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Abstract. In this paper we give a complete characterization on the hyponormality of the
Toeplitz operators Tφ with trigonometric polynomial symbols φ = g + h (g, h ∈ H2) when

g divides h. This is accomplished by using a criterion on the contractivity of the inverse of a
lower triangular (finite) Toeplitz matrix via Schur numbers of an induced analytic polynomial.

1. Introduction

Let L2 ≡ L2(T) be the set of all square-integrable measurable functions on the unit circle T ≡ ∂ D
in the complex plane and H2 ≡ H2(T) be the corresponding Hardy space. Let H∞ ≡ H∞(T) :=
L∞(T)∩H2(T), that is, H∞ is the set of bounded analytic functions on D. Given φ ∈ L∞ ≡ L∞(T),
the Toeplitz operator Tφ with symbol φ is defined by

Tφg := P (φg) (g ∈ H2),

where P denotes the orthogonal projection that maps from L2 onto H2. Normal Toeplitz operators
were characterized by a property of their symbols in the early 1960’s by A. Brown and P.R. Halmos
[BH] and the hyponormality of Toeplitz operators was completely solved in terms of their symbols
by C. Cowen [Co2] in 1988.

Cowen’s Theorem. ([Co2], [NT]) For φ ∈ L∞, write

E(φ) :=
{
k ∈ H∞ : ||k||∞ ≤ 1 and φ− kφ ∈ H∞

}
.

Then Tφ is hyponormal if and only if E(φ) is nonempty.

The elegant and useful theorem of C. Cowen is to recast the operator-theoretic problem of hyponor-
mality for Toeplitz operators into the problem of finding a solution to a certain functional equation
involving the operator’s symbol. Cowen’s theorem was extensively used in the works [CCL], [Co1],
[Co2], [CL1], [CL2], [FL1], [FL2], [Gu], [GS], [HKL1], [HKL2], [HL1], [HL2], [HL3], [Le], [NT],
[Zhu], and etc to study the hyponormality of Toeplitz operators. When we study hyponormality of
the Toeplitz operator Tφ with symbol φ we may, without loss of generality, assume that φ(0) = 0
because the hyponormality of an operator is invariant under translation by scalars.

If φ is a trigonometric polynomial, say φ(z) =
∑N
n=−m anz

n, where a−m and aN are nonzero,
then the nonnegative integer N and m denote the analytic and the co-analytic degrees of φ. For
arbitrary trigonometric polynomials, K. Zhu [Zhu] has applied Cowen’s criterion and used a method
based on the classical interpolation theorems of Schur to obtain an abstract characterization of
those trigonometric polynomial symbols corresponding to hyponormal Toeplitz operators. In [FL1],
the hyponormality of Tφ was completely characterized in terms of the Fourier coefficients of φ when

2010 Mathematics Subject Classification. 15B05, 47B35, 47B20, 15A60, 47A57
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the outer coefficients have the same modulus, i.e., |a−m| = |aN |. However, with polynomials of
higher degrees with |a−m| < |aN |, the analogous explicit criterion would be too complicated to be
of much value, even though it was in principle solved via the solution of the interpolation problems.
The authors of [HKL2] considered the hyponormality of Tφ with polynomial symbol φ = g + h
(g, h ∈ H2) when g divides h and gave an explicit criterion in terms of the Fourier coefficients of
the quotient ψ := h

g when φ enjoys a certain extremal condition: its advantage is that this criterion

depends only on ψ regardless the degree of g. But if φ does not satisfy the extremal condition,
the criterion cannot be applied. The purpose of this paper is to get a complete criterion on the
hyponormality of Tφ with polynomial symbol φ ≡ g + h (g, h ∈ H2) when g divides h (Corollary
2.4). Here, our approach we take is to use a criterion on the contractivity of the inverse of a
lower triangular (finite) Toeplitz matrix via Schur numbers of an induced analytic polynomial -
the quotient of its division (Theorem 2.3).

2. The main result

Let φ ∈ L∞ be a trigonometric polynomial of the form φ(z) =
∑N
n=−m anz

n. If a function k ∈ H∞

satisfies φ− kφ ∈ H∞, then k necessarily satisfies

(2.1) k

N∑
n=1

anz
−n −

m∑
n=1

a−nz
−n ∈ H∞.

If we write k(z) =
∑∞
n=0 cnz

n, then from (2.1), c0, c1, . . . , cN−1 are determined uniquely from the
coefficients of φ by the recurrence relation:

(2.2)


c0 = c1 = . . . = cN−m−1 = 0

cN−maN = a−m

cnaN +
∑n−1
j=N−m cjaN−n+j for n = N −m+ 1, . . . , N − 1.

Thus (2.2) can be written in the following matrix form:

c0 = c1 = . . . = cN−m−1 = 0;
cN−m
cN−m+1

...
cN−1

 =


aN−m+1 aN−m+2 . . . aN−1 aN
aN−m+2 aN−m+3 . . . aN 0

...
...

. . .
...

...
aN 0 . . . 0 0


−1 

a−1

a−2

...
a−m

 .
Thus kp(z) :=

∑N−1
j=N−m cjz

j is a unique (analytic) polynomial of degree less than N satisfying

φ−kφ ∈ H∞. Thus the problem of finding a solution in the set E(φ) is to find an analytic function
k in the closed unit ball of H∞ interpolating kp. This is exactly the Carathéodory interpolation
problem (cf. [FF, Theorem VIII.1.3]). Thus by the Cowen’s theorem, Tφ is hyponormal if and
only if the Toeplitz matrix

(2.3) C =



cN−m 0 . . . . . . 0

cN−m+1 cN−m
. . .

...
... cN−m

. . .
. . .

...
...

. . .
. . . 0

cN−1 . . . . . . cN−m+1 cN−m


is a contraction (see [FF], [CCL], [FL1], [Zhu]). In this paper we consider the hyponormality of
Tφ with trigonometric polynomial symbols φ = g+h (g, h ∈ H∞) satisfying that g divides h. The
condition “g divides h” seems to be rigid. However the following lemma shows that if φ ≡ g + h
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is a trigonometric polynomial then we may, without loss of generality, assume that the co-analytic
part g of φ divides the analytic part h of φ whenever we consider the hyponormality of Tφ.

Lemma 2.1. ([HKL2, Lemma 2.4]) Let φ ≡ g + h ∈ L∞, where g and h are analytic polynomials
of degrees m and N (m ≤ N), respectively. If we let

h̃ := zmTzN−mh− d,

where d is the remainder in the division of zmTzN−mh by g, put φ̃ := g + h̃. We then have:

(i) Tφ is hyponormal if and only if Tφ̃ is;

(ii) g divides h̃.

We then have:

Theorem 2.2. Let φ ≡ g + h, where g and h are analytic polynomials of degrees m and N
(m ≤ N), respectively. Suppose g divides f and

h

g
:=

r∑
j=0

bjz
j (r := N −m).

Let B be a finite Toeplitz matrix of the form

B ≡


br 0 · · · 0

br−1 br
. . .

...
...

. . .
. . . 0

br−m+1 · · · br−1 br

 ,

where bj = 0 if j < 0 for notational convenience. Then Tφ is hyponormal if and only if each
eigenvalue of B∗B is greater than or equal to 1.

Proof. Write g(z) :=
∑m
j=1 ajz

j . If k ∈ H∞ satisfies φ− kφ ∈ H∞, then k satisfies

(2.4)
m∑
j=1

ajz
−j − k

 r∑
j=0

bjz
−j

 m∑
j=1

ajz
−j

 ∈ H2.

If we write k(z) :=
∑∞
j=0 cjz

j ,then

(2.5)

1−
( ∞∑
j=0

cjz
j
)( r∑

j=0

bjz
−j

) m∑
j=1

ajz
−j

 ∈ H2.

From (2.5) we can see that c0bram = 0. It thus follows that

(2.6) c0 = 0.

By repeating the argument we can show that

c0 = c1 = . . . = cr−1 = 0.

Thus (2.5) can be written as

(2.7)

1−
( ∞∑
j=r

cjz
j
)( r∑

j=0

bjz
−j

) m∑
j=1

ajz
−j

 ∈ H2.

From (2.7) we can again see that (1− crbr)am = 0, which implies

(2.8) crbr = 1.
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In turn we have (cr+1br + crbr−1)am = 0, which implies

cr+1br + crbr−1 = 0.

If we continue to employ the telescoping method for (2.7), then we get the following equations:

(2.9)



crbr = 1

cr+1br + crbr−1 = 0

cr+2br + cr+1br−1 + crbr−2 = 0

. . .

cr+m−1br + cr+m−2br−1 + · · ·+ crbr−m+1 = 0,

(where bj = 0 if j < 0 for notational convenience) or in matrix form

(2.10)



cr cr+1 . . . . . . cr+m−1

0 cr cr+1

...
...

. . .
. . .

. . .
...

...
. . .

. . . cr+1

0 . . . . . . 0 cr





br br−1 . . . . . . br−m+1

0 br br−1

...
...

. . .
. . .

. . .
...

...
. . .

. . . br−1

0 . . . . . . 0 br


= I .

If we let

C :=



cr cr+1 . . . . . . cr+m−1

0 cr cr+1

...
...

. . .
. . .

. . .
...

...
. . .

. . . cr+1

0 . . . . . . 0 cr


,

then by the interpolation argument of (2.3), Tφ is hyponormal if and only if and C is a contraction.
But since by (2.10), CB∗ = I, it follows that

σ(B∗B) = σ
(
(C∗C)−1

)
=

{ 1

λ
: λ ∈ σ(C∗C)

}
,

which implies that Tφ is hyponormal if and only if and σ(B∗B) ⊂ [1,∞), where σ(·) denotes the
set of eigenvalues. This gives the result. �

Theorem 2.2 essentially asserts that under the assumption of the theorem, Tφ is hyponormal if
and only if

B ≡


br 0 · · · 0

br−1 br
. . .

...
...

. . .
. . . 0

br−m+1 · · · br−1 br


is an inverse of a contractive matrix C∗. Theorem 2.2 also asserts that B is an inverse of a
contractive matrix if and only if all eigenvalues of B∗B are greater than or equal to 1. If the size of
the matrix B grows bigger, the calculation of the eigenvalues of B∗B might be another heavy task.
On the other hand, we may determine whether B is an inverse of a contractive matrix by using
the Schur numbers of the analytic polynomial f(z) := br + br−1z + · · ·+ br−m+1z

m−1 (bj ∈ C).
For an analytic function f0(z) ≡ f(z) in the open unit disk D, define a sequence {fn} by

fn+1(z) =
fn(z)− fn(0)

z
(
1− fn(0)fn(z)

) , |z| < 1, n = 0, 1, 2, . . . .
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We then define the n-th Schur number sn(f) of f by

sn(f) := fn(0).

For example, if f(z) =
∑∞
n=0 cnz

n then

s0(f) = c0, s1(f) =
c1

1− |c0|2
, s2(f) =

c2(1−+c0+
2) + c0c

2
1

(1− |c0|2)2 − |c1|2
.

We note that the n-th Schur number of f depends only on the first n coefficients of f . We would
also remark that even though the function fn(z) is analytic in a neighborhood of 0, the n-th Schur
number sn(f) is well determined whenever none of the numbers |s0(f)|, |s1(f)|, . . . , |sn−1(f)| is
equal to 1.

The Carathéodory interpolation problem says that given an analytic polynomial p(z) := c0 +
c1z + · · ·+ cnz

n, find an analytic function k on the open unit disk D such that

(i) k̂(j) = cj for j = 0, 1, . . . , n (k̂(j) denotes the j-th Fourier coefficient of k)
(ii) ||k||∞ ≤ 1.

I. Schur gave a solution to the Carathéodory interpolation problem:

Schur’s Theorem. ([Sch]) The above Carathéodory interpolation problem is solvable if and only
if f(z) := c0 + c1z + · · ·+ cnz

n satisfies one of the following two conditions:

(i) |sj(f)| < 1 for 0 ≤ j ≤ n;
(ii) There exists n0 (0 ≤ n0 ≤ n) such that |sj(f)| < 1 for 0 ≤ j ≤ n0 − 1, |sn0(f)| = 1 and

the coefficients of f coincide with the first (n+ 1) Fourier coefficients of

f̃ := ws0(f)(zws1(f)(· · · (zwsn0−1(f)(zsn0
(f))) · · · )),

where ws(z) :=
z+s
1+sz (|s| < 1).

We then have:

Theorem 2.3. Let bj ∈ C (0 ≤ j ≤ r) and br ̸= 0. If B is a lower triangular Toeplitz matrix of
the form

B ≡


br 0 · · · 0

br−1 br
. . .

...
...

. . .
. . . 0

b0 · · · br−1 br

 ,
we put

f(z) = br + br−1z + · · ·+ b0z
r.

Then B is an inverse of a contractive matrix if and only if f satisfies one of the following conditions:

(i) |s0(f)| > 1 and |sj(f)| < 1 for 1 ≤ j ≤ r;
(ii) There exists n0 (0 ≤ n0 ≤ r) such that |s0(f)| > 1, |sj(f)| < 1 for 1 ≤ j ≤ n0 − 1,

|sn0(f)| = 1 and the coefficients of f coincide with the first (r + 1) Fourier coefficients of

f̃ := ws0(f)(zws1(f)(· · · (zwsn0−1(f)(zsn0(f))) · · · )).
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Proof. As in the proof of Theorem 2.2, a straightforward calculation shows that the inverse of B
is of the form 

k0 0 · · · 0

k1 k0
. . .

...
...

. . .
. . . 0

kr · · · k1 k0

 ,
where the ki satisfy the following equation:

(2.11)


k0br = 1

k0br−1 + k1br = 0

. . .

k0b0 + k1b1 + · · ·+ krbr = 0.

Since br ̸= 0, we have k0 ̸= 0. Let q(z) := 1
f(z) . Since f(0) = br ̸= 0, there exists a neighborhood

N of 0 such that f has no zero in N. Thus q(z) represents an analytic function on N. Further,
(2.11) implies that the power series expansion of q in N can be written as

q(z) = k0 + k1z + · · ·+ krz
r + o(zr).

If we define a polynomial

q(r)(z) := k0 + k1z + · · ·+ krz
r,

then we can see that
sj(q) = sj(q

(r)) for all j = 0, · · · , r.
Then the Schur’s solution to the Carathéodory interpolation problem implies that

(2.12) K̂ :=


k0 0 · · · 0

k1 k0
. . .

...
...

. . .
. . . 0

kr · · · k1 k0

 is a contraction

if and only if q(r) satisfies one of two conditions of the Schur’s Theorem. Observe that

(2.13) |s0(q(r))| = |s0(q)| = |k0| =
1

|br|
=

1

|s0(f)|
.

Let f0 := f , q0 := q,

fn+1(z) :=
fn(z)− fn(0)

z
(
1− fn(0)fn(z)

) and qn+1(z) :=
qn(z)− qn(0)

z
(
1− qn(0)qn(z)

) (n ≥ 0).

Then we have

f1(z) =
f(z)− f(0)

z
(
1− f(0)f(z)

) =

1
q(z) −

1
q(0)

z
(
1− 1

q(0)

1
q(z)

)
=
q(0)

q(0)

q(z)− q(0)

z
(
1− q(0)q(z)

)
= eiθq1(z) (eiθ := q(0)q(0)−1).

In turn,

f2(z) =
f1(z)− f1(0)

z
(
1− f1(0)f1(z)

) =
eiθq1(z)− eiθq(0)

z
(
1− eiθq1(0)eiθq1(z)

)
= eiθ

q1(z)− q1(0)

z
(
1− q1(0)q1(z)

)
= eiθq2(z).
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Inductively we can see that fj(z) = eiθqj(z) = αqj(z) for j = 1, 2, . . ., where α := br
br
. Therefore

we have

(2.14) sj(f) = αsj(q) = αsj(q
(r)), and hence |sj(f)| = |sj(q(r))| for j = 1, 2, . . . .

We now have

|sj(q(r)| < 1 for 0 ≤ j ≤ r ⇐⇒ |s0(f)| > 1 and |sj(f)| < 1 for 1 ≤ j ≤ r,

which says that the first condition of the Schur’s solution to the Carathéodory interpolation problem
for q(r) is equivalent to the condition (i) of the theorem. Now consider the case when the condition
(ii) of the theorem holds. Since |sn0(f)| = 1 implies |sn0(q

(r))| = 1, it follows from the Schur’s
Theorem that the Carathéodory interpolation problem for q(r) has a solution if and only if the
coefficients of q(r) coincide with the first (r + 1) coefficients of the function

g̃ := ws0(q(r))
(
zws1(q(r))(· · · (zwsn0−1(q(r))(zsn0(q

(r)))) · · · )
)
.

Since the coefficients of f and q(r) are related by (2.11), we can see that the m coefficients of q(r)

coincide with the first m coefficients of g̃ if and only if the m coefficients of f coincide with the first
m coefficients of 1

g̃ . Using the relations s0(f) =
1

s0(q(r))
and sj(f) = αsj(q

(r)) (where α := br
br
), a

straightforward calculation shows that

g̃ =
1

ws0(f)
(
zws1(f)(· · · (zwsn0−1(f)(zsn0(f))) · · · )

) ,
that is,

f̃ ≡ 1

g̃
= ws0(f)

(
zws1(f)(· · · (zwsn0−1(f)(zsn0(f))) · · · )

)
.

Therefore we can conclude that the second condition of the Schur’s solution to the Carathéodory
interpolation problem for q(r) is equivalent to the condition (ii) of the theorem. This completes
the proof. �

The following corollary provides a complete criterion on the hyponormality of Tφ with polyno-
mial symbol φ = g + h (g, h ∈ H2) when g divides h.

Corollary 2.4. Let φ ≡ g + h (g, h ∈ H2) be a trigonometric polynomial such that g divides h.
If hg := brz

r + · · ·+ b1z + b0, put

f(z) := br + br−1z + · · ·+ br−m+1z
m−1 (m := the degree of g),

where bj = 0 if j < 0 for notational convenience. If sj(f) denotes the j-th Schur number of f , then
Tφ is hyponormal if and only if f satisfies one of the following conditions:

(i) |s0(f)| > 1 and |sj(f)| < 1 for 1 ≤ j ≤ m− 1;
(ii) There exists n0 (0 ≤ n0 ≤ m − 1) such that |s0(f)| > 1, |sj(f)| < 1 for 1 ≤ j ≤ n0 − 1,

|sn0(f)| = 1 and the coefficients of f coincide with the first m Fourier coefficients of

f̃ := ws0(f)(zws1(f)(· · · (zwsn0−1(f)(zsn0
(f))) · · · )).

Proof. Remembering that the matrix B in Theorem 2.2 is an inverse of a contractive matrix if and
only if all eigenvalues of B∗B are greater than or equal to 1, this follows at once from Theorems
2.2 and 2.3. �

Using Corollary 2.4, we can give a short proof of [HKL2, Lemma 2.6 and Theorem 2.7].
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Corollary 2.5. Let φ ≡ g + gψ =
∑m
j=1 ajz

−j +
(∑m

j=1 ajz
j
)(∑n

j=0 bjz
j
)
. If Tφ is hyponormal

then

(2.15)

∣∣∣∣∣∣
∑

ξ∈Z(ψ)

ξ

∣∣∣∣∣∣ ≤ |bn| −
1

|bn|
,

where Z(ψ) denotes the set of zeros of ψ. Moreover if the equality of (2.15) holds, then Tφ is
hyponormal if and only if n ≥ m− 1 and

(2.16) bj+1 = bj

(
|bn|2 − 1

bn−1bn

)
for j = n−m+ 1, . . . , n− 2.

Proof. Let f(z) := bn + bn−1z + · · · + bn−m+1z
m−1 (bj = 0 if j < 0) and suppose that Tφ is

hyponormal. If |s0(f)| = |bn| = 1, then by Corollary 2.4 we have f(z) = bn, i.e., bj = 0 for

n−m− 1 ≤ j ≤ n− 1. Observe that bn−1

bn
is equal to −

∑
ξ∈Z(ψ) ξ. Therefore if |s0(f)| = |bn| = 1,

then (2.15) and (2.16) are automatically satisfied. Assume instead |bn| ̸= 1, so that s1(f) is well
defined. If Tφ is hyponormal then by Corollary 2.4,

|s1(f)| =
∣∣∣∣ bn−1

1− |bn|2

∣∣∣∣ ≤ 1, so that

∣∣∣∣bn−1

bn

∣∣∣∣ ≤ ∣∣∣∣ 1

|bn|
− |bn|

∣∣∣∣ = |bn| −
1

|bn|
.

Again, bn−1

bn
= −

∑
ξ∈Z(ψ) ξ gives (2.15).

For the second assertion we assume that the equality holds in (2.15). The preceding calculation
shows that |s1(f)| = 1. By Corollary 2.4, Tφ is hyponormal if and only if the second condition of
Corollary 2.4 is satisfied by f , i.e., |s0(f)| = |bn| > 1 and the m coefficients of f coincide with the
first m coefficients of

ws0(f)(zws1(f)) =
s0 + zs1
1 + s0zs1

= (s0 + zs1)
∞∑
j=0

(−1)j(s0s1z)
j

= s0 + (s1 − |s0|2s1)z − (s1 − |s0|2s1)(s0s1)z2 + (s1 − |s0|2s1)(s0s1)2z3 − · · · .

Since (2.15) implies |bn| ≥ 1, we have |bn| > 1 because |bn| ̸= 1. Therefore we can conclude that

Tφ is hyponormal ⇐⇒ n ≥ m− 1 and
bn−j−1

bn−j
= −s0s1 =

bnbn−1

|bn|2 − 1
for 1 ≤ j ≤ m− 2,

which implies (2.16). This completes the proof. �

We conclude with a revealing example.

Example 2.6. Consider a trigonometric polynomial

φ(z) :=

4∑
j=1

ajz
−j + (

4∑
j=1

ajz
j)(2z4 − 2z3 + 3z2 − 3z + 4) (a4 ̸= 0).

If we put

f(z) = 2− 2z + 3z2 − 3z3,

then in view of Corollary 2.4, we need to check the Schur numbers sj(f) for j = 0, 1, 2, 3. Let
f0(z) = f(z). Then s0(f) = f0(0) = 2 and

f1(z) =
f(z)− f0(0)

z(1− f0(0)f(z))
=

−2 + 3z − 3z2

−3 + 4z − 6z2 + 6z3
,
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which implies that s1(f) = f1(0) =
2
3 . Also a straightforward calculation shows that

f2(z) =
1 + 3z − 12z2

−5 + 6z − 12z2 + 18z3
,

which implies that s2(f) = f2(0) = − 1
5 . Similarly, s3(f) = f3(0) = −7

8 . Therefore by Corollary
2.4, we can conclude that Tφ is hyponormal, regardless of the values of a1, a2, a3, a4 (a4 ̸= 0).

We next consider a trigonometric polynomial

φ′(z) :=

5∑
j=1

ajz
−j + (

5∑
j=1

ajz
j)(2z4 − 2z3 + 3z2 − 3z + 4) (a5 ̸= 0).

If we put

f ′(z) := 2− 2z + 3z2 − 3z3 + 4z4,

then a straightforward calculation as in the above shows that s4(f
′) = f ′4(0) = −3. Since |s4(f ′)| =

3 > 1, we can conclude that Tφ1 is not hyponormal. This example shows that if φ = g + gψ (g
and ψ are analytic polynomials) then the hyponormality of Tφ depends heavily on the degree of
the co-analytic part g.
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