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Abstract. In this paper it is shown that if T ∈ L(H) satisfies
(i) T is a pure hyponormal operator;
(ii) [T ∗, T ] is of rank-two; and
(iii) ker [T ∗, T ] is invariant for T ,
then T is either a subnormal operator or the Putinar’s matricial model of rank two. More precisely, if
T |ker [T∗,T ] has the rank-one self-commutator then T is subnormal and if instead T |ker [T∗,T ] has the rank-
two self-commutator then T is either a subnormal operator or the k-th minimal partially normal extension,

T̂k
(k)

, of a (k+1)-hyponormal operator Tk which has rank-two self-commutator for any k ∈ Z+. Hence, in
particular, every weakly subnormal (or 2-hyponormal) operator with rank-two self-commutator is either
a subnormal operator or a finite rank-perturbation of a k-hyponormal operator for any k ∈ Z+.

1. Introduction

Let H and K be complex Hilbert spaces, let L(H,K) be the set of bounded linear operators from H to
K and write L(H) := L(H,H). An operator T ∈ L(H) is said to be normal if T ∗T = TT ∗, quasinormal
if T ∗T 2 = TT ∗T , hyponormal if T ∗T ≥ TT ∗, and subnormal if it has a normal extension, i.e., T = N |H,
where N is a normal operator on some Hilbert space K containing H. In general it is quite difficult to
determine the subnormality of an operator by definition. An alternative description of subnormality is
given by the Bram-Halmos criterion, which states that an operator T is subnormal if and only if∑

i,j

(T ixj , T
jxi) ≥ 0

for all finite collections x0, x1, · · · , xk ∈ H ([Bra], [Con, II.1.9]). It is easy to see that this is equivalent to
the following positivity test:



I T ∗ · · · T ∗k

T T ∗T · · · T ∗kT
...

...
. . .

...
T k T ∗T k · · · T ∗kT k


 ≥ 0 (all k ≥ 1 ). (1.1)

Condition (1.1) provides a measure of the gap between hyponormality and subnormality. In fact, the
positivity condition (1.1) for k = 1 is equivalent to the hyponormality of T , while subnormality requires
the validity of (1.1) for all k. Let [A,B] := AB − BA denote the commutator of two operators A and B,
and define T to be k-hyponormal whenever the k × k operator matrix

Mk(T ) := ([T ∗j , T i])k
i,j=1 (1.2)

is positive. An application of the Choleski algorithm for operator matrices shows that the positivity of
(1.2) is equivalent to the positivity of the (k + 1) × (k + 1) operator matrix in (1.1); the Bram-Halmos
criterion can be then rephrased as saying that T is subnormal if and only if T is k-hyponormal for every
k ≥ 1 ([CMX]). The classes of k-hyponormal operators have been studied in an attempt to bridge the
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gap between subnormality and hyponormality (cf. [Cu1], [Cu2], [CF1], [CF2], [CF3], [CL1], [CL2], [CL3],
[CMX], [DPY], [McCP]).

The Bram-Halmos characterization of subnormality indicates that 2-hyponormality is generally far from
subnormality. There are special classes of operators, however, for which these two notions are equivalent.
A trivial example is given by the classes of operators whose square is compact. There are many nontrivial
examples: for example, every 2-hyponormal Toeplitz operator with polynomial symbol is subnormal (see
[CL1]). So it seems to be interesting to consider the following problem:

Which 2-hyponormal operators are subnormal ? (1.3)

The first inquiry involves the self-commutator. The self-commutator of an operator plays an important
role in the study of subnormality. Subnormal operators with finite rank self-commutators have been
extensively studied ([Ale], [McCY], [OTT], [StX], [Xi1], [Xi2], [Ya1], [Ya2]). Particular attention has been
paid to hyponormal operators with rank-one or rank-two self-commutators ([GuP], [Mor], [Pu1], [Pu2],
[Pu3], [StX], [Xi3], [Ya3]). In particular, B. Morrel [Mor] showed that a pure subnormal operator with
rank-one self-commutator (pure means having no normal summand) is unitarily equivalent to a linear
function of the unilateral shift. Morrel’s theorem can be essentially stated (also see [Con, p.162]) that if





(i) T is hyponormal;
(ii) [T ∗, T ] is of rank-one; and
(iii) ker [T ∗, T ] is invariant for T ,

(1.4)

then T−β is quasinormal for some β ∈ C. Now remember that every pure quasinormal operator is unitarily
equivalent to U ⊗ P , where U is the unilateral shift and P is a positive operator with trivial kernel. Thus
if [T ∗, T ] is of rank-one (and hence so is [(T − β)∗, (T − β)]), we must have P ∼= α (6= 0) ∈ C, so that
T − β ∼= α U , or T ∼= α U + β. It would be interesting (in the sense of giving a simple sufficiency for the
subnormality) to note that Morrel’s theorem gives that

if T satisfies the condition (1.4) then T is subnormal. (1.5)

On the other hand, it was shown ([CL2, Lemma 2.2]) that if T is 2-hyponormal then

T (ker [T ∗, T ]) ⊆ ker [T ∗, T ].

Therefore by Morrel’s theorem, we can see that

every 2-hyponormal operator with rank-one self-commutator is subnormal. (1.6)

On the other hand, M. Putinar [Pu4] gave a matricial model for the hyponormal operator T ∈ L(H) with
finite rank self-commutator, in the cases where

H0 :=
∞∨

k=0

T ∗k
(
ran [T ∗, T ]

)
has finite dimension d and H =

∞∨
n=0

TnH0.

In this case, if we write

Hn := Gn ªGn−1 (n ≥ 1) and Gn :=
n∨

k=0

T kH0 (n ≥ 0),

then T has the following two-diagonal structure relative to the decomposition H = H0 ⊕H1 ⊕ · · · :

T =




B0 0 0 0 · · ·
A0 B1 0 0 · · ·
0 A1 B2 0 · · ·
0 0 A2 B3 · · ·
...

...
...

...
. . .




, (1.7)
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where 



dim (Hn) = dim (Hn+1) = d (n ≥ 0);
[T ∗, T ] = ([B∗

0 , B0] + A∗0A0)⊕ 0∞;
[B∗

n+1, Bn+1] + A∗n+1An+1 = AnA∗n (n ≥ 0);
A∗nBn+1 = BnA∗n (n ≥ 0).

(1.8)

We will refer the operator (1.7) to the Putinar’s matricial model of rank d. This model was also introduced
in [GuP], [Pu1], [Xi3], [Ya1], and etc.

The purpose of the present paper is to obtain an extension of Morrel’s theorem to the cases of rank-two
self-commutators via the Putinar’s matricial model. The main idea proving this result comes from the
notion of “weak subnormality”, which was first introduced in [CL2], with an aim at providing a model for
2-hyponormal operators.

2. The Main Result

We review first a few essential facts concerning weak subnormality that we will need to begin with. Note

that the operator T is subnormal if and only if there exist operators A and B such that T̂ :=
(

T A
0 B

)
is

normal, i.e., 



[T ∗, T ] := T ∗T − TT ∗ = AA∗

A∗T = BA∗

[B∗, B] + A∗A = 0.

(2.1)

The operator T̂ is called a normal extension of T . We also say that T̂ in L(K) is a minimal normal
extension (briefly, m.n.e.) of T if K has no proper subspace containing H to which the restriction of T̂ is
also a normal extension of T . It is known that

T̂ = m.n.e.(T ) ⇐⇒ K =
∨{

T̂ ∗nh : h ∈ H, n ≥ 0
}
,

and the m.n.e.(T ) is unique.
An operator T ∈ L(H) is said to be weakly subnormal if there exist operators A ∈ L(H′,H) and

B ∈ L(H′) such that the first two conditions in (2.1) hold:

[T ∗, T ] = AA∗ and A∗T = BA∗, (2.2)

or equivalently, there is an extension T̂ of T such that

T̂ ∗T̂ f = T̂ T̂ ∗f for all f ∈ H.

The operator T̂ is called a partially normal extension (briefly, p.n.e.) of T . We also say that T̂ in L(K)
is a minimal partially normal extension (briefly, m.p.n.e.) of T if K has no proper subspace containing H
to which the restriction of T̂ is also a partially normal extension of T . It is known ([CL2, Lemma 2.5 and
Corollary 2.7]) that

T̂ = m.p.n.e.(T ) ⇐⇒ K =
∨{

T̂ ∗nh : h ∈ H, n = 0, 1
}
,

and the m.p.n.e.(T ) is unique. For convenience, if T̂ = m.p.n.e. (T ) is also weakly subnormal then we

write T̂ (2) := ̂̂
T and more generally,

T̂ (n) := ̂̂
T (n−1),

which will be called the n-th minimal partially normal extension of T . It was ([CL2], [CJP]) shown that

2-hyponormal =⇒ weakly subnormal =⇒ hyponormal (2.3)

and the converses of both implications in (2.3) are not true in general. It was ([CL2]) known that

T is weakly subnormal =⇒ T (ker [T ∗, T ]) ⊆ ker [T ∗, T ] (2.4)
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and it was ([CJP]) kown that if T̂ := m.p.n.e.(T ) then for any k ≥ 1,

T is (k + 1)-hyponormal ⇐⇒ T is weakly subnormal and T̂ is k-hyponormal. (2.5)

So, in particular, one can see that

if T is subnormal then T̂ is subnormal. (2.6)

It is worth to noticing that in view of (2.3) and (2.4), Morrel’s theorem gives that

every weakly subnormal operator with rank-one self-commutator is subnormal. (2.7)

We are ready for stating the main theorem.

Theorem 1. Let T ∈ L(H). If
(i) T is a pure hyponormal operator;
(ii) [T ∗, T ] is of rank-two; and
(iii) ker [T ∗, T ] is invariant for T ,

then the following hold:
1. If T |ker [T∗,T ] has the rank-one self-commutator then T is subnormal;
2. If T |ker [T∗,T ] has the rank-two self-commutator then T is either a subnormal operator or the Puti-

nar’s matricial model (1.7) of rank two.

We would like to remark that in the latter case of the case (2), if T is the Putinar’s matricial model
(1.7) of the form

T =




B0 0 0 0 · · ·
A0 B1 0 0 · · ·
0 A1 B2 0 · · ·
0 0 A2 B3 · · ·
...

...
...

...
. . .




on H = H0 ⊕H1 ⊕ · · · , (2.8)

where Hn = ran [T ∗n , Tn] and dim Hn = 2 (n ≥ 0), and if Tn denotes the compression of T to the space
Hn ⊕Hn+1 ⊕ · · · , n ≥ 0 then Tn = m.p.n.e. (Tn+1) (n ≥ 0). Consequently, by (2.5), T is the k-th minimal

partially normal extension, T̂k

(k)
, of a (k+1)-hyponormal operator Tk which has rank-two self-commutator

for any k ∈ Z+.
The essence of our approach is a comparison of two operations. The first one associates with a hyponor-

mal operator T of the type considered to the hyponormal operator T1 = T |ker [T∗,T ]. The second one starts
with a k-hyponormal operator T and associates with it a (k− 1)-hyponormal operator m.p.n.e(T ) (n ≥ 2).
These two operations not always are inverse to each other. The main point of part (2) of Theorem 1 is

that if T is not subnormal then one has T = T̂k

(k)
for any k, that is, the above two operations are inverse

to each other in this case.

The following corollary follows at once from Theorem 1 and (2.4).

Corollary. If T is a weakly subnormal (or 2-hyponormal) operator with rank-two self-commutator then T
is either a subnormal operator or a finite rank perturbation of a k-hyponormal operator for any k ∈ Z+.

Since the operator (2.8) can be constructed from the pair of matrices {A0, B0}, we know that the pair
{A0, B0} is a complete set of unitary invariants for the operator (2.8). Many authors used the following
Xia’s unitary invariants {Λ, C} to describe pure subnormal operators with finite rank self-commutators:

Λ :=
(
T ∗|ran [T∗,T ]

)∗ and C := [T ∗, T ]|ran [T∗,T ].

Consequently,
Λ = B0 and C = [B∗

0 , B0] + A2
0.
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We know that given Λ and C (or equivalently, A0 and B0) corresponding to a pure subnormal operator we
can reconstruct T . Now the following question naturally arises: “what are the restrictions on matrices A0

and B0 such that they represent a subnormal operator ?” In the cases where A0 and B0 operate on a finite
dimensional Hilbert space, D. Yakubovich [Ya1] showed that such a description can be given in terms of
a topological property of a certain algebraic curve, associated with A0 and B0. However there is a subtle
difference between Yakubovich’s criterion and the Putinar’s model operator (2.8). In fact, in some sense,
Yakubovich gave conditions on A0 and B0 such that the operator (2.8) can be constructed so that the
condition (1.8) is satisfied. By comparison, the Putinar’s model operator (2.8) was already constructed
so that it satisfies the condition (1.8). Thus we would guess that if the operator (2.8) can be constructed
so that the condition (1.8) is satisfied then two matrices {A0, B0} in (2.8) must satisfy the Yakubovich’s
criterion. In this viewpoint, we have the following:

Conjecture. The Putinar’s matricial model (2.8) of rank two is subnormal.

If the operator T in (2.8) is rationally cyclic, then the spectrum of T is the closure of an order two
quadrature domain by [Pu4, Proposition 3.1]. Since there are only three types of order two quadrature
domains(cf. [GuP]): a couple of disjoint disks, a lemniscate or a cardioid, the first case is the direct sum
of hyponormal operators with rank one self-commutators and hence it is subnormal by Morrel’s theorem.
If the spectrum of T is either a lemniscate or a cardioid, then the essential spectrum of T should be
the boundary union finitely many points(cf. [Pu4, The remarks after Theorem 3.5]). Thus the principal
function is known. This may support the conjecture. An affirmative answer to the conjecture would
show that if T is a hyponormal operator with rank-two self-commutator and satisfying that ker [T ∗, T ] is
invariant for T then T is subnormal. Hence, in particular, one could obtain:

Every weakly subnormal operator with rank-two self-commutator is subnormal.

In the sequel we will provide an affirmative evidence towards the above conjecture.

Theorem 2. The operator T in (2.8) is subnormal if Bn is normal for some n ≥ 0.

One may ask whether the operators described by Theorem 2 really exist. The following example shows
that such operators exist: this is basically due to S.Campbell and R. Gellar ([CaG]).

Example 3. Let Aj :=
(

pj 0
0 qj

)
(pj , qj ∈ R+) and Bj =

(
0 aj

bj 0

)
(aj , bj ∈ R) for j = 0, 1, · · · . Then

[T ∗, T ] = diag{C, 0, 0, · · · } if and only if

[B∗
0 , B0] + A∗0A0 = C, A∗n+1An+1 = AnA∗n − [B∗

n+1, Bn+1] and A∗nBn+1 = BnA∗n (n ≥ 0). (2.10)

Let C := ( 1 0
0 α ) (0 < α < 1). Then by the first equality of (2.10), we have p2

0+b2
0−a2

0 = 1 and q2
0+a2

0−b2
0 = α.

Set a0 := α√
2+2α

and b0 := 1√
2+2α

. Then p0 =
√

1+α
2 = q0. Thus the second equation of (2.10) becomes

p2
n+1 = p2

n + a2
n+1 − b2

n+1, q2
n+1 = q2

n + b2
n+1 − a2

n+1 (n ≥ 0), (2.11)

while the third equation of (2.10) is

an+1 =
anqn

pn
, bn+1 =

bnpn

qn
(n ≥ 0). (2.12)

Note that an+1, bn+1 can successively be defined by (2.12) and pn+1, qn+1 can successively be defined by
(2.11). A straightforward calculation shows that An+6 = An and Bn+6 = Bn. More explicitly,

A0 =
(√

1+α
2 0

0
√

1+α
2

)
, A1 =

(√
α 0
0 1

)
, A2 = A1, A3 = A0, A4 =

(
1 0
0
√

α

)
, A5 = A4

and

B0 =
(

0 α√
2+2α

1√
2+2α

0

)
, B1 = B0, B2 =

(
0

√
α

2+2α√
α

2+2α 0

)
, B3 =

(
0 1√

2+2α
α√

2+2α
0

)
, B4 = B3, B5 = B2.

Since B2 is normal it follows from Theorem 2 that T is subnormal.
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Remark. We need not expect that every weakly subnormal operators with finite rank self-commutator is
subnormal. For example, if Wα is the weighted shift with weight sequence α ≡ {αn}∞n=0, where

α0 =
1
3
, α1 =

1
2
, αn = 1 (n ≥ 2),

then Wα is weakly subnormal (see [CL2, Theorem 5.4]) and rank [W ∗
α,Wα] = 3, but Wα is not subnormal.

In particular, Wα is a partially normal extension of the unilateral shift U : indeed, look at

Wα
∼=




| 1 0 0
U | 0 0 0

| ...
...

...
−− −− −− −− −− −− −−

| 0 1
2 0

0 | 0 0 1
3

| 0 0 0




= p.n.e.(U).

So we need not expect that every partially normal extension of a subnormal operator T is subnormal even
though p.n.e.(T ) is weakly subnormal.

In sections 3 and 4 we provide proofs of Theorems 1 and 2.

3. Proof of Theorem 1

Proof of Theorem 1. (1) Suppose that T is a pure hyponormal operator with rank [T ∗, T ] = 2 and ker [T ∗, T ]
is invariant for T . Then T has the following representation relative to the direct sum ker [T ∗, T ] ⊕
ran [T ∗, T ]:

T =
(

S A
0 B

)
.

Since

[T ∗, T ] =
(

[S∗, S]−AA∗ S∗A−AB∗

A∗S −BA∗ [B∗, B] + A∗A

)
:

(
ker [T ∗, T ]
ran [T ∗, T ]

)
→

(
ker [T ∗, T ]
ran [T ∗, T ]

)

we have that
[S∗, S]−AA∗ = 0 and A∗S −BA∗ = 0,

which shows that the condition (2.2) holds with S in place of T , and hence S is weakly subnormal and
T = p.n.e.(S). Note that S is pure because every restriction of a pure hyponormal operator is also pure:

indeed if T =
(

S A
0 B

)
is a pure hyponormal operator on M ⊕M⊥ and if S has a normal summand N

acting on N then we write A :=
(

A1

A2

)
: M⊥ → N⊕ (MªN) and so [T ∗, T ] =

(−A1A
∗
1 ∗

∗ ∗
)
≥ 0, which

implies A1 = 0, so that N is a normal summand of T , a contradiction. Now suppose T |ker [T∗,T ] has the
rank-one self-commutator. Thus [S∗, S] = AA∗ is of rank one. Since by (2.3) S is hyponormal, [S∗, S] is of
rank-one, and by (2.4), ker [S∗, S] is invariant for S, it follows from the Morrel’s theorem that S ∼= αU +β,
where U is the unilateral shift and α, β ∈ C. Therefore

T ∼=
(

αU + β A
0 B

)
.

For subnormality for T we may reformulate

T =
(

U A
0 B

)
.

Note that T = p.n.e.(U) because if R is weakly subnormal then for any λ ∈ C, R − λ is also weakly
subnormal and p.n.e.(R − λ) = p.n.e.(R) − λ. Thus [U∗, U ] = AA∗. Since ran [T ∗, T ] is 2-dimensional,
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A is of the form

A =




x y
0 0
0 0
...

...


 with |x|2 + |y|2 = 1.

If we write B =
(

a b
c d

)
then since AB∗ = U∗A = 0, it follows that

0 =




x y
0 0
0 0
...

...




(
ā c̄
b̄ d̄

)
=⇒

{
xā + yb̄ = 0
xc̄ + yd̄ = 0

=⇒ rankB = 1,

which implies that B should be of the form B =
(

a b
0 0

)
. A direct calculation shows that

[T ∗, T ] =
(

0 0
0 [B∗, B] + A∗A

)
= 0∞

⊕ (|x|2 − |b|2 ab + xy

ab + xy |b|2 + |y|2
)

.

But since [T ∗, T ] ≥ 0 and rank [T ∗, T ] = 2, we must have that |x| > |b|, and in turn |y| > |a| since
xa + yb = 0. So we can write

T =




0 | x y
1 0 | 0 0

1
. . . | 0 0
. . . . . . | ...

...
−− −− −− −− −− −− −−
0 0 · · · · · · | a b
0 0 · · · · · · | 0 0




∼=




0 0 0 · · · · · · · · ·
b a 0 · · · · · · · · ·
y x 0
0 0 1 0
...

... 1 0
...

... 1 0
...

...
. . . . . .




,

satisfying




|x|2 + |y|2 = 1
|b| < |x|, |a| < |y|
ax + by = 0

.

We claim that ||T || = 1: indeed, since |a|2 + |b|2 < 1, and hence B is a finite dimensional contraction, it

follows from an argument of [HLL, Corollary 8] - if B is a compact operator then σ

(
A C
0 B

)
= σ(A)∪σ(B)

for every bounded operator C - that σ(T ) = σ(U) ∪ σ(B) = the closed unit disk, where σ(·) denotes the
spectrum, so that ||T || = 1 since T is hyponormal and hence normaloid (i.e., norm equals spectral radius).
We will prove that T is subnormal using the Agler’s criterion which states that T is subnormal if and only
if

∑n+1
k=0(−1)k

(
n+1

k

)
T ∗kT k ≥ 0 for all n ≥ 0. A straightforward calculation shows that

T ∗kT k =
(

pk qk

qk rk

) ⊕
1∞,
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where

pk := |b|2|a|2(k−1) + |b|2|x|2
k−2∑

j=0

|a|2j + |y|2

qk := ab |a|2(k−1) + ab|x|2
k−2∑

j=0

|a|2j + xy

rk := |a|2k + |x|2
k−1∑

j=0

|a|2j .

For notational convenience we let p0 := 1 =: r0 and q0 := 0. Since
∑n+1

k=0(−1)k
(
n+1

k

)
= 0 for every n ≥ 0,

it suffices to show that
n+1∑

k=0

(−1)k

(
n + 1

k

)(
pk qk

qk rk

)
≥ 0 for all n ≥ 0. (3.1)

If n = 0 then
1∑

k=0

(−1)k

(
1
k

)(
pk qk

qk rk

)
=

(
p0 q0

q0 r0

)
−

(
p1 q1

q1 r1

)

=
(

1 0
0 1

)
−

(|b|2 + |y|2 ab + xy
ab + xy |a|2 + |x|2

)

=
( |x|2 − |b|2 −(ab + xy)
−(ab + xy) |y|2 − |a|2

)
=: Q.

A straightforward calculation shows that det Q = 0. But since |x| > |b| it follows that Q ≥ 0. If n ≥ 1,
then

n+1∑

k=0

(−1)k

(
n + 1

k

)(
pk qk

qk rk

)

=
n∑

k=1

(−1)k

(
n + 1

k

)(
pk qk

qk rk

)
+

(
p0 q0

q0 r0

)
+ (−1)n+1

(
pn+1 qn+1

qn+1 rn+1

)

=
n∑

k=1

(−1)k

(
n

k

)(
pk qk

qk rk

)
+

n∑

k=1

(−1)k

(
n

k − 1

)(
pk qk

qk rk

)
+

(
p0 q0

q0 p0

)
+ (−1)n+1

(
pn+1 qn+1

qn+1 rn+1

)

=
n∑

k=0

(−1)k

(
n

k

)(
pk qk

qk rk

)
+

n+1∑

k=1

(−1)k

(
n

k − 1

)(
pk qk

qk rk

)

=
n∑

k=0

(−1)k

(
n

k

)(
pk qk

qk rk

)
−

n∑

k=0

(−1)k

(
n

k

)(
pk+1 qk+1

qk+1 rk+1

)

=
n∑

k=0

(−1)k

(
n

k

)(
pk − pk+1 qk − qk+1

qk − qk+1 rk − rk+1

)

=
n∑

k=0

(−1)k

(
n

k

)(|a|2(k−1)(1− |a|2 − |x|2)|b|2 |a|2(k−1)(1− |a|2 − |x|2)ab
|a|2(k−1)(1− |a|2 − |x|2)ab |a|2k(1− |a|2 − |x|2)

)

=
(1− |a|2 − |x|2)

|a|2
(|b|2 ab

ab |a|2
) n∑

k=0

(−1)k

(
n

k

)
|a|2k

=
(|y|2 − |a|2)

|a|2
(|b|2 ab

ab |a|2
) n∑

k=0

(−1)k

(
n

k

)
|a|2k.
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If n is even, then
n∑

k=0

(−1)k

(
n

k

)
|a|2k =

n∑

k=0

(
n

k

)
|a|2k(−1)n−k = (|a|2 − 1)n ≥ 0.

If instead n is odd, then
n∑

k=0

(−1)k

(
n

k

)
|a|2k = −

n∑

k=0

(
n

k

)
|a|2k(−1)n−k = −(|a|2 − 1)n ≥ 0.

This proves (3.1) and therefore T is subnormal. This proves the first statement.
(2) Towards the second statement, we suppose that T |ker [T∗,T ] has the rank-two self-commutator, that is,

[S∗, S] is of rank-two. So, A is of rank-two, and hence A∗ is also of rank-two. Since for each h ∈ ker [T ∗, T ],

T ∗h =
(

S∗ 0
A∗ B∗

)(
h
0

)
=

(
S∗h
A∗h

)
,

it follows
H =

∨
{T ∗nh : h ∈ ker [T ∗, T ], n = 0, 1} .

So T = m.p.n.e. (S) =: Ŝ. By (2.5), S is 2-hyponormal. Since again ker [S∗, S] is invariant for S and
rank [S∗, S] = 2, we can repeat the preceding argument for S instead of T . Write T1 := S and

T1 =
(

T2 A1

0 B1

)
:

(
ker [T ∗1 , T1]
ran [T ∗1 , T1]

)
→

(
ker [T ∗1 , T1]
ran [T ∗1 , T1]

)
.

If A1 is of rank-one then again T2
∼= α1 U + β1, so by the first statement we can see that T1 is subnormal.

Since by (2.6), the minimal partially normal extension of a subnormal operator is also subnormal, we can
conclude that T = T̂1 is subnormal. If instead A1 is of rank-two then again we have

T1 = m.p.n.e. (T2) =: T̂2.

Since T1 is 2-hyponormal it follows from (2.5) that T2 is 3-hyponormal and T = T̂2

(2)
. If this process stops

after finite steps, then T is subnormal. If instead this process does not stop after finite steps, then we can
obtain a sequence {Tn} such that

(i) rank[T ∗n , Tn] = 2;
(ii) Tn = m.p.n.e.(Tn+1) =: T̂n+1;
(iii) Tn is (n + 1)-hyponormal.

So we have that for each n ≥ 1, T = T̂n

(n)
and Tn is (n + 1)-hyponormal. Consequently, T is a finite rank

perturbation of Tn which is an (n + 1)-hyponormal operator. Since n is arbitrary, the first assertion of the
statement (2) follows. Note that in this case T has the following two-diagonal structure, with respect to
the orthogonal decomposition H = H0 ⊕H1 ⊕ · · · :

T =




B0 0 0 0 . . .
A0 B1 0 0 . . .
0 A1 B2 0 . . .
0 0 A2 B3 . . .
...

...
...

...
. . .




, (3.2)

where
(i)

Tn :=




Bn 0 0 0 . . .
An Bn+1 0 0 . . .
0 An+1 Bn+2 0 . . .
0 0 An+2 Bn+3 . . .
...

...
...

...
. . .




(3.3)

is the minimal partially normal extension of Tn+1;
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(ii) Hn = ran [T ∗n+1, Tn+1];
(iii) the Aj and Bj are all 2× 2 matrices;
(iv) the Aj are invertible.

Since Tn = m.p.n.e.(Tn+1) we have that




[T ∗, T ] = ([B∗
0 , B0] + A∗0A0)⊕ 0∞;

[B∗
n+1, Bn+1] + A∗n+1An+1 = AnA∗n (n ≥ 0);

A∗nBn+1 = BnA∗n (n ≥ 0),
(3.4)

which gives that the operator T in (3.2) is exactly the Putinar’s matricial model (1.7). This proves the
second statement. ¤

4. Proof of Theorem 2

Proof of Theorem 2. We split the proof into two cases.
(Case1: Bn is normal for some n ≥ 1): The program is to show that if Bn is normal for some n ≥ 1 then

Tn :=




Bn 0 0 0 . . .
An Bn+1 0 0 . . .
0 An+1 Bn+2 0 . . .
0 0 An+2 Bn+3 . . .
...

...
...

...
. . .




is subnormal, and hence by (2.6), T is subnormal since T = T̂n. So, we may assume, without loss of
generality, that B1 is normal. By the fourth equality of (2.9), we have A0 = A1. Since A0 is diagonalizable,
we can write A0 = A1 :=

( p 0
0 q

)
. We also write Bn :=

(
an bn

cn dn

)
(n = 0, 1). By the third equality of (2.9), we

have 



a0 = a1 =: a;
d0 = d1 =: d;
pb1 = b0q;
c0p = qc1 .

There are two cases to consider.
(Case1-1: a 6= d): By translation, write Bn :=

(
a bn
cn 0

)
(a 6= 0;n = 0, 1). We may assume without loss of

generality that a is a real number (In fact, if we multiply T by eiθ, then An is not positive. But we can
proceed in the same way with the notations of (3.4). So we hold the notations of (2.9).) So, c1 = b1. By
the third equality of (2.9), we have

B2 = A−1
1 B1A1 =

(
a q

pb1
p
q b1 0

)

and

B0 = A0B1A
−1
0 =

(
a p

q b1
q
pb1 0

)
= B∗

2 .

Note that A2
0 + [B∗

0 , B0] = A2
1 − [B∗

2 , B2] = A2
2. Now if we define A−1 :=

(
[B∗

0 , B0] + A2
0

) 1
2 = A2 and in

turn, B−1 := A−1B0A
−1
−1 = A2B0A

−1
2 = A2B

∗
2A−1

2 = B∗
3 , then T1 :=

(
B−1 0
A−1 T

)
=

(
B∗3 0
A2 T

)
is the minimal

partially normal extension of T . Moreover, we have

[T ∗1 , T1] =
(
[B3, B

∗
3 ] + A2

2

)⊕ 0∞ =
(
A2

2 − [B∗
3 , B3]

)⊕ 0∞ = A2
3 ⊕ 0∞ ≥ 0.

Since T1 = m.p.n.e.(T ) it follows from (2.5) that T is 2-hyponormal. Similarly, if we define

T2 :=




B∗
4 0 0

A3 B∗
3 0

0 A2 T



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then T2 = m.p.n.e. (T1) and [T ∗2 , T2] = A2
4 ⊕ 0∞ ≥ 0, so that T1 is 2-hyponormal, and hence T is 3-

hyponormal. Continuing this process gives that if we define, for each n = 0, 1, · · · ,

Tn :=




B∗
n+2 0

An+1 B∗
n+1

. . .

0 An
. . . . . .

. . . . . . B∗
3 0

0 A2 T




then Tn = m.n.p.e. (Tn−1) and Tn is hyponormal, so that T is (n + 1)-hyponormal for every n. Therefore
T is subnormal.
(Case1-2: a = d): By translation we can write Bn =

(
0 bn
cn 0

)
(n = 0, 1). So by the third equality of (2.9),

B2 is skew diagonal and in turn, by the fourth equality of (2.9), A2 is diagonal. Repeating this argument
with a telescoping method shows that Bn is skew diagonal and An is diagonal for each n = 0, 1, · · · . Thus
T is of the form:

T =




0 b0 0 0 · · ·
c0 0 0 0 · · ·
p0 0 0 b1 · · ·
0 q0 c1 0 · · ·
0 0 p1 0 · · ·
0 0 0 q1 · · ·
...

...
...

...
. . .




. (4.1)

Since B1 is normal, we have |b1| = |c1|. Write

T1 :=




B1 0 0 0 · · ·
A1 B2 0 0 · · ·
0 A2 B2 0 · · ·
0 0 A3 B3 · · ·
...

...
...

...
. . .




.

We claim that T1 is subnormal. For notational convenience we assume that B0 is normal and hence
|b0| = |c0|. We must show that T is subnormal. By the third and fourth equalities of (2.9) we have





p2
n+1 = p2

n + |bn+1|2 − |cn+1|2;
q2
n+1 = q2

n − |bn+1|2 + |cn+1|2;
pnbn+1 = bnqn;
cnpn = qncn+1.

(4.2)

We want to define pj , qj , bj and cj for j = −1,−2, · · · . To do so, from (4.2), we need to confirm that
pj and qj are all positive for j = −1,−2, · · · . But since B0 is normal, A−1 is defined by A0 and then
B−1 is automatically defined by (4.2). Now the remaining is to show that p2

−1 − |b−1|2 + |c−1|2 > 0 and
q2
−1 + |b−1|2 − |c−1|2 > 0. Indeed a straightforward calculation shows that

p2
−1 − |b−1|2 + |c−1|2 = p2

0 − |c1|2 + |b1|2 = p2
1 > 0

and

q2
−1 + |b−1|2 − |c−1|2 = q2

0 + |c1|2 − |b1|2 = q2
1 > 0.
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Repeating this process, we obtain pn, qn, bn and cn satisfying the condition (4.2) for all n ∈ Z. Therefore
T is a subnormal operator whose minimal normal extension is given by

N =




. . . . . .
...

...
A−1 B−1 0 0

. . . 0 A−1 B0 0 . . .

. . . . . . 0 A0 B1 . . .

. . . . . . 0 0 A1
. . .

...
...

...
. . .




.

(Case2: B0 is normal): Since A0 is diagonalizable, we can write, by some translation,

A0 :=
(

p 0
0 q

)
and B0 :=

(
a b
c 0

)
(|b| = |c|).

Then by the fourth equality of (2.9), we can define A−1 := A0 =
(

p 0
0 q

)
and

B−1 := A−1B0A
−1
−1 = A0B0A

−1
0 =

(
a p

q b
q
pc 0

)
.

On the other hand, from the third equality of (2.9), we have

B1 = A−1
0 B0A0 =

(
a q

pb
p
q c 0

)
.

A straightforward calculation shows that [B∗
1 , B1] = −[B∗

−1, B−1]. So, we have

A2
−1 + [B∗

−1, B−1] = A2
0 − [B∗

1 , B1] = A2
1 > 0.

If we let T̂ :=
(

B−1 0
A−1 T

)
, then T̂ is the minimal partially normal extension of T . Moreover, since

[T̂ ∗, T̂ ] =
(
A2
−1 + [B∗

−1, B−1]
)⊕ 0∞ = A2

1 ⊕ 0∞ ≥ 0,

it follows from (2.5) that T is 2-hyponormal. By the previous argument of the Case1, we can conclude that
T is subnormal. ¤
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