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Abstract. The spectral pictures of products AB and BA of Banach space operators are compared.

We shall describe an operator A in the algebra B(X) of bounded linear operators on a Banach space
X as being of index zero whenever there is Banach space isomorphism

(0.1) A−1(0) ∼= X/cl A(X) :

for example a Fredholm operator has this property if and only if its Fredholm index is zero. In
particular, finite dimensional operators and normal operators acting on a Hilbert space are of index
zero. D. Djordjevic [Dj] has essentially noticed that

1. Theorem. If A ∈ B(X) is of index zero and B ∈ B(X) there is implication

(1.1) AB invertible ⇐⇒ BA invertible

and

(1.2) AB Fredholm ⇐⇒ BA Fredholm ,

in which case

(1.3) index(AB) = index(B) = index(BA) .

Proof. If BA is invertible then A is left invertible, in particular one-one with closed range, hence by
index zero has dense range, which now makes it invertible. For invertible A the implication (1.1)
is clear. If conversely AB is invertible then A is right invertible, in particular onto, hence by index
zero one-one and again invertible. This gives (1.1) both ways; towards (1.2) argue that if BA is
Fredholm then A is upper semi-Fredholm, having closed range and finite dimensional null space. If
also A is “index zero” in the sense of (0.1) then its closed range must have finite codimension making
it Fredholm, in which case (1.2) is clear. Conversely if AB is Fredholm then A is lower semi-Fredholm,
in the sense of having closed range of finite codimension, hence also finite dimensional null space and
again Fredholm. This gives (1.2) both ways; finally since also index(A) = 0 the usual index-of-product
formula gives (1.3). ¤
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If A ∈ B(X), write σ(A), σleft(A), σright(A), σess(A), σleft
ess (A), and σright

ess (A) for the spectrum, the
left spectrum, the right spectrum, the essential spectrum, the left essential spectrum, and the right
essential spectrum, respectively, of A. If A ∈ B(X), a hole in σess(A) is a bounded component of
C \ σess(A) and a pseudohole in σess(A) is a component of σess(A) \ σleft

ess (A) or σess(A) \ σright
ess (A). The

spectral picture of A, denoted SP (A), is the structure consisting of the set σess(A), the collection of
holes and pseudoholes in σess(A), and the indices associated with those holes and pseudoholes. Write
K(X) for the ideals of compact operators on X.

We now have:

2. Theorem. If A ∈ B(X) is of index zero and B ∈ B(X) then

(2.1) σ(BA) = σ(AB) ;

(2.2) σleft(AB) ⊆ σleft(BA) and σright(BA) ⊆ σright(AB) ;

(2.3) σess(BA) = σess(AB) ;

(2.4) σleft
ess (AB) ⊆ σleft

ess (BA) and σright
ess (BA) ⊆ σright

ess (AB) .

Further if 0 ∈ C is not in any pseudohole of either AB or BA, then

(2.5) SP(AB) = SP(BA) .

Proof. It is familiar [Ba], [GGK], [Ha], [LYR] that

(2.6) ω(AB) \ {0} = ω(BA) \ {0}
for the spectrum ω = σ, as well as for the left, right, essential, left essential and right essential spectrum:
thus (2.1) and (2.3) follow from(1.1) and (1.2). For the same reason (2.2) and (2.4) depend only on
the fate of 0 ∈ C. Thus if BA has a left inverse then A is left invertible, which together with having
“index zero” makes it invertible, which now gives AB a left inverse:

CBA = I =⇒ CB = A−1 =⇒ ACB = I

means that B is now left invertible, and hence also AB. The argument for right invertibility is exactly
the same. For (2.4) suppose BA is upper semi-Fredholm. Then by the Atkinson’s theorem BA is
left invertible modulo K(X) and so I − U(BA) ∈ K(X) for some U ∈ B(X). Note that A is upper
semi-Fredholm and hence by assumption, it is Fredholm of index zero. Remembering ([Ha, Theorem
6.5.2]) that a Fredholm operator of index zero can be written as the sum of an invertible and a finite
rank operator, write A = V + K, where V is invertible and K is of finite rank. Then

I − UB(V + K) ∈ K(X) =⇒ I − UBV ∈ K(X) =⇒ I − V UB ∈ K(X),

which implies B is upper semi-Fredholm and hence, so is AB, giving the first inclusion of (2.4) and the
argument for the second is the same. Finally, to see (2.5), it is effective to remember ([GGK, p.38])
that with no restriction on A,

(2.7)
(

AB − I 0
0 I

)
= F

(
BA− I 0

0 I

)
E,
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where

E :=
(

B I
AB − I A

)
and F :=

(
A I −AB
−I B

)

are both invertible. Thus from (2.7),

(2.8) index(AB − I) = index(F ) + index(BA− I) + index(E) = index(BA− I).

This implies that whenever λ 6= 0 is in a hole or pseudohole common to AB and BA then the value
of the index for that pseudohole is the same for both. Thus if 0 ∈ C is not in any pseudohole of either
AB or BA, then we can conclude that SP(AB) = SP(BA). This proves (2.5). ¤

We would remark that 0 can be in a pseudohole of AB but not in a pseudohole of BA, or vice versa,
but that if 0 is in the polynomially convex hull of a pseudohole of AB then it is also in the polynomially
convex hull of a pseudohole of BA, and vice versa. On the other hand, none of the inclusions in (2.2)
and (2.4) can be replaced by equality:

3. Example. If X = `2 and

(3.1) A(x1, x2, x3, x4, x5, x6, . . . ) = (0, x2, 0, x4, 0, x6, . . . ) ,

(3.2) B(x1, x2, x3, x4, x5, x6, . . . ) = (0, x1, 0, x2, 0, x3, . . . ) ,

(3.3) B′(x1, x2, x3, x4, x5, x6, . . . ) = (x2, x4, x6, x8, x10, x12 . . . )

then A is of index zero, AB is left invertible but BA is not upper semi-Fredholm, while B′A is right
invertible but AB′ is not lower semi-Fredholm.

Proof. Observe
BB′ = A 6= I = B′B ; AB = B 6= BA ; B′A = B′ 6= AB′ ,

and look at the null space of BA and the closure of the range of AB′. ¤

In Example 3, a straightforward calculation shows that SP(AB) and SP(BA) has only one pseu-
dohole H0 whose polynomially convex hull contains 0: with D the open unit disk

H0(AB) = D with index H0(AB) = −∞;

H0(BA) = D \ {0} with index H0(BA) = −∞.

On the other hand, from (2.7) we can see that for each λ 6= 0,

(AB − λI)−1(0) ∼= (BA− λI)−1(0) and X/cl (AB − λI)(X) ∼= X/cl (BA− λI)(X),

which implies that with no restriction on A and B,

(3.4) AB − λI “of index zero” ⇐⇒ BA− λI “of index zero”, λ 6= 0.

However if λ = 0, (3.4) may fail though each of A, B, AB and BA has closed range and A is of
index zero. For example, consider A and B in Example 3: AB = B is not of index zero since
B−1(0) = {0} 6= X/clB(X), while (BA)−1(0) and X/cl (BA)(X) are infinite dimensional, and so
(BA)−1(0) ∼= X/cl (BA)(X), i.e., BA is of index zero.

We however have:
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4. Proposition. If X is separable Hilbert space and if each of AB, BA and B has closed range, then
if also A is Fredholm there is equivalence

(4.1) BA “of index zero” ⇐⇒ AB “of index zero”.

Proof. If either AB or BA is Fredholm then this is contained in (2.3), and if either BA is upper
semi-Fredholm or AB is lower semi-Fredholm then this is contained in (2.4). Thus we may assume
that the null space of BA is infinite dimensional and that the range of AB is of finite codimension: on
separable space X this implies

(4.2) (BA)−1(0) ∼= X ∼= X/(AB)X ;

we therefore have to show

(4.3) (AB)−1(0) ∼= X ⇐⇒ X/(BA)X ∼= X .

We claim

(4.4) (BA)−1(0) ∼= X =⇒ B−1(0) ∼= X ⇐⇒ (AB)−1(0) ∼= X

and

(4.5) X/(AB)X ∼= X =⇒ X/B(X) ∼= X ⇐⇒ X/(BA)X ∼= X ;

this is because of the isomorphisms [Ha, (6.5.4.6), (6.5.4.7)]

(4.6) (AB)−1(0)/B−1(0) ∼= A−1(0) ∩B(X); AX/(AB)X ∼= X/(BX + A−1(0)) ,

(4.7) (BA)−1(0)/A−1(0) ∼= B−1(0) ∩A(X) ; BX/(BA)X ∼= X/(AX + B−1(0)) .

If A−1(0) is finite dimensional then the first part of (4.6) gives the second part of (4.4), while the first
comes from the first part of (4.7). If A(X) is of finite codimension then the second part of (4.7) gives
the second part of (4.5), while the first comes from the second part of (4.6); alternatively take adjoints
in (4.4). ¤

The spectral picture SP(T ) determines whether an operator is “quasitriangular” [AFV], and whether
it is “compalent” to another operator [BDF].

Recall ([Pe, Definition 4.8]) that T ∈ B(H) for a Hilbert space H is called quasitriangular if there
exists a sequence {Pn}∞n=1 of projections of finite rank in B(H) that converges strongly to 1 and
satisfies ||PnTPn − TPn|| → 0. The set of quasitriangular operators can be characterized as the set of
all sums of the form T0 +K, where T0 is triangular and K ∈ K(H) (cf. [Pe, Corollary 4.19]). We have:

5. Corollary. If A ∈ B(H) is of index zero then AB is quasitriangular if and only if BA is quasitri-
angular.

Proof. By Apostol, Foias, and Voiculescu [AFV] the operator T is quasitriangular if and only if SP(T )
contains no hole or pseudohole with negative index. ¤

Recall that T ∈ B(H) for a Hilbert space H is called essentially normal if T ∗T − TT ∗ ∈ K(H)
and that operators T1 and T2 in B(H) are said to be compalent if there exists a unitary operator
W ∈ B(H) and a compact operator K ∈ K(H) such that WT1W

∗ + K = T2. Then by the beautiful
Brown-Douglas-Fillmore theorem ([BDF]) we have:
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6. Corollary. Let A ∈ B(H) be of index zero. If AB and BA are essentially normal then AB and
BA are compalent.

Proof. If AB and BA are essentially normal then neither of them have any pseudoholes, so that (2.5)
holds; now the result follows from Brown-Douglas-Fillmore theorem - if T1 and T2 are essentially
normal then T1 and T2 are compalent if and only if SP(T1) = SP(T2). ¤

We write Lat (A) for the invariant subspace lattices of A ∈ B(X), and recall that a “quasiaffinity” is
one-one with dense range; obviously if A is not a quasiaffinity then either its null space or the closure
of its range will be in Lat (A). We observe

7. Proposition. If A,B in B(X) are such that BA is a quasiaffinity then

(7.1) Lat (BA) nontrivial =⇒ Lat (AB) nontrivial.

Proof. By assumption A is one-one and B has dense range. We claim that if N ∈ Lat (BA) is nontrivial
then

(7.2) M = cl (AN) =⇒ M ∈ Lat (AB) with {0} 6= M 6= X.

The invariance of M is clear; M 6= {0} is because A is one-one and N is nonzero; M 6= X is because
B is dense and N 6= X. ¤

An operator T ∈ B(H) for a Hilbert space H has a unique polar decomposition T = U |T |, where
|T | = (T ∗T )

1
2 and U is a partial isometry with the same null space as T . Associated with T , there is

a useful related operator Tε := |T |εU |T |1−ε (0 ≤ ε ≤ 1) called the generalized Aluthge transform of T
of order ε ([Al]). If ε = 1

2 this really is the Aluthge transform while if ε = 0 we get back T itself; if
ε = 1 then this is what Carl Pearcy has called the “Duggal transplant” of T .

We recapture [JKP, Corollary 1.12]:

8. Corollary. Let T ∈ B(H). If SP(T ) has no pseudoholes then SP(T ) = SP(Tε) for each 0 ≤ ε ≤ 1.

Proof. Let T = U |T | be the polar decomposition of T . Note that |T |ε is of index zero. Now applying
Theorem 2 with A := |T |ε and B := U |T |1−ε gives the result. ¤

9. Corollary. If T ∈ B(H) is a quasiaffinity and 0 ≤ ε ≤ 1 then Lat (T ) is nontrivial if and only if
Lat (Tε) is nontrivial.

Proof. Let T = U |T | be the polar decomposition of T . Note that if T is a quasiaffinity then Tε

is a quasiaffinity and U is a unitary operator. Write A := |T |ε and B := U |T |1−ε. Now applying
Proposition 7 with T = BA and Tε = AB gives implication one way, and for the other way reverse
them. ¤

10. Remark. If f(λ) is a holomorphic function on a neighbourhood of σ(AB) with f(0) = 0 then for
A,B ∈ B(X) we can see that

f(AB) = AC and f(BA) = CA for some C ∈ B(X)

(cf. [Ba. Corollary 8]). Thus the results of this paper can be extended to f(AB) and f(BA) with such
a function f .



6 ROBIN HARTE, YOUNG OK KIM AND WOO YOUNG LEE

References

[Al] A. Aluthge, On p-hyponormal operators for 0 < p < 1, Integral Equations Operator Theory 13 (1990), 307–315.
[AFV] C. Apostol, C. Foias and D. Voiculescu, Some results on non-quasitriangular operators, II, Rev. Roum. Math.

Pures Appl. 20 (1975), 159-181.
[Ba] B. A. Barnes, Common operator properties of the linear operators RS and SR, Proc. Amer. Math. Soc. 126

(1998), 1055-1061.
[BDF] L. Brown, R.G. Douglas and P. Fillmore, Extensions of C∗-algebras and K-homology, Ann. of Math. 105 (1977),

265–324.
[Dj] D. Djordjevic, Operators consistent in regularity, Publ. Math. Debrecen (to appear).
[GGK] I. Gohberg, S. Goldberg and M. A. Kaashoek, Classes of Linear Operators, Vol II, Birkhäuser-Verlag, Basel,
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