyponormal.

Proof. Observe that

g = z
8∏

j=1

Bj ·
8∏

j=1

(1− 1
2
Bj) and f =

8
7
z

9∏

j=1

Bj ·
9∏

j=1

(1− 1
2
Bj).

Then

ψ(z) =
8
7

(
1− 1

2
B9(z)

)
.

Thus ψ(0) = 6
7 < 1. Therefore by Theorem 6, Tϕ is not hyponormal. ¤

Example 8. Let

ϕ = z
8∏

j=1

(Bj − 1
2
) + 4z

9∏

j=1

(Bj − 1
2
),

where Bj(z) = z+ 1
2

1+ 1
2 z

(1 ≤ j ≤ 9). Then Tϕ is hyponormal.

Proof. Observe that

g = z
8∏

j=1

Bj ·
8∏

j=1

(1− 1
2
Bj) and f = z

9∏

j=1

Bj · 4
9∏

j=1

(1− 1
2
Bj).

Then

ψ(z) = 4
(

1− 1
2
B9(z)

)
.

Put

k(z) :=
1 + z

∏8
j=1 Bj(z)

4(1− 1
2B9(z))

.

Then ||k||∞ ≤ 1 and k(z) · ψ(z) = 1 + z
∏8

j=1 Bj(z). Therefore by Theorem 6 (ii), Tϕ is
hyponormal. ¤
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Corollary 9. Let ϕ = g + f ∈ L∞, where f = θ1θ2a and g = θ1b for a ∈ H(θ1θ2) and
b ∈ H(θ1) with finite Blaschke products θ1 and θ2. If ψ := f

g ∈ H(zθ2) and |a(α)| = |b(α)|
for some zero α of θ1 then

Tϕ is hyponormal ⇐⇒ E(ϕ) =
{ b(α)

a(α)
θ2

}

Proof. By Theorem 6 we have that

Tϕ hyponormal ⇐⇒ ∃k ∈ H∞ with ||k||∞ ≤ 1 such that kψ ∈ 1 + θ1H
2.

Thus if Tϕ is hyponormal then k(α)ψ(α) = 1 for each zero α of θ1, so that k(α) = b(α)
a(α) .

Therefore by the maximum modulus principle, k(z) = b(α)
a(α) , and hence E(ϕ) =

{
b(α)
a(α)θ2

}
.

¤

In Theorem 6, the conditions “g divides f” and “θ1 = θ2” seem to be too rigid. However
the following theorem shows that we may assume, without loss of generality, that g divides
f and moreover θ1 = θ2 when we consider the hyponormality of Tϕ.

Theorem 10. Let ϕ = g + f ∈ L∞, where f = θ1θ2a and g = θ1b for a ∈ H(θ1θ2) and
b ∈ H(θ1) with a finite Blaschke product θ1. If we let

fc = θ2
1PH(θ1)(a) + θ1c for c ∈ H(zθ1)

and put ϕc := g + fc, then we have:
(i) Tϕ is hyponormal if and only if Tϕc is;
(ii) g divides fc for some c ∈ H(zθ1).

Proof. Write

θ1 = eiξ
n∏

i=1

Bni
i ,

where

Bi(z) :=
z − αi

1− αiz
, (|αi| < 1), ni ≥ 1, and

n∑

i=1

ni = d.

Put a0 = PH(θ1)(a). Then for each c ∈ H(zθ1), fc = θ2
1(a0 + θ1c) and PH(θ1)(a0+θ1c) = a0.

Thus by Lemma 4, Tϕ is hyponormal if and only if Tϕc is. To prove (ii) observe that by
Lemma 2,

φc :=
fc

g
∈ H(zθ1) ⇐⇒ θ2

1a0 + θ1c ∈ (θ1b) · H(zθ1) for some c ∈ H(zθ1)

⇐⇒ θ2
1a0 + θ1c ∈ (θ1b) · H(zθ1) for some c ∈ H2

⇐⇒ θ2
1(a0 + θ1c) = θ1bθ1k for some θ1k ∈ H2

⇐⇒ a0 + θ1c = bk for some k ∈ H(zθ1)

⇐⇒ a0 − bk ∈ θ1H
2 for some k ∈ H(zθ1).(8)
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Note that θ
(n)
1 (αi) = 0 for all 0 ≤ n < ni. Thus the condition (8) is equivalent to the

following equation: for all 1 ≤ i ≤ n,

(9)




ki,0

ki,1

ki,2

...
ki,ni−2

ki,ni−1




=




bi,0 0 0 0 · · · 0
bi,1 bi,0 0 0 · · · 0
bi,2 bi,1 bi,0 0 · · · 0
...

. . . . . . . . . . . .
...

bi,ni−2 bi,ni−3
. . . . . . bi,0 0

bi,ni−1 bi,ni−2 . . . bi,2 bi,1 ai,0




−1 


ai,0

ai,1

ai,2

...
ai,ni−2

ai,ni−1




,

where

ki,j :=
k(j)(αi)

j!
, ai,j :=

a
(j)
0 (αi)

j!
and bi,j :=

b(j)(αi)
j!

.

Thus there exists a function k ∈ H∞ satisfying (8) if and only if there exists a function
k ∈ H∞ for which

(10)
k(j)(αi)

j!
= ki,j (1 ≤ i ≤ n, 0 ≤ j < ni),

where the ki,j are determined by the equation (9). If in addition ||k||∞ ≤ 1 is required then
this is exactly the classical Hermite-Fejér interpolation problem. But it is well known that
there always exists a polynomial k satisfying (10) (cf. [FF]). We now find such a funtion k
in H(zθ1). Observe that

a0 − bk ∈ θ1H
2 ⇐⇒ PH(θ1)(a0 − bk) = 0

⇐⇒ a0 − PH(θ1)(bk) = 0

⇐⇒ a0 − PH(θ1)(bPH(θ1)k) = 0

⇐⇒ PH(θ1)(a0 − bPH(θ1)k) = 0

⇐⇒ a0 − bPH(θ1)k ∈ θ1H
2.

If we put k1 := PH(θ1)k then k1 satisfies (8) and k1 ∈ H(zθ1). This completes the proof. ¤
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