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Abstract. In this note we study the k-hyponormality and the subnormal-
ity of Aluthge transforms of weighted shifts. It is shown that Aluthge
transforms of weighted shifts need not preserve the k-hyponormality.
Moreover, we show that if Wα is a subnormal weighted shift with 2-

atomic Berger measure then its Aluthge transform W̃α is subnormal if
and only if at least one of two atoms is zero.
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1. Introduction

Let H and K be complex Hilbert spaces, let B(H,K) be the set of bounded
linear operators from H to K and write B(H) := B(H,H). An operator
T ∈ B(H) is said to be normal if T ∗T = TT ∗, hyponormal if T ∗T ≥ TT ∗,
and subnormal if T = N |H, where N is normal on some Hilbert space K ⊇ H.
If T is subnormal then T is also hyponormal. Recall that given a bounded
sequence of positive real numbers α : α0, α1, · · · (called weights), the (unilat-
eral) weighted shift Wα associated with α is the operator on `2(Z+) defined by
Wαen := αnen+1 for all n ≥ 0, where {en}∞n=0 is the canonical orthonormal
basis for `2(Z+) (where Z+ is the set of non-negative integers). In what fol-
lows we simply write Wα ≡ shift (α0, α1, · · · ). It is straightforward to check
that Wα can never be normal, and that Wα is hyponormal if and only if
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αn ≤ αn+1 for all n ≥ 0. On the other hand, the Bram-Halmos criterion for
subnormality states that an operator T is subnormal if and only if

∑

i,j

(T ixj , T
jxi) ≥ 0

for all finite collections x0, x1, · · · , xk ∈ H ([Con, III.1.9]). It is easy to see
that this is equivalent to the following positivity test:




I T ∗ . . . T ∗k

T T ∗T . . . T ∗kT
...

...
. . .

...
T k T ∗T k . . . T ∗kT k


 ≥ 0 (all k ≥ 1). (1.1)

The positivity condition (1.1) for k = 1 is equivalent to the hyponormality
of T , while subnormality requires the validity of (1.1) for all k. Let [A,B] :=
AB − BA denote the commutator of two operators A and B, and define T
to be k-hyponormal whenever the k × k operator matrix

Mk(T ) := ([T ∗j , T i])k
i,j=1 (1.2)

is positive semi-definite. An application of the Choleski algorithm for operator
matrices shows that the positivity of (1.2) is equivalent to the positivity of the
(k + 1)× (k + 1) operator matrix in (1.1); the Bram-Halmos criterion can be
then rephrased as saying that T is subnormal if and only if T is k-hyponormal
for every k ≥ 1 ([CMX, Proposition 1.9]).

If T ∈ B(H), write T = U |T | for the polar decomposition of T . The
Aluthge transform of T is defined by the operator T̃ = |T | 12 U |T | 12 . This
transform was first introduced in [Alu] and has received much attention in
recent years. For a weighted shift Wα ≡ shift (α0, α1, · · · ), we also write W̃α

for the Aluthge transform of Wα. In this note we consider the following two
problems.

Problem 1.1. If Wα is k-hyponormal (k ≥ 1), is the Aluthge transform W̃α

k-hyponormal ?

Problem 1.2. If Wα is subnormal, is the Aluthge transform W̃α subnormal ?
If it does, what is the Berger measure of W̃α ?

2. Notations and Preliminaries

For a weighted shift Wα ≡ shift (α0, α1, · · · ), the moments of Wα, γn, are
defined by

γn ≡ γn(Wα) :=
{

1, if n = 0
α2

0 · · ·α2
n−1, if n > 0 . (2.1)
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It is well-known that Wα is subnormal if and only if

γn =
∫

[0,||Wα||2]
tn dµ(t) (all n ≥ 0),

where µ is a probability measure on the interval [0, ||Wα||2] (this measure
µ is called the Berger measure of the subnormal weighted shift Wα). We
consider recursively generated weighted shifts [CuFi1], [CuFi2]. We briefly
recall some basic facts about these shifts, specifically the case when there
are two coefficients of recursion. In [Sta], J. Stampfli proved that given three
positive real numbers

√
a <

√
b <

√
c, it is always possible to find a subnormal

weighted shift, denoted W(
√

a,
√

b,
√

c)∧ , whose first three weights are
√

a,
√

b

and
√

c. In this case, the coefficients of recursion (cf. [CuFi1, Example 3.12],
[CuFi2, Section 3], [Cu2, Section 1, p. 81]) are given by

ϕ0 = −ab(c− b)
b− a

and ϕ1 =
b(c− a)
b− a

, (2.2)

the atoms t0 and t1 are the roots of the equation

t2 − ϕ1t− ϕ0 = 0, (2.3)

and the densities ρ0 and ρ1 are uniquely determined by the following equa-
tions {

ρ0 + ρ1 = 1
ρ0t0 + ρ1t1 = α2

0 .
(2.4)

Then
µ = ρ0δt0 + ρ1δt1 (2.5)

is the Berger measure of W(
√

a,
√

b,
√

c)∧ .

3. Main Results

We first provide several well-known auxiliary results which are needed for the
proofs of the main results in this note.

Lemma 3.1. If Wα ≡ shift (α0, α1, · · · ), then the Aluthge transform W̃α of
Wα is

shift (
√

α0α1,
√

α1α2, · · · ).

Proof. Note that the polar decomposition of Wα is U+Dα, where Dα :=
diag (α0, α1, · · · ). Hence, W̃α = D

1
2
αU+D

1
2
α . For n ≥ 0 and the orthonormal

basis {en}∞n=0 for `2 (Z+), we have U+D
1
2
α (en) =

√
αnU+ (en) =

√
αnen+1.

Thus we get

W̃α (en) = D
1
2
αU+D

1
2
α (en) =

√
αnαn+1en+1 ,

which gives the result. ¤
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Lemma 3.2. ([Cu1]) Let Wαei = αiei+1 (i ≥ 0) be a hyponormal weighted
shift and let k ≥ 1. The following statements are equivalent:

(i) Wα is k-hyponormal;
(ii) The matrix

(([W ∗j
α ,W i

α]en+j , en+i))k
i,j=1

is positive semi-definite for all n ≥ −1;
(iii) The matrix

(γnγn+i+j − γn+iγn+j)k
i,j=1

is positive semi-definite for all n ≥ 0, where as (2.1), γ0 = 1, γn =
α2

0 · · ·α2
n−1 (n ≥ 1);

(iv) The Hankel matrix

H(k; n)(Wα) := (γn+i+j−2)k+1
i,j=1

is positive semi-definite for all n ≥ 0.

Lemma 3.3. (Subnormal backward extensions) (cf. [Cu1], [CuYo]) Let T
be a weighted shift whose restriction TM := T |M to M := ∨{e1, e2, · · · } is
subnormal, with Berger measure µM. Then T is subnormal (with Berger
measure µ) if and only if

(i) 1
t ∈ L1(µM);

(ii) α2
0 ≤

(∥∥ 1
t

∥∥
L1(µM)

)−1

.

In this case,

dµ(t) =
α2

0

t
dµM(t) +

(
1− α2

0

∥∥∥∥
1
t

∥∥∥∥
L1(µM)

)
dδ0(t), (3.1)

where δ0 denotes the Dirac measure at 0. In particular, T is never subnormal
when µM ({0}) > 0.

We now have:

Theorem 3.4. For x > 0, let Wα(x) ≡ shift
(√

1
2 ,
√

x,
(√

3,
√

10
3 ,

√
17
5

)∧)
.

Then we have:

(i) Wα(x) is 2-hyponormal if and only if 4−√6 ≤ x ≤ 2;
(ii) Wα(x) is subnormal if and only if x = 2. In this case, the Berger measure

µ of Wα(2) is given by

µ = 1
2δ0 + 1

4(2−
√

2)δ(2−
√

2) + 1

4(2+
√

2)δ(2+
√

2);

(iii) W̃α(x) is not 2-hyponormal for any x > 0.
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Proof. (i) To check the 2-hyponormality, it suffices to prove, in view of Lemma
3.2, that the Hankel matrix H(2; n)

(
Wα(x)

)
in Lemma 3.2 (iv) is positive

semi-definite for all n ≥ 0. Since W(√
3,
√

10
3 ,
√

17
5

)∧ is subnormal, it is enough

to check the cases of n = 0, 1 for the 2-hyponormality of Wα(x).
For n = 0, we have

H(2; 0)
(
Wα(x)

) ≥ 0 ⇐⇒ det




1 1
2

1
2x

1
2

1
2x 3

2x
1
2x 3

2x 5x


 ≥ 0

⇐⇒ 4−
√

6 ≤ x ≤ 4 +
√

6 .

(3.2)

For n = 1, we have

H(2; 1)
(
Wα(x)

) ≥ 0 ⇐⇒ det




1 x 3x
x 3x 10x
3x 10x 34x


 ≥ 0 ⇐⇒ 0 ≤ x ≤ 2 .

(3.3)
Thus, by (3.2) and (3.3), we have that Wα(x) is 2-hyponormal if and only if
4−√6 ≤ x ≤ 2, as desired.

(ii) By (2.5), we have that the Berger measure of W(√
3,
√

10
3 ,
√

17
5

)∧ is

µ̂ :=

(
2−√2

4

)
δ(2−

√
2) +

(
2 +

√
2

4

)
δ(2+

√
2).

We first note that ∥∥∥∥
1
t

∥∥∥∥
L1(µ̂)

=
1
2
.

From Lemma 3.3, we observe that shift
(√

x,
(√

3,
√

10
3 ,

√
17
5

)∧)
is subnor-

mal if and only if x ≤ 2. If µ̂x is the corresponding Berger measure then it
follows from Lemma 3.3 that

dµ̂x(t) =
x

t
dµ̂(t) +

(
1− x

∣∣∣∣
∣∣∣∣
1
t

∣∣∣∣
∣∣∣∣
L1(µ̂)

)
dδ0(t)

=
x

t
dµ̂(t) +

(
1− x

2

)
dδ0(t) .

Thus, if shift
(√

x,
(√

3,
√

10
3 ,

√
17
5

)∧)
is back-step extendable, then one get

µ̂x({0}) = 1− x
2 = 0, and hence x = 2. In fact,

shift

(
√

x,

(√
3,

√
10
3

,

√
17
5

)∧)
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is subnormal and back-step extendable if and only if x = 2; in this case, the
Berger measure µ̂2 is given by

µ̂2 =
1
2

(
δ(2−

√
2) + δ(2+

√
2)

)

because

1− α2
0

∥∥∥∥
1
t

∥∥∥∥
L1(µM)

= 0 and
α2

0

t
dµM(t) =

1
2

(
dδ(2−

√
2) (t) + dδ(2+

√
2) (t)

)
.

We next note that ∥∥∥∥
1
t

∥∥∥∥
L1(µ̂2)

= 1.

By Lemma 3.3 and (3.1) again, we can see that Wα(2) is subnormal with the
Berger measure

µ = 1
2δ0 + 1

4(2−
√

2)δ(2−
√

2) + 1

4(2+
√

2)δ(2+
√

2).

(iii) By Lemma 3.1, the Aluthge transform W̃α(x) of Wα(x) is

W̃α(x) ≡ shift

(
4

√
x

2
,

4
√

3x,
4
√

10,
4

√
34
3

,
4

√
58
5

,
4

√
198
17

,
4

√
338
29

,
4

√
1154
99

, · · ·
)

.

By Lemma 3.2, we have that W̃α(x) is 2-hyponormal if and only if

H(2; n)
(
W̃α(x)

)
≥ 0 for all n ≥ 0. Note that

H(2; 4)
(
W̃α(x)

)
≥ 0 ⇐⇒ N :=




1
√

58
5 6

√
319
85√

58
5 6

√
319
85 78

√
22
85

6
√

319
85 78

√
22
85 52

√
577
85


 ≥ 0. (3.4)

Since det N < 0, we can see that N � 0. Thus, by Lemma 3.2 and (3.4),
W̃α(x) is not 2-hyponormal. ¤

Remark 3.5. From Theorem 3.4, we can see that for k ≥ 2, the Aluthge
transforms of weighted shifts need not preserve the k-hyponormality.

For our next results, we recall:

Lemma 3.6. (cf. [Smu]) Let M ≡
(

A B
B∗ C

)
be a 2 × 2 operator matrix,

where A and C are square matrices and B is a rectangular matrix. Then

M ≥ 0 ⇐⇒ there exists W such that





A ≥ 0
B = AW
C ≥ W ∗AW.
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The iterated Aluthge transforms (or Aluthge iterates) of an operator
T are the operators T̃ (m) (m ≥ 0) , defined by setting T̃ (0) = T and letting
T̃ (m+1) be the Aluthge transform of T̃ (m). An interesting result for Aluthge
iterates (see [Yam]) is the spectral radius of T is equal to the limit of the norm
of T̃ (m) as m → ∞. For weighted shifts, observe that the Aluthge iterate
W̃

(m)
α of a weighted shift Wα is also a weighted shift with weight sequence

α(m) ≡ {α(m)
i }∞i=0, where α

(m)
i =

(∏m
j=0(αi+j)mCj

) 1
2m

and mCj = m!
j!(m−j)! .

Moreover, by a direct calculation we can see that the moments of W̃
(m)
α are

given by

γ
(m)
i =


γi

m∏

j=1

(
γi+j

γj

)
mCj




1
2m

, (3.5)

where the γi are the moments of Wα.

For weighted shifts, we have:

Theorem 3.7. (i) For m ≥ 1, if Wα is subnormal with Berger measure
µ = δp for some p ≥ 0, then W̃

(m)
α is subnormal with Berger measure

µ̃(m) = δp.
(ii) If Wα is subnormal with Berger measure µ = aδ0 + (1− a) δp for some

p > 0, then W̃
(m)
α is subnormal with Berger measure

µ̃(m) =
(
1− (1− a)

1
2m

)
δ0 + (1− a)

1
2m δp.

(iii) If Wα is subnormal with Berger measure µ = aδp + (1− a) δq for some
p, q > 0 (p 6= q) , then W̃α need not be subnormal.

Proof. (i) Since Wα ≡ shift
(√

p,
√

p, · · · ), by Lemma 3.1, the Aluthge trans-
form W̃α is Wα. Thus, W̃α is subnormal with Berger measure δp, as desired.

(ii) A direct calculation shows that Wα= shift
(√

(1− a) p,
√

p,
√

p, · · ·
)
,

so that its Aluthge transform W̃α is given by shift
(

4
√

(1− a) p2,
√

p,
√

p, · · ·
)
,

which is subnormal with Berger measure µ̃ =
(
1−√1− a

)
δ0 +

(√
1− a

)
δp.

Consider
(̃
W̃α

)
= W̃ (2)

α ≡ shift
(

8
√

(1− a) p4,
√

p,
√

p, · · ·
)

.

We then have that W̃
(2)
α is subnormal with Berger measure

µ̃(2) =
(
1− 4

√
1− a

)
δ0 +

(
4
√

1− a
)
δp.

Continuing in this way, for m ≥ 1, we have W̃
(m)
α is subnormal with Berger

measure µ̃(m) =
(
1− (1− a)

1
2m

)
δ0 + (1− a)

1
2m δp, as desired.
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(iii) From the proof of Theorem 3.4, we see that W(√
3,
√

10
3 ,
√

17
5

)∧ is

subnormal with Berger measure

µ̂ =

(
2−√2

4

)
δ(2−

√
2) +

(
2 +

√
2

4

)
δ(2+

√
2).

By Lemma 3.1, the Aluthge transform W̃(√
3,
√

10
3 ,
√

17
5

)∧ of W(√
3,
√

10
3 ,
√

17
5

)∧

is

W̃(√
3,
√

10
3 ,
√

17
5

)∧ ≡ shift

(
4
√

10, 4

√
34
3

,
4

√
58
5

,
4

√
198
17

,
4

√
338
29

,
4

√
1154
99

, · · ·
)

.

From (3.4) and the argument given in the proof of Theorem 3.4 (iii), note
that

H(2; 2)


W̃(√

3,
√

10
3 ,
√

17
5

)∧

 = N < 0

Thus, by Lemma 3.2, W̃(√
3,
√

10
3 ,
√

17
5

)∧ is not 2-hyponormal, so that W̃α is

not subnormal. ¤

Remark 3.8. In Theorem 3.4 (ii), we note that

lim
n→∞

W̃ (m)
α = shift (

√
p,
√

p, · · · )
is subnormal with Berger measure limm→∞ µ̃(m) = δp.

We recall that for an m × n matrix A, the Moore-Penrose inverse of
A is defined as the unique n × m matrix A† satisfying the following four
properties:

AA†A = A, A†AA† = A†,
(
AA†

)∗
= AA†, and

(
A†A

)∗
= A†A.

The following result is a variant of Lemma 3.6.

Lemma 3.9. ([Smu]) Let P ≡
(

D E
E∗ F

)
be a finite matrix. Then P ≥ 0

if and only if the following conditions hold:
(i) D ≥ 0;
(ii) ran E ⊆ ran D; and
(iii) F ≥ E∗D†E, where D† is the Moore-Penrose inverse of D.

Proof. Since P is a finite matrix, it has closed range and hence D has the
Moore-Penrose inverse D†. The desired result now follows from ([CuLe,
Lemma 1.2]). ¤

We then have:



Subnormality of Aluthge transforms of weighted shifts 9

Theorem 3.10. Let Wα be the contractive subnormal weighted shift with Berger
measure µ = aδp + (1− a) δ1 (0 < a < 1 and 0 ≤ p < 1). Then the Aluthge
transform W̃α of Wα is subnormal if and only if p = 0.

Proof. (⇐) It is clear from Theorem 3.7 (ii).
(⇒) Suppose that W̃α is subnormal. Then by Lemma 3.2, for all k ≥ 1

and n ≥ 0, the Hankel matrix

H(k;n)
(
W̃α

)
= (γ(1)

n+i+j−2)
k+1
i,j=1 ≥ 0.

Observe that γi = api + 1− a. Hence, by (3.5), we have

γ
(1)
i =

√
γiγi+1

γ1
=

√
(api + 1− a)(api+1 + 1− a)

ap + 1− a
.

There are two cases to consider.

Case 1 (p = 0): This case is clear.
Case 2 (0 < p < 1): Note that

H(3; 2)
(
W̃α

)
≥ 0

⇐⇒




√
γ2γ3

√
γ3γ4

√
γ4γ5

√
γ5γ6√

γ3γ4
√

γ4γ5
√

γ5γ6
√

γ6γ7√
γ4γ5

√
γ5γ6

√
γ6γ7

√
γ7γ8√

γ5γ6
√

γ6γ7
√

γ7γ8
√

γ8γ9


=:


 D

(
W̃α

)
E

(
W̃α

)
(
E

(
W̃α

))∗
F

(
W̃α

)



=: P
(
H(3; 2)

(
W̃α

))
≥ 0,

where

D
(
W̃α

)
:=

( √
γ2γ3

√
γ3γ4√

γ3γ4
√

γ4γ5

)
, E

(
W̃α

)
:=

( √
γ4γ5

√
γ5γ6√

γ5γ6
√

γ6γ7

)
and

F
(
W̃α

)
:=

( √
γ6γ7

√
γ7γ8√

γ7γ8
√

γ8γ9

)
.

Observe that
√

γ2γ5 >
√

γ3γ4. Thus a direct calculation shows that the

Moore-Penrose inverse of D
(
W̃α

)
is

( √
γ4γ5√

γ2γ3γ4γ5−γ3γ4
−

√
γ3γ4√

γ2γ3γ4γ5−γ3γ4

−
√

γ3γ4√
γ2γ3γ4γ5−γ3γ4

√
γ2γ3√

γ2γ3γ4γ5−γ3γ4

)
.

By Lemma 3.9 (iii), we can see that

H(3; 2)
(
W̃α

)
≥ 0 ⇐⇒ P

(
H(3; 2)

(
W̃α

))
≥ 0

⇐⇒ F
(
W̃α

)
−

(
E

(
W̃α

))∗ (
D

(
W̃α

))†
E

(
W̃α

)
=: R =

(
r11 r12

r21 r22

)
≥ 0.
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Note that

R ≥ 0 if and only if r11 ≥ 0, r22 ≥ 0 and det R ≥ 0.

Using the software tool Mathematica [Wol], we can observe that

detR < 0 when 0 < a < 1 and 0 < p < 1.

Thus W̃α is not 3-hyponormal, that is, W̃α is not subnormal, which is con-
tradict to the assumption. Therefore, by Case 1 and Case 2, the Aluthge
transform W̃α is subnormal only if p = 0 and now our proof is complete. ¤

Corollary 3.11. Let Wα ≡ shift (α0, α1, · · · ) be a subnormal with Berger mea-
sure

µ = aδp + (1− a) δq (0 < a < 1, p < q) .

Then the Aluthge transform W̃α ≡ shift
(
α

(1)
0 , α

(1)
1 , · · ·

)
of Wα is subnormal

if and only if p = 0.

Proof. (⇐) It follows from Theorem 3.7 (ii).
(⇒) Suppose that W̃α is subnormal. A direct calculation shows that

for n ≥ 0,

αn =

√
apn+1 + (1− a) qn

apn+1 + (1− a) qn
and α(1)

n =

√
apn+1 + (1− a) qn

q (apn+1 + (1− a) qn)
.

Thus
(

1√
q

)
W̃α is also subnormal with Berger measure aδ p

q
+ (1− a) δ1.

Therefore, by Theorem 3.10, we have p = 0, as desired. ¤

Remark 3.12. Looking at Theorem 3.10 and Corollary 3.11, it seems natural
to conjecture that a similar method used in the proof of Theorem 3.10 should
work for a subnormal weighted shift Wα with finite atomic Berger measure.
However, it is highly nontrivial to find the necessary and sufficient conditions
for the k-hyponormality (all k ≥ 1) (resp. subnormality) of W̃α when k is
big enough. For example, D

(
W̃α

)
shown in the proof of Theorem 3.10 is

just a Hankel matrix without a common well known pattern, so it becomes
unwieldy to check its determinant or invertibility.

In view of Theorem 3.4 (iii), 3.7, Corollary 3.11 and Remark 3.12, it is
natural to pose:

Conjecture 3.13. Let Wα be a nonzero subnormal weighted shift with finite
atomic Berger measure µ. Then the Aluthge transform W̃α of Wα is subnor-
mal if and only if µ = aδ0 + (1− a) δp (0 ≤ a < 1; p > 0).
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