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ABSTRACT. In this paper we give a complete characterization on the hyponormality of the
Toeplitz operators T, with trigonometric polynomial symbols ¢ = g+ h (9,h € H 2) when
g divides h. This is accomplished by using a criterion on the contractivity of the inverse of a
lower triangular (finite) Toeplitz matrix via Schur numbers of an induced analytic polynomial.

1. Introduction

Let L? = L?(T) be the set of all square-integrable measurable functions on the unit circle T = 9D
in the complex plane and H? = H?(T) be the corresponding Hardy space. Let H*® = H>®(T) :=
L (T)NH?(T), that is, H> is the set of bounded analytic functions on D. Given ¢ € L™ = L>(T),
the Toeplitz operator T, with symbol ¢ is defined by

T,g:= P(pg) (g€ H?),

where P denotes the orthogonal projection that maps from L? onto H2. Normal Toeplitz operators
were characterized by a property of their symbols in the early 1960’s by A. Brown and P.R. Halmos

[BH] and the hyponormality of Toeplitz operators was completely solved in terms of their symbols
by C. Cowen [Co2] in 1988.

Cowen’s Theorem. ([Co2], [NT]) For ¢ € L*, write
E(p) == {k €H®: [|E|loo <1 and ¢ — kP € H°°}.
Then T, is hyponormal if and only if E(p) is nonempty.

The elegant and useful theorem of C. Cowen is to recast the operator-theoretic problem of hyponor-
mality for Toeplitz operators into the problem of finding a solution to a certain functional equation
involving the operator’s symbol. Cowen’s theorem was extensively used in the works [CCL], [Col],
[Co2], [CL1], [CL2], [FL1], [FL2], [Gu], [GS], [HKL1], [HKL2], [HL1], [HL2], [HL3], [Le], [NT],
[Zhu], and etc to study the hyponormality of Toeplitz operators. When we study hyponormality of
the Toeplitz operator T, with symbol ¢ we may, without loss of generality, assume that ¢(0) =0
because the hyponormality of an operator is invariant under translation by scalars.

If ¢ is a trigonometric polynomial, say ¢(z) = Zg:_m anz™, where a_,, and ay are nonzero,
then the nonnegative integer N and m denote the analytic and the co-analytic degrees of . For
arbitrary trigonometric polynomials, K. Zhu [Zhu] has applied Cowen’s criterion and used a method
based on the classical interpolation theorems of Schur to obtain an abstract characterization of
those trigonometric polynomial symbols corresponding to hyponormal Toeplitz operators. In [FL1],
the hyponormality of T\, was completely characterized in terms of the Fourier coefficients of ¢ when
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the outer coefficients have the same modulus, i.e., |a—,,| = |an|. However, with polynomials of
higher degrees with |a_,| < |an|, the analogous explicit criterion would be too complicated to be
of much value, even though it was in principle solved via the solution of the interpolation problems.
The authors of [HKL2| considered the hyponormality of T, with polynomial symbol ¢ = g+ h
(g,h € H?) when g divides h and gave an explicit criterion in terms of the Fourier coefficients of
the quotient ¢ := 2 when ¢ enjoys a certain extremal condition: its advantage is that this criterion
depends only on v regardless the degree of g. But if ¢ does not satisfy the extremal condition,
the criterion cannot be applied. The purpose of this paper is to get a complete criterion on the
hyponormality of T, with polynomial symbol ¢ =g+ h (g,h € H 2) when g divides h (Corollary
2.4). Here, our approach we take is to use a criterion on the contractivity of the inverse of a
lower triangular (finite) Toeplitz matrix via Schur numbers of an induced analytic polynomial -
the quotient of its division (Theorem 2.3).

2. The main result

Let ¢ € L™ be a trigonometric polynomial of the form ¢(z) = Zngm an,z™. If a function k € H>
satisfies p — kp € H, then k necessarily satisfies
N m
(2.1) kZ@z_" - Za,nz_” € H™.
n=1 n=1
If we write k(z) = Y., 2", then from (2.1), co,c1,...,cn—1 are determined uniquely from the
coefficients of ¢ by the recurrence relation:
Chp=Cl=...=CN-—-m-—1 =0
(22) CN—mON = Q—m
CnON + Z;:ﬁ,_m ¢jan—ny; forn=N-m+1,...,N—1.
Thus (2.2) can be written in the following matrix form:
cp=C¢=...=CN-m-1=0;
a1
CN—m GN—-m+1 OAN—-m+42 ... OGN-1 AN a_1
CN—m+1 aN—m+2 ON—-m+3 --- an 0 a—2
CN—1 an 0 o 0 0 A—m

Thus ky(z) := E;V:_A}_m ¢;jz’ is a unique (analytic) polynomial of degree less than N satisfying
@ —kp € H*®. Thus the problem of finding a solution in the set £(¢) is to find an analytic function
k in the closed unit ball of H* interpolating k,. This is exactly the Carathéodory interpolation
problem (cf. [FF, Theorem VIII.1.3]). Thus by the Cowen’s theorem, T, is hyponormal if and

only if the Toeplitz matrix

CN—m 0 . PN 0
CN—m+1 CN—m

CN—m

0
CN—-1 ce oo CN—m+4+1 CN-m]

is a contraction (see [FF], [CCL], [FL1], [Zhu]). In this paper we consider the hyponormality of
T, with trigonometric polynomial symbols ¢ =g+ h (g, h € H™) satisfying that g divides h. The
condition “g divides h” seems to be rigid. However the following lemma shows that if o =g+ h
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is a trigonometric polynomial then we may, without loss of generality, assume that the co-analytic
part g of ¢ divides the analytic part h of ¢ whenever we consider the hyponormality of T,.

Lemma 2.1. ([HKL2, Lemma 2.4]) Let ¢ =g+ h € L, where g and h are analytic polynomials
of degrees m and N (m < N), respectively. If we let

hi=2"Ton-mh —d,
where d is the remainder in the division of 2™ Tgn-mh by g, put @ = §+ﬁ. We then have:

(i) T, is hypgnormal if and only if T is;
(ii) g divides h.

We then have:

Theorem 2.2. Let ¢ = g+ h, where g and h are analytic polynomials of degrees m and N
(m < N), respectively. Suppose g divides f and

h N,

- = ijzj (r:=N—m).

9 =

Let B be a finite Toeplitz matriz of the form

B= br—l br :
; 0
brferl o brfl br

where b; = 0 if j < 0 for notational convenience. Then T, is hyponormal if and only if each
eigenvalue of B*B is greater than or equal to 1.

Proof. Write g(z) :=Y_""  a;27. If k € H* satisfies ¢ — ki € H™, then k satisfies

J=1

(2.4) iaﬁz_j —k i@z_j zm:chz_j € H%
j=1 3=0 j=1

If we write k(z) := Z;io ¢;j2? then

(2.5) 1- (i o) (Jiobjzﬂ) éajzj € H2.

From (2.5) we can see that cob,.a,, = 0. It thus follows that

(2.6) co = 0.

By repeating the argument we can show that
co=c1=...=c¢._1=0.

Thus (2.5) can be written as
o0 ) T o ) m )

(2.7) 1- (Z cjzj) ( bjz73> Zaijz*j € H?
j=r 7=0 j=1

From (2.7) we can again see that (1 — ¢,.b,.)@, = 0, which implies

(2.8) erby = 1.
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In turn we have (¢, 41b, + ¢.b,_1)@, = 0, which implies
cr-i-lbr +cpbr_1 =0.

If we continue to employ the telescoping method for (2.7), then we get the following equations:

CTE =1
Cr—i—lE +crb—1 =0
(2.9) Crgobr + Cry1br_1 + ebr_o =0

CrerflE + Cr+m72br71 +o Crbr7m+1 =0,

(where b; = 0 if j < 0 for notational convenience) or in matrix form

Cr  Criq1 . e c’r+m71_ _E b,rfl . . br7m+1_
0 Cr Cr41 0 br br—l .
(2.10) Do : Do e : =1.
Cr41 . . btl
L0 0 e | LO 0 b, |
If we let
f¢r Cro1 oo oot Crame—1]

0 Cr Cr4l

: T Cri1
0 0 Cr

then by the interpolation argument of (2.3), T, is hyponormal if and only if and C' is a contraction.
But since by (2.10), CB* = I, it follows that

o(B*B) = o((C*C)") = {% aeo(c0),

which implies that T, is hyponormal if and only if and o(B*B) C [1,00), where o(-) denotes the
set of eigenvalues. This gives the result. O

Theorem 2.2 essentially asserts that under the assumption of the theorem, 7., is hyponormal if
and only if

B= brfl br :
; 0
br—m+1 tee br—l br

is an inverse of a contractive matrix C*. Theorem 2.2 also asserts that B is an inverse of a

contractive matrix if and only if all eigenvalues of B* B are greater than or equal to 1. If the size of

the matrix B grows bigger, the calculation of the eigenvalues of B* B might be another heavy task.

On the other hand, we may determine whether B is an inverse of a contractive matrix by using

the Schur numbers of the analytic polynomial f(z) :=b, +b,_12+ -+ by_ppp12™ 1 (b; € C).
For an analytic function fy(z) = f(2) in the open unit disk I, define a sequence {f,} by

Fag1(2) = In(2) — fn(0) . lel<1, mn=0,1,2,....

2(1 = fn(0)fu(2))
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We then define the n-th Schur number s, (f) of f by

Sn(f) = fn(o)
For example, if f(z) = Y07, c,2™ then

C1

B ca(1 — +co+2) +coc?
C 1 —eof?

(1= leol?)? = lea]?

We note that the n-th Schur number of f depends only on the first n coefficients of f. We would
also remark that even though the function f,, (z) is analytic in a neighborhood of 0, the n-th Schur
number s, (f) is well determined whenever none of the numbers |so(f)], |s1(f)|,---,|sn—1(f)] is
equal to 1.

The Carathéodory interpolation problem says that given an analytic polynomial p(z) := ¢o +
c1z+ -+ ¢y 2", find an analytic function k on the open unit disk D such that

so(f) =co, s1(f) s2(f) =

(i) E(]) =cjforj=0,1,...,n (’15(]) denotes the j-th Fourier coefficient of k)
(i) [|k[loo < 1.

I. Schur gave a solution to the Carathéodory interpolation problem:

Schur’s Theorem. ([Sch]) The above Carathéodory interpolation problem is solvable if and only
if f(2):=co+crz+ -+ cp2™ satisfies one of the following two conditions:

(i) [s;(f)I <1 for0<j<m;
(if) There exists ng (0 < ng < n) such that |s;(f)] <1 for 0 <j <mg—1, [sn,(f)| =1 and
the coefficients of f coincide with the first (n + 1) Fourier coefficients of

= wao () (25, () (- (23 () (2800 (£))) ),

where ws(z) == fj;z (Is|] <1).
We then have:

Theorem 2.3. Let b; € C (0<j <r) and b, # 0. If B is a lower triangular Toeplitz matric of
the form

b, 0 0

B= b7—1 b7 ,
0
bO brfl b'r

we put
f(2)=br+br_1z+ -+ boz".

Then B is an inverse of a contractive matrix if and only if f satisfies one of the following conditions:

(1) [so(f) > 1 and|s;(f)] <1 forl1<j<r;
(if) There exists ng (0 < ng < r) such that |so(f)] > 1, |s;(f)] <1 for1 < j < my—1,
[Sno (f)] = 1 and the coefficients of f coincide with the first (r + 1) Fourier coefficients of

f = wso(f)(zwsl(f)(' o (Zwsng—l(f)(zsno (f))) T ))
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Proof. As in the proof of Theorem 2.2, a straightforward calculation shows that the inverse of B
is of the form

kk 0 -+ 0

ki ko :

; o0

|
where the k; satisfy the following equation:
kobr =1

kobr—1 + k1b, =0
(2.11) 00r—1 + K1

kobg + k1b1 + - - - + kb = 0.

Since b, # 0, we have kg # 0. Let ¢(z) := ﬁ Since f(0) = b, # 0, there exists a neighborhood
N of 0 such that f has no zero in M. Thus ¢(z) represents an analytic function on 91. Further,
(2.11) implies that the power series expansion of ¢ in 9N can be written as

q(z) =ko+kiz+ -+ k2" +0(z").
If we define a polynomial

g (2) == ko + b1z + - + kp2",

then we can see that

s;(q) = sj(¢™) forall j=0,---,r
Then the Schur’s solution to the Carathéodory interpolation problem implies that

kk 0O -+ 0
(2.12) Ro= M ko g o contraction
: . .0
k. - ki ko
if and only if ¢(") satisfies one of two conditions of the Schur’s Theorem. Observe that
1 1
(2.13) [s0(a™)| = Iso(@)] = |ko| = 7= = —
[br] 150 (f)]
Let fO = f7 q0 ‘= ¢,

qn(2) — qn(0)
z(l — qn(O)qn(z))

fn+1(z) = fn(Z) -~ fn(O)

= A n > 0).
z(l—fn(O)fn(z)) (n20)

QR+1(Z) =

Then we have

R R i C) B € B ()
SRR (R 776) R e

a0) _q() — (0)

4(0) z(1 - ¢(0)q(2))
(

=€ (2) e .= q(0)q(0)71).

In turn,
Falz) = fl(Z);fl(O) _ eq1(z) — e”q(0)
z(l — f1(0)f1(z)) z(l — equl(O)equl(z))
— b q1(2) —q1(0)
2(1=qi(0)q1(2))

=eqy(2).
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Inductively we can see that f;(z) = e¢q;(z) = ag;(z) for j = 1,2,..., where o := b Therefore
we have
(2.14) s;(f) = asj(q) = as;(¢"), and hence |s;(f)| =|s;(¢")| forj=1,2,....

We now have
s; ("] < 1for 0<j<r <= |so(f)]>1and |s;(f)| <1lfor1<j<n,

which says that the first condition of the Schur’s solution to the Carathéodory interpolation problem
for ¢(") is equivalent to the condition (i) of the theorem. Now consider the case when the condition
(ii) of the theorem holds. Since |s,,(f)| = 1 implies |s,,(¢"™))| = 1, it follows from the Schur’s
Theorem that the Carathéodory interpolation problem for ¢ has a solution if and only if the
coefficients of ¢(") coincide with the first (r + 1) coefficients of the function

g:= Wy (g(r) (Zwsl(q(m(' o (Zwsno,l(q(r))(ano(q(r)))) T ))

Since the coefficients of f and ¢(™) are related by (2.11), we can see that the m coefficients of ¢(™)
coincide with the first m coefficients of g if and only if the m coefficients of f coincide with the first

m coefficients of <. Using the relations so(f) = m and s;(f) = as;(¢") (where a := 22), a
straightforward calculation shows that
q 1
9= 7
Weo () (2Wsy (1) (- (20,1 (1) (285m0 () )
that is,
~ 1
J'= 2 = wa(n (300 () (0, ) (Ema(1)) ).

Therefore we can conclude that the second condition of the Schur’s solution to the Carathéodory
interpolation problem for ¢(") is equivalent to the condition (ii) of the theorem. This completes
the proof. 0

The following corollary provides a complete criterion on the hyponormality of T, with polyno-
mial symbol ¢ =g+ h (g9, h € H?) when g divides h.

Corollary 2.4. Let ¢ =g+ h (9,h € H?) be a trigonometric polynomial such that g divides h.
If% =0b.2"+ -+ b1z + by, put
fz)=b.+b_1z2+---+ br—ma1 2™t (m := the degree of g),

where b; = 0 if j < 0 for notational convenience. If s;(f) denotes the j-th Schur number of f, then
T, is hyponormal if and only if f satisfies one of the following conditions:

() Iso(/)] > 1 and |s;(f)l < 1for 1<j <m—1;
(ii) There exists ng (0 < ng < m — 1) such that |so(f)] > 1, |s;(f)] < 1for 1 <j <mng-—1,
|sne (f)] = 1 and the coefficients of f coincide with the first m Fourier coefficients of

I 1= Wy () (205, (1) (- (20, () (2800 (£)) )

Proof. Remembering that the matrix B in Theorem 2.2 is an inverse of a contractive matrix if and
only if all eigenvalues of B*B are greater than or equal to 1, this follows at once from Theorems
2.2 and 2.3. g

Using Corollary 2.4, we can give a short proof of [HKL2, Lemma 2.6 and Theorem 2.7].
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Corollary 2.5. Let p =g+ gy = Z;n:l a2 + (Z;nzl ajzj) (Z?:o bjzj>. If T, is hyponormal
then

1
EEZ(¥) "
where Z(1) denotes the set of zeros of ¥. Moreover if the equality of (2.15) holds, then T, is
hyponormal if and only if n > m — 1 and
bul? — 1

(2.16) bj_H:bj() forj=n—m+1,...,n—2.
bnflbn

Proof. Let f(2) := by +bp_12 4+ -+ + bp_py12™* (bj = 01if j < 0) and suppose that T, is
hyponormal. If |so(f)| = |b,| = 1, then by Corollary 2.4 we have f(z) = b,, i.e., b; = 0 for
n—m—1<j<n-—1. Observe that b’é: is equal to — 3 ¢c () & Therefore if [so(f)| = [bn| = 1,
then (2.15) and (2.16) are automatically satisfied. Assume instead |b,| # 1, so that s1(f) is well
defined. If T, is hyponormal then by Corollary 2.4,

_ bnfl
s1(f) = ‘1_|bn|2

1
= |b| — —.
bu]

[bn|

bnfl

<1 that
<1, so tha b

1
S T |bn|
‘Ibnl

Again, b’l;;l =— ZEGZ(M & gives (2.15).

For the second assertion we assume that the equality holds in (2.15). The preceding calculation
shows that |si(f)| = 1. By Corollary 2.4, T, is hyponormal if and only if the second condition of
Corollary 2.4 is satisfied by f, i.e., |so(f)| = |bn]| > 1 and the m coefficients of f coincide with the
first m coefficients of
Sog + 281

1+ 350281
oo

= (s +281) 3 _(—1) (55s12)’

Jj=0

=50+ (51 — \50|251)z — (81— |so|251)(%sl)22 + (s1— |so|231)(%sl)223 —

Wso (1) (2Ws,(f)) =

Since (2.15) implies |b,| > 1, we have |b,| > 1 because |by,| # 1. Therefore we can conclude that

bn7j71 _ Ebn,1
= —5081 = 75—
bn—j T a1

which implies (2.16). This completes the proof. O

T, is hyponormal <= n>m—1 and for1<j<m-—2,

We conclude with a revealing example.

Example 2.6. Consider a trigonometric polynomial
4

4
o(z) == Z@z‘j + (Z a;27) (22" — 223 + 327 =32 +4) (ag #0).
j=1 j=1

If we put
f(2) =2 — 224327 — 323,
then in view of Corollary 2.4, we need to check the Schur numbers s;(f) for j = 0,1,2,3. Let
fo(2) = f(z). Then so(f) = fo(0) =2 and
f(z) = fo(0) —2+ 3z — 322
fi(z) = = = CRYEL,
A= Jo)f(2) B+ 4z 627 462
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which implies that s1(f) = f1(0) = 2. Also a straightforward calculation shows that

halz) = 143z —122°

2T T 6, — 1227 1 1828

which implies that so(f) = f2(0) = f%. Similarly, ss(f) = f3(0) = f%. Therefore by Corollary
2.4, we can conclude that T, is hyponormal, regardless of the values of a1, a2, as, a4 (ag #0).

We next consider a trigonometric polynomial

5 5
o'(2) = Z(sz*j + (Z a;j27)(22* —22° + 322 — 32 +4) (a5 #0).
j=1 j=1

If we put
f'(2) :=2— 22+ 32% — 323 + 427,
then a straightforward calculation as in the above shows that s4(f’) = f1(0) = —3. Since |s4(f")|
3 > 1, we can conclude that T, is not hyponormal. This example shows that if ¢ =g+ g¥ (g
o

and ¢ are analytic polynomials) then the hyponormality of T,, depends heavily on the degree of
the co-analytic part g.
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