SPECTRAL PICTURES OF $A B$ AND $B A$

Robin Harte, Young Ok Kim and Woo Young Lee

Abstract. The spectral pictures of products $A B$ and $B A$ of Banach space operators are compared.

We shall describe an operator A in the algebra $B(X)$ of bounded linear operators on a Banach space X as being of index zero whenever there is Banach space isomorphism

$$
\begin{equation*}
A^{-1}(0) \cong X / \operatorname{cl} A(X): \tag{0.1}
\end{equation*}
$$

for example a Fredholm operator has this property if and only if its Fredholm index is zero. In particular, finite dimensional operators and normal operators acting on a Hilbert space are of index zero. D. Djordjevic $[\mathrm{Dj}]$ has essentially noticed that

1. Theorem. If $A \in B(X)$ is of index zero and $B \in B(X)$ there is implication

$$
\begin{equation*}
A B \text { invertible } \Longleftrightarrow B A \text { invertible } \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { AB Fredholm } \Longleftrightarrow \text { BA Fredholm } \tag{1.2}
\end{equation*}
$$

in which case

$$
\begin{equation*}
\operatorname{index}(A B)=\operatorname{index}(B)=\operatorname{index}(B A) \tag{1.3}
\end{equation*}
$$

Proof. If $B A$ is invertible then A is left invertible, in particular one-one with closed range, hence by index zero has dense range, which now makes it invertible. For invertible A the implication (1.1) is clear. If conversely $A B$ is invertible then A is right invertible, in particular onto, hence by index zero one-one and again invertible. This gives (1.1) both ways; towards (1.2) argue that if $B A$ is Fredholm then A is upper semi-Fredholm, having closed range and finite dimensional null space. If also A is "index zero" in the sense of (0.1) then its closed range must have finite codimension making it Fredholm, in which case (1.2) is clear. Conversely if $A B$ is Fredholm then A is lower semi-Fredholm, in the sense of having closed range of finite codimension, hence also finite dimensional null space and again Fredholm. This gives (1.2) both ways; finally since also $\operatorname{index}(A)=0$ the usual index-of-product formula gives (1.3).

[^0]If $A \in B(X)$, write $\sigma(A), \sigma^{\text {left }}(A), \sigma^{\text {right }}(A), \sigma_{\text {ess }}(A), \sigma_{\text {ess }}^{\text {left }}(A)$, and $\sigma_{\text {ess }}^{\text {right }}(A)$ for the spectrum, the left spectrum, the right spectrum, the essential spectrum, the left essential spectrum, and the right essential spectrum, respectively, of A. If $A \in B(X)$, a hole in $\sigma_{\text {ess }}(A)$ is a bounded component of $\mathbb{C} \backslash \sigma_{\text {ess }}(A)$ and a pseudohole in $\sigma_{\text {ess }}(A)$ is a component of $\sigma_{\text {ess }}(A) \backslash \sigma_{\text {ess }}^{\text {left }}(A)$ or $\sigma_{\text {ess }}(A) \backslash \sigma_{\text {ess }}^{\text {right }}(A)$. The spectral picture of A, denoted $\mathcal{S P}(A)$, is the structure consisting of the set $\sigma_{\text {ess }}(A)$, the collection of holes and pseudoholes in $\sigma_{\text {ess }}(A)$, and the indices associated with those holes and pseudoholes. Write $K(X)$ for the ideals of compact operators on X.

We now have:
2. Theorem. If $A \in B(X)$ is of index zero and $B \in B(X)$ then

$$
\begin{gather*}
\sigma(B A)=\sigma(A B) ; \tag{2.1}\\
\sigma^{\text {left }}(A B) \subseteq \sigma^{\text {left }}(B A) \quad \text { and } \quad \sigma^{\text {right }}(B A) \subseteq \sigma^{\text {right }}(A B) ; \\
\sigma_{\mathrm{ess}}(B A)=\sigma_{\mathrm{ess}}(A B) ; \\
\sigma_{\mathrm{ess}}^{\mathrm{left}}(A B) \subseteq \sigma_{\mathrm{ess}}^{\mathrm{left}}(B A) \quad \text { and } \quad \sigma_{\mathrm{ess}}^{\mathrm{right}}(B A) \subseteq \sigma_{\mathrm{ess}}^{\text {right }}(A B) \tag{2.4}
\end{gather*}
$$

Further if $0 \in \mathbb{C}$ is not in any pseudohole of either $A B$ or $B A$, then

$$
\begin{equation*}
\mathcal{S P}(A B)=\mathcal{S P}(B A) \tag{2.5}
\end{equation*}
$$

Proof. It is familiar [Ba], [GGK], [Ha], [LYR] that

$$
\begin{equation*}
\omega(A B) \backslash\{0\}=\omega(B A) \backslash\{0\} \tag{2.6}
\end{equation*}
$$

for the spectrum $\omega=\sigma$, as well as for the left, right, essential, left essential and right essential spectrum: thus (2.1) and (2.3) follow from(1.1) and (1.2). For the same reason (2.2) and (2.4) depend only on the fate of $0 \in \mathbb{C}$. Thus if $B A$ has a left inverse then A is left invertible, which together with having "index zero" makes it invertible, which now gives $A B$ a left inverse:

$$
C B A=I \Longrightarrow C B=A^{-1} \Longrightarrow A C B=I
$$

means that B is now left invertible, and hence also $A B$. The argument for right invertibility is exactly the same. For (2.4) suppose $B A$ is upper semi-Fredholm. Then by the Atkinson's theorem $B A$ is left invertible modulo $K(X)$ and so $I-U(B A) \in K(X)$ for some $U \in B(X)$. Note that A is upper semi-Fredholm and hence by assumption, it is Fredholm of index zero. Remembering ([Ha, Theorem 6.5.2]) that a Fredholm operator of index zero can be written as the sum of an invertible and a finite rank operator, write $A=V+K$, where V is invertible and K is of finite rank. Then

$$
I-U B(V+K) \in K(X) \Longrightarrow I-U B V \in K(X) \Longrightarrow I-V U B \in K(X)
$$

which implies B is upper semi-Fredholm and hence, so is $A B$, giving the first inclusion of (2.4) and the argument for the second is the same. Finally, to see (2.5), it is effective to remember ([GGK, p.38]) that with no restriction on A,

$$
\left(\begin{array}{cc}
A B-I & 0 \tag{2.7}\\
0 & I
\end{array}\right)=F\left(\begin{array}{cc}
B A-I & 0 \\
0 & I
\end{array}\right) E
$$

where

$$
E:=\left(\begin{array}{cc}
B & I \\
A B-I & A
\end{array}\right) \quad \text { and } \quad F:=\left(\begin{array}{cc}
A & I-A B \\
-I & B
\end{array}\right)
$$

are both invertible. Thus from (2.7),

$$
\begin{equation*}
\operatorname{index}(A B-I)=\operatorname{index}(F)+\operatorname{index}(B A-I)+\operatorname{index}(E)=\operatorname{index}(B A-I) \tag{2.8}
\end{equation*}
$$

This implies that whenever $\lambda \neq 0$ is in a hole or pseudohole common to $A B$ and $B A$ then the value of the index for that pseudohole is the same for both. Thus if $0 \in \mathbb{C}$ is not in any pseudohole of either $A B$ or $B A$, then we can conclude that $\mathcal{S P}(A B)=\mathcal{S P}(B A)$. This proves (2.5).

We would remark that 0 can be in a pseudohole of $A B$ but not in a pseudohole of $B A$, or vice versa, but that if 0 is in the polynomially convex hull of a pseudohole of $A B$ then it is also in the polynomially convex hull of a pseudohole of $B A$, and vice versa. On the other hand, none of the inclusions in (2.2) and (2.4) can be replaced by equality:
3. Example. If $X=\ell_{2}$ and

$$
\begin{gather*}
A\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, \ldots\right)=\left(0, x_{2}, 0, x_{4}, 0, x_{6}, \ldots\right) \tag{3.1}\\
B\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, \ldots\right)=\left(0, x_{1}, 0, x_{2}, 0, x_{3}, \ldots\right) \tag{3.2}\\
B^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, \ldots\right)=\left(x_{2}, x_{4}, x_{6}, x_{8}, x_{10}, x_{12} \ldots\right) \tag{3.3}
\end{gather*}
$$

then A is of index zero, $A B$ is left invertible but $B A$ is not upper semi-Fredholm, while $B^{\prime} A$ is right invertible but $A B^{\prime}$ is not lower semi-Fredholm.
Proof. Observe

$$
B B^{\prime}=A \neq I=B^{\prime} B ; A B=B \neq B A ; B^{\prime} A=B^{\prime} \neq A B^{\prime},
$$

and look at the null space of $B A$ and the closure of the range of $A B^{\prime}$.
In Example 3, a straightforward calculation shows that $\mathcal{S P}(A B)$ and $\mathcal{S P}(B A)$ has only one pseudohole H_{0} whose polynomially convex hull contains 0 : with \mathbb{D} the open unit disk

$$
\begin{aligned}
& H_{0}(A B)=\mathbb{D} \text { with index } H_{0}(A B)=-\infty \\
& H_{0}(B A)=\mathbb{D} \backslash\{0\} \text { with index } H_{0}(B A)=-\infty
\end{aligned}
$$

On the other hand, from (2.7) we can see that for each $\lambda \neq 0$,

$$
(A B-\lambda I)^{-1}(0) \cong(B A-\lambda I)^{-1}(0) \quad \text { and } \quad X / \operatorname{cl}(A B-\lambda I)(X) \cong X / \operatorname{cl}(B A-\lambda I)(X)
$$

which implies that with no restriction on A and B,

$$
\begin{equation*}
A B-\lambda I \text { "of index zero" } \Longleftrightarrow B A-\lambda I \text { "of index zero", } \quad \lambda \neq 0 \tag{3.4}
\end{equation*}
$$

However if $\lambda=0,(3.4)$ may fail though each of $A, B, A B$ and $B A$ has closed range and A is of index zero. For example, consider A and B in Example 3: $A B=B$ is not of index zero since $B^{-1}(0)=\{0\} \neq X / \mathrm{cl} B(X)$, while $(B A)^{-1}(0)$ and $X / \mathrm{cl}(B A)(X)$ are infinite dimensional, and so $(B A)^{-1}(0) \cong X / \mathrm{cl}(B A)(X)$, i.e., $B A$ is of index zero.

We however have:
4. Proposition. If X is separable Hilbert space and if each of $A B, B A$ and B has closed range, then if also A is Fredholm there is equivalence

$$
\begin{equation*}
B A \text { "of index zero" } \Longleftrightarrow A B \text { "of index zero". } \tag{4.1}
\end{equation*}
$$

Proof. If either $A B$ or $B A$ is Fredholm then this is contained in (2.3), and if either $B A$ is upper semi-Fredholm or $A B$ is lower semi-Fredholm then this is contained in (2.4). Thus we may assume that the null space of $B A$ is infinite dimensional and that the range of $A B$ is of finite codimension: on separable space X this implies

$$
\begin{equation*}
(B A)^{-1}(0) \cong X \cong X /(A B) X \tag{4.2}
\end{equation*}
$$

we therefore have to show

$$
\begin{equation*}
(A B)^{-1}(0) \cong X \Longleftrightarrow X /(B A) X \cong X \tag{4.3}
\end{equation*}
$$

We claim

$$
\begin{equation*}
(B A)^{-1}(0) \cong X \Longrightarrow B^{-1}(0) \cong X \Longleftrightarrow(A B)^{-1}(0) \cong X \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
X /(A B) X \cong X \Longrightarrow X / B(X) \cong X \Longleftrightarrow X /(B A) X \cong X \tag{4.5}
\end{equation*}
$$

this is because of the isomorphisms [Ha, (6.5.4.6), (6.5.4.7)]

$$
\begin{array}{ll}
(A B)^{-1}(0) / B^{-1}(0) \cong A^{-1}(0) \cap B(X) ; & A X /(A B) X \cong X /\left(B X+A^{-1}(0)\right) \\
(B A)^{-1}(0) / A^{-1}(0) \cong B^{-1}(0) \cap A(X) ; \quad B X /(B A) X \cong X /\left(A X+B^{-1}(0)\right) \tag{4.7}
\end{array}
$$

If $A^{-1}(0)$ is finite dimensional then the first part of (4.6) gives the second part of (4.4), while the first comes from the first part of (4.7). If $A(X)$ is of finite codimension then the second part of (4.7) gives the second part of (4.5), while the first comes from the second part of (4.6); alternatively take adjoints in (4.4).

The spectral picture $\mathcal{S P}(T)$ determines whether an operator is "quasitriangular" [AFV], and whether it is "compalent" to another operator $[\mathrm{BDF}]$.

Recall ([Pe, Definition 4.8]) that $T \in B(H)$ for a Hilbert space H is called quasitriangular if there exists a sequence $\left\{P_{n}\right\}_{n=1}^{\infty}$ of projections of finite rank in $B(H)$ that converges strongly to 1 and satisfies $\left\|P_{n} T P_{n}-T P_{n}\right\| \rightarrow 0$. The set of quasitriangular operators can be characterized as the set of all sums of the form $T_{0}+K$, where T_{0} is triangular and $K \in K(H)$ (cf. [Pe, Corollary 4.19]). We have:
5. Corollary. If $A \in B(H)$ is of index zero then $A B$ is quasitriangular if and only if $B A$ is quasitriangular.
Proof. By Apostol, Foias, and Voiculescu [AFV] the operator T is quasitriangular if and only if $\mathcal{S P}(T)$ contains no hole or pseudohole with negative index.

Recall that $T \in B(H)$ for a Hilbert space H is called essentially normal if $T^{*} T-T T^{*} \in K(H)$ and that operators T_{1} and T_{2} in $B(H)$ are said to be compalent if there exists a unitary operator $W \in B(H)$ and a compact operator $K \in K(H)$ such that $W T_{1} W^{*}+K=T_{2}$. Then by the beautiful Brown-Douglas-Fillmore theorem ([BDF]) we have:
6. Corollary. Let $A \in B(H)$ be of index zero. If $A B$ and $B A$ are essentially normal then $A B$ and $B A$ are compalent.

Proof. If $A B$ and $B A$ are essentially normal then neither of them have any pseudoholes, so that (2.5) holds; now the result follows from Brown-Douglas-Fillmore theorem - if T_{1} and T_{2} are essentially normal then T_{1} and T_{2} are compalent if and only if $\mathcal{S P}\left(T_{1}\right)=\mathcal{S P}\left(T_{2}\right)$.

We write Lat (A) for the invariant subspace lattices of $A \in B(X)$, and recall that a "quasiaffinity" is one-one with dense range; obviously if A is not a quasiaffinity then either its null space or the closure of its range will be in Lat (A). We observe
7. Proposition. If A, B in $B(X)$ are such that $B A$ is a quasiaffinity then

$$
\begin{equation*}
\text { Lat }(B A) \text { nontrivial } \Longrightarrow \text { Lat }(A B) \text { nontrivial. } \tag{7.1}
\end{equation*}
$$

Proof. By assumption A is one-one and B has dense range. We claim that if $N \in \operatorname{Lat}(B A)$ is nontrivial then

$$
\begin{equation*}
M=\operatorname{cl}(A N) \Longrightarrow M \in \operatorname{Lat}(A B) \text { with }\{0\} \neq M \neq X \tag{7.2}
\end{equation*}
$$

The invariance of M is clear; $M \neq\{0\}$ is because A is one-one and N is nonzero; $M \neq X$ is because B is dense and $N \neq X$.

An operator $T \in B(H)$ for a Hilbert space H has a unique polar decomposition $T=U|T|$, where $|T|=\left(T^{*} T\right)^{\frac{1}{2}}$ and U is a partial isometry with the same null space as T. Associated with T, there is a useful related operator $T_{\epsilon}:=|T|^{\epsilon} U|T|^{1-\epsilon}(0 \leq \epsilon \leq 1)$ called the generalized Aluthge transform of T of order ϵ ([Al]). If $\epsilon=\frac{1}{2}$ this really is the Aluthge transform while if $\epsilon=0$ we get back T itself; if $\epsilon=1$ then this is what Carl Pearcy has called the "Duggal transplant" of T.

We recapture [JKP, Corollary 1.12]:
8. Corollary. Let $T \in B(H)$. If $\mathcal{S P}(T)$ has no pseudoholes then $\mathcal{S P}(T)=\mathcal{S P}\left(T_{\epsilon}\right)$ for each $0 \leq \epsilon \leq 1$.

Proof. Let $T=U|T|$ be the polar decomposition of T. Note that $|T|^{\epsilon}$ is of index zero. Now applying Theorem 2 with $A:=|T|^{\epsilon}$ and $B:=U|T|^{1-\epsilon}$ gives the result.
9. Corollary. If $T \in B(H)$ is a quasiaffinity and $0 \leq \epsilon \leq 1$ then $\operatorname{Lat}(T)$ is nontrivial if and only if Lat $\left(T_{\epsilon}\right)$ is nontrivial.

Proof. Let $T=U|T|$ be the polar decomposition of T. Note that if T is a quasiaffinity then T_{ϵ} is a quasiaffinity and U is a unitary operator. Write $A:=|T|^{\epsilon}$ and $B:=U|T|^{1-\epsilon}$. Now applying Proposition 7 with $T=B A$ and $T_{\epsilon}=A B$ gives implication one way, and for the other way reverse them.
10. Remark. If $f(\lambda)$ is a holomorphic function on a neighbourhood of $\sigma(A B)$ with $f(0)=0$ then for $A, B \in B(X)$ we can see that

$$
f(A B)=A C \quad \text { and } \quad f(B A)=C A \quad \text { for some } C \in B(X)
$$

(cf. [Ba. Corollary 8]). Thus the results of this paper can be extended to $f(A B)$ and $f(B A)$ with such a function f.

References

[Al] A. Aluthge, On p-hyponormal operators for $0<p<1$, Integral Equations Operator Theory 13 (1990), 307-315. [AFV] C. Apostol, C. Foias and D. Voiculescu, Some results on non-quasitriangular operators, II, Rev. Roum. Math. Pures Appl. 20 (1975), 159-181.
[Ba] B. A. Barnes, Common operator properties of the linear operators $R S$ and $S R$, Proc. Amer. Math. Soc. 126 (1998), 1055-1061.
[BDF] L. Brown, R.G. Douglas and P. Fillmore, Extensions of C^{*}-algebras and K-homology, Ann. of Math. 105 (1977), 265-324.
[Dj] D. Djordjevic, Operators consistent in regularity, Publ. Math. Debrecen (to appear).
[GGK] I. Gohberg, S. Goldberg and M. A. Kaashoek, Classes of Linear Operators, Vol II, Birkhäuser-Verlag, Basel, 1993.
[Ha] R.E. Harte, Invertibility and singularity for bounded linear operators, Dekker, New York, 1988.
[JKP] I. B. Jung, E. Ko, and C. Pearcy, Spectral pictures of Aluthge transforms of operators, Integral Equations Operator Theory 40 (2001), 52-60.
[LYR] C. Lin, Z. Yan and Y. Ruan, Common properties of operators $R S$ and $S R$ and p-hyponormal operators, Integral Equations Operator Theory 43 (2002), 313-325.
[Pe] C. Pearcy, Some recent developments in operator theory, C.B.M.S. Regional Conference Series in Mathematics, No. 36, Amer. Math. Soc., Providence, 1978.

School of Mathematics, Trinity College, Dublin, Ireland
E-mail address: rharte@maths.tcd.ie

Department of Mathematics, Seoul National University, Seoul 151-742, Korea
E-mail address: yhkim@skku.ac.kr
Department of Mathematics, Seoul National University, Seoul 151-742, Korea
E-mail address: wylee@math.snu.ac.kr

[^0]: 2000 Mathematics Subject Classification. Primary 47A10, 47A53, 47A66
 Key words and phrases. Spectral pictures, index zero, quasitriangular, essentially normal operators, compalent, generalized Aluthge transforms.

 This work was supported by a grant (R14-2003-006-01000-0) from the Korea Science and Engineering Foundation.

