A CRITERION ON THE HYПОNORMАLITY OF
TOEPLITZ OPERATORS
WITH POLYNOMIAL SYMBOLS VIA SCHUR
NUMBERS

DONG-O KANG AND WOO YOUNG LEE

Abstract. In this paper we give a complete characterization on the hyponormality of the
Toeplitz operators T_{ϕ} with trigonometric polynomial symbols $\phi = g + h$ ($g, h \in H^2$) when
g divides h. This is accomplished by using a criterion on the contractivity of the inverse of a
lower triangular (finite) Toeplitz matrix via Schur numbers of an induced analytic polynomial.

1. Introduction

Let $L^2 \equiv L^2(T)$ be the set of all square-integrable measurable functions on the unit circle $T \equiv \partial \mathbb{D}$
in the complex plane and $H^2 \equiv H^2(T)$ be the corresponding Hardy space. Let $H^\infty \equiv H^\infty(T) :=
L^\infty(T) \cap H^2(T)$, that is, H^∞ is the set of bounded analytic functions on \mathbb{D}. Given $\phi \in L^\infty \equiv L^\infty(T)$,
the Toeplitz operator T_{ϕ} with symbol ϕ is defined by

$$
T_{\phi} g := P(\phi g) \quad (g \in H^2),
$$

where P denotes the orthogonal projection that maps from L^2 onto H^2. Normal Toeplitz operators
were characterized by a property of their symbols in the early 1960’s by A. Brown and P.R. Halmos
[BH] and the hyponormality of Toeplitz operators was completely solved in terms of their symbols

Cowen’s Theorem. ([Co2], [NT]) For $\phi \in L^\infty$, write

$$
E(\phi) := \{ k \in H^\infty : ||k||_{\infty} \leq 1 \text{ and } \phi - k\overline{\phi} \in H^\infty \}.
$$

Then T_{ϕ} is hyponormal if and only if $E(\phi)$ is nonempty.

The elegant and useful theorem of C. Cowen is to recast the operator-theoretic problem of hyponormality
for Toeplitz operators into the problem of finding a solution to a certain functional equation
involving the operator’s symbol. Cowen’s theorem was extensively used in the works [CCL], [Co1],
[Co2], [CL1], [CL2], [FL1], [FL2], [Gu], [GS], [HKL1], [HKL2], [HL1], [HL2], [HL3], [Le], [NT],
[Zhu], and etc to study the hyponormality of Toeplitz operators. When we study hyponormality of
the Toeplitz operator T_{ϕ} with symbol ϕ we may, without loss of generality, assume that $\phi(0) = 0$
because the hyponormality of an operator is invariant under translation by scalars.

If ϕ is a trigonometric polynomial, say $\phi(z) = \sum_{n=-m}^{N} a_n z^n$, where a_{-m} and a_N are nonzero,
then the nonnegative integer N and m denote the analytic and the co-analytic degrees of ϕ. For
arbitrary trigonometric polynomials, K. Zhu [Zhu] has applied Cowen’s criterion and used a method
based on the classical interpolation theorems of Schur to obtain an abstract characterization of
those trigonometric polynomial symbols corresponding to hyponormal Toeplitz operators. In [FL1],
the hyponormality of T_{ϕ} was completely characterized in terms of the Fourier coefficients of ϕ when

2010 Mathematics Subject Classification. 15B05, 47B35, 47B20, 15A60, 47A57
Key words and phrases. Carathéodory interpolation problem, Schur numbers, Toeplitz matrices, Toeplitz operators,
trigonometric polynomials, hyponormal.

This work was supported by Basic Science Research Program through the National Research Foundation of
Korea(NRF) grant funded by the Korea government(MEST)(2011-0001250).
The authors of [HKL2] considered the hyponormality of T_ψ in the closed unit ball of H^2 (only if the Toeplitz matrix $(g, h) \in H^2$) when g divides h and gave an explicit criterion in terms of the Fourier coefficients of the quotient $\psi := \frac{g}{h}$ when ψ enjoys a certain extremal condition: its advantage is that this criterion depends only on ψ regardless the degree of g. But if φ does not satisfy the extremal condition, the criterion cannot be applied. The purpose of this paper is to get a complete criterion on the hyponormality of T_φ with polynomial symbol $\varphi \equiv \overline{g} + h$ ($g, h \in H^2$) when g divides h (Corollary 2.4). Here, our approach we take is to use a criterion on the contractivity of the inverse of a lower triangular (finite) Toeplitz matrix via Schur numbers of an induced analytic polynomial - the quotient of its division (Theorem 2.3).

2. The main result

Let $\varphi \in L^\infty$ be a trigonometric polynomial of the form $\varphi(z) = \sum_{n=-\infty}^{N} a_n z^n$. If a function $k \in H^\infty$ satisfies $\varphi - k\overline{\varphi} \in H^\infty$ then k necessarily satisfies

$$k \sum_{n=1}^{N} a_n z^{-n} - \sum_{n=1}^{m} a_{-n} z^{-n} \in H^\infty.$$

If we write $k(z) = \sum_{n=0}^{\infty} c_n z^n$, then from (2.1), $c_0, c_1, \ldots, c_{N-1}$ are determined uniquely from the coefficients of φ by the recurrence relation:

$$
\begin{align*}
\begin{cases}
c_0 = c_1 = \ldots = c_{N-m-1} = 0, \\
c_{N-m}a_N = a_{-m}, \\
c_n a_N + \sum_{j=N-m}^{n-1} c_j a_{N-n+j} & \text{for } n = N - m + 1, \ldots, N - 1.
\end{cases}
\end{align*}
$$

Thus (2.2) can be written in the following matrix form:

$$
\begin{bmatrix}
c_{N-m} \\
c_{N-m+1} \\
\vdots \\
c_{N-1}
\end{bmatrix} =
\begin{bmatrix}
a_{N-m+1} & \overline{a_{N-m+2}} & \ldots & \overline{a_{N-1}} & \overline{a_N} \\
\overline{a_{N-m+2}} & \overline{a_{N-m+3}} & \ldots & \overline{a_N} & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\overline{a_N} & 0 & \ldots & 0 & \overline{a_{-m}}
\end{bmatrix}^{-1} \begin{bmatrix}
a_{-1} \\
a_{-2} \\
\vdots \\
\overline{a_{-m}}
\end{bmatrix}
$$

Thus $k_p(z) := \sum_{j=N-m}^{N-1} c_j z^j$ is a unique (analytic) polynomial of degree less than N satisfying $\varphi - k_p \overline{\varphi} \in H^\infty$. Thus the problem of finding a solution in the set $E(\varphi)$ is to find an analytic function k in the closed unit ball of H^∞ interpolating k_p. This is exactly the Carathéodory interpolation problem (cf. [FF, Theorem VIII.1.3]). Thus by the Cowen’s theorem, T_φ is hyponormal if and only if the Toeplitz matrix

$$
C =
\begin{bmatrix}
c_{N-m} & 0 & \ldots & \ldots & 0 \\
c_{N-m+1} & c_{N-m} & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
c_0 & \ddots & \ddots & \ddots & 0 \\
c_{N-1} & \ldots & 0 & \ldots & c_{N-m+1}
\end{bmatrix}
$$

is a contraction (see [FF], [CCL], [FL1], [Zhu]). In this paper we consider the hyponormality of T_φ with trigonometric polynomial symbols $\varphi \equiv \overline{g} + h$ ($g, h \in H^\infty$) satisfying that g divides h. The condition “g divides h” seems to be rigid. However the following lemma shows that if $\varphi \equiv \overline{g} + h$
A CRITERION ON THE HYPERSONALITY OF TOEPLITZ OPERATORS

is a trigonometric polynomial then we may, without loss of generality, assume that the co-analytic part \(g \) of \(\varphi \) divides the analytic part \(h \) of \(\varphi \) whenever we consider the hyponormality of \(T_\varphi \).

Lemma 2.1. ([HKL2, Lemma 2.4]) Let \(\varphi \equiv \overline{\varphi} + h \in L^\infty \), where \(g \) and \(h \) are analytic polynomials of degrees \(m \) and \(N \) (\(m \leq N \)), respectively. If we let

\[
\tilde{h} := z^m T_{\overline{z}^{N-m}} h - d,
\]

where \(d \) is the remainder in the division of \(z^m T_{\overline{z}^{N-m}} h \) by \(g \), put \(\tilde{\varphi} := \overline{\varphi} + \tilde{h} \). We then have:

(i) \(T_\varphi \) is hyponormal if and only if \(T_{\tilde{\varphi}} \) is;

(ii) \(g \) divides \(\tilde{h} \).

We then have:

Theorem 2.2. Let \(\varphi \equiv \overline{\varphi} + h \), where \(g \) and \(h \) are analytic polynomials of degrees \(m \) and \(N \) (\(m \leq N \)), respectively. Suppose \(g \) divides \(f \) and

\[
e_\varphi := \sum_{j=0}^r b_j z^j \quad (r := N - m).
\]

Let \(B \) be a finite Toeplitz matrix of the form

\[
B \equiv \begin{bmatrix}
 b_r & 0 & \cdots & 0 \\
 b_{r-1} & b_r & \ddots & \vdots \\
 \vdots & \ddots & \ddots & 0 \\
 b_{r-m+1} & \cdots & b_{r-1} & b_r
 \end{bmatrix},
\]

where \(b_j = 0 \) if \(j < 0 \) for notational convenience. Then \(T_\varphi \) is hyponormal if and only if each eigenvalue of \(B^* B \) is greater than or equal to 1.

Proof. Write \(g(z) := \sum_{j=1}^m a_j z^j \). If \(k \in H^\infty \) satisfies \(\varphi - k\overline{\varphi} \in H^\infty \), then \(k \) satisfies

\[
(2.4) \quad \sum_{j=1}^m \overline{a_j} z^{-j} - k \left(\sum_{j=0}^r b_j z^{-j} \right) \left(\sum_{j=1}^m \overline{a_j} z^{-j} \right) \in H^2.
\]

If we write \(k(z) := \sum_{j=0}^\infty c_j z^j \), then

\[
(2.5) \quad \left(1 - \left(\sum_{j=0}^\infty c_j z^j \right) \left(\sum_{j=0}^r b_j z^{-j} \right) \right) \left(\sum_{j=1}^m \overline{a_j} z^{-j} \right) \in H^2.
\]

From (2.5) we can see that \(c_0 b_r \overline{a_m} = 0 \). It thus follows that

\[
(2.6) \quad c_0 = 0.
\]

By repeating the argument we can show that

\[
(2.7) \quad c_0 = c_1 = \ldots = c_{r-1} = 0.
\]

Thus (2.5) can be written as

\[
(2.8) \quad \left(1 - \left(\sum_{j=r}^\infty c_j z^j \right) \left(\sum_{j=0}^r b_j z^{-j} \right) \right) \left(\sum_{j=1}^m \overline{a_j} z^{-j} \right) \in H^2.
\]

From (2.7) we can again see that \(1 - c_r b_r \overline{a_m} = 0 \), which implies

\[
(2.9) \quad c_r b_r = 1.
\]
In turn we have \((c_{r+1}b_r + c_rb_{r-1})u_m = 0\), which implies
\[c_{r+1}b_r + c_rb_{r-1} = 0.\]

If we continue to employ the telescoping method for (2.7), then we get the following equations:
\[
\begin{aligned}
\begin{bmatrix}
c_r
& c_{r+1} & \cdots & c_{r+m-1} \\
0 & c_r & c_{r+1} & \cdots \\
\vdots & \ddots & \ddots & \ddots \\
0 & \cdots & \cdots & c_{r+1} \\
0 & \cdots & \cdots & c_r
\end{bmatrix}
&=
\begin{bmatrix}
b_r
& b_{r-1} & \cdots & b_{r-m+1} \\
0 & b_r & b_{r-1} & \cdots \\
\vdots & \ddots & \ddots & \ddots \\
0 & \cdots & \cdots & b_{r-1} \\
0 & \cdots & \cdots & b_r
\end{bmatrix}
= I.
\end{aligned}
\]

(2.10)

If we let
\[C := \begin{bmatrix}
c_r
& c_{r+1} & \cdots & c_{r+m-1} \\
0 & c_r & c_{r+1} & \cdots \\
\vdots & \ddots & \ddots & \ddots \\
0 & \cdots & \cdots & c_{r+1} \\
0 & \cdots & \cdots & c_r
\end{bmatrix}, \]
then by the interpolation argument of (2.3), \(T_{\phi}\) is hyponormal if and only if and \(C\) is a contraction. But since by (2.10), \(CB^* = I\), it follows that
\[\sigma(B^*B) = \sigma((C^*C)^{-1}) = \left\{ \frac{1}{\lambda} : \lambda \in \sigma(C^*C) \right\},\]
which implies that \(T_{\phi}\) is hyponormal if and only if and \(\sigma(B^*B) \subset [1, \infty)\), where \(\sigma(\cdot)\) denotes the set of eigenvalues. This gives the result. \(\square\)

Theorem 2.2 essentially asserts that under the assumption of the theorem, \(T_{\phi}\) is hyponormal if and only if
\[B \equiv \begin{bmatrix}
b_r & 0 & \cdots & 0 \\
& b_{r-1} & b_r & \cdots \\
& & \ddots & \ddots & \vdots \\
& & & \ddots & 0 \end{bmatrix}\]
is an inverse of a contractive matrix \(C^*\). Theorem 2.2 also asserts that \(B\) is an inverse of a contractive matrix if and only if all eigenvalues of \(B^*B\) are greater than or equal to 1. If the size of the matrix \(B\) grows bigger, the calculation of the eigenvalues of \(B^*B\) might be another heavy task. On the other hand, we may determine whether \(B\) is an inverse of a contractive matrix by using the Schur numbers of the analytic polynomial \(f(z) := b_r + b_{r-1}z + \cdots + b_{r-m+1}z^{m-1}\) \((b_j \in \mathbb{C})\).

For an analytic function \(f_0(z) \equiv f(z)\) in the open unit disk \(\mathbb{D}\), define a sequence \(\{f_n\}\) by
\[f_{n+1}(z) = \frac{f_n(z) - f_n(0)}{z(1 - f_n(0)f_n(z))}, \quad |z| < 1, \ n = 0, 1, 2, \ldots\]
There exists an inverse of a contractive matrix if and only if \(f \) coincides with the first \(n \)-th Schur number of \(f \). We then define the \(n \)-th Schur number \(s_n(f) \) of \(f \) by

\[s_n(f) := f_n(0). \]

For example, if \(f(z) = \sum_{n=0}^{\infty} c_n z^n \) then

\[s_0(f) = c_0, \quad s_1(f) = \frac{c_1}{1 - |c_0|^2}, \quad s_2(f) = \frac{c_2(1 - |c_0|^2) + c_0 c_1^2}{(1 - |c_0|^2)^2 - |c_1|^2}. \]

We note that the \(n \)-th Schur number of \(f \) depends only on the first \(n \) coefficients of \(f \). We would also remark that even though the function \(f_n(z) \) is analytic in a neighborhood of 0, the \(n \)-th Schur number \(s_n(f) \) is well determined whenever none of the numbers \(|s_0(f)|, |s_1(f)|, \ldots, |s_{n-1}(f)| \) is equal to 1.

The Carathéodory interpolation problem says that given an analytic polynomial \(p(z) := c_0 + c_1 z + \cdots + c_n z^n \), find an analytic function \(k \) on the open unit disk \(\mathbb{D} \) such that

\[
\begin{align*}
(i) & \quad \hat{k}(j) = c_j \text{ for } j = 0, 1, \ldots, n \\
(ii) & \quad \|k\|_{\infty} \leq 1.
\end{align*}
\]

I. Schur gave a solution to the Carathéodory interpolation problem:

Schur's Theorem. ([Sch]) The above Carathéodory interpolation problem is solvable if and only if \(f(z) := c_0 + c_1 z + \cdots + c_n z^n \) satisfies one of the following two conditions:

\[
\begin{align*}
(i) & \quad |s_j(f)| < 1 \text{ for } 0 \leq j \leq n; \\
(ii) & \quad \text{There exists } n_0 \text{ (} 0 \leq n_0 \leq n \text{) such that } |s_j(f)| < 1 \text{ for } 0 \leq j \leq n_0 - 1, \quad |s_{n_0}(f)| = 1 \quad \text{and the coefficients of } f \text{ coincide with the first } (n+1) \text{ Fourier coefficients of } \\
& \quad \tilde{f} := w_{n_0}(f)(zw_{s_1}(f)(\cdots(zw_{s_{n_0-1}}(f)(zs_{n_0}(f))\cdots))),
\end{align*}
\]

where \(w_s(z) := \frac{z + s}{1 + zs} \text{ (}|s| < 1|). \]

We then have:

Theorem 2.3. Let \(b_j \in \mathbb{C} \) (\(0 \leq j \leq r \)) and \(b_j \neq 0 \). If \(B \) is a lower triangular Toeplitz matrix of the form

\[
B = \begin{bmatrix}
b_r & 0 & \cdots & 0 \\
b_{r-1} & b_r & \cdots & \\
& \ddots & \ddots & \\
b_0 & \cdots & b_{r-1} & b_r
\end{bmatrix},
\]

we put

\[f(z) = b_r + b_{r-1}z + \cdots + b_0 z^r. \]

Then \(B \) is an inverse of a contractive matrix if and only if \(f \) satisfies one of the following conditions:

\[
\begin{align*}
(i) & \quad |s_0(f)| > 1 \text{ and } |s_j(f)| < 1 \text{ for } 1 \leq j \leq r; \\
(ii) & \quad \text{There exists } n_0 \text{ (} 0 \leq n_0 \leq r \text{) such that } |s_0(f)| > 1, \quad |s_j(f)| < 1 \text{ for } 1 \leq j \leq n_0 - 1, \quad |s_{n_0}(f)| = 1 \quad \text{and the coefficients of } f \text{ coincide with the first } (r+1) \text{ Fourier coefficients of } \\
& \quad \tilde{f} := w_{n_0}(f)(zw_{s_1}(f)(\cdots(zw_{s_{n_0-1}}(f)(zs_{n_0}(f))\cdots))).
\end{align*}
\]
Proof. As in the proof of Theorem 2.2, a straightforward calculation shows that the inverse of B is of the form

$$
\begin{bmatrix}
 k_0 & 0 & \cdots & 0 \\
 k_1 & k_0 & \cdots & \vdots \\
 \vdots & \vdots & \ddots & \vdots \\
 k_r & \cdots & k_1 & k_0 \\
\end{bmatrix}
$$

where the k_i satisfy the following equation:

$$
\begin{align*}
 k_0 b_r &= 1 \\
 k_0 b_{r-1} + k_1 b_r &= 0 \\
 \vdots & \quad \vdots \\
 k_0 b_0 + k_1 b_1 + \cdots + k_r b_r &= 0.
\end{align*}
$$

(2.11)

Since $b_r \neq 0$, we have $k_0 \neq 0$. Let $q(z) := \frac{1}{f(z)}$. Since $f(0) = b_r \neq 0$, there exists a neighborhood \mathcal{R} of 0 such that f has no zero in \mathcal{R}. Thus $q(z)$ represents an analytic function on \mathcal{R}. Further, (2.11) implies that the power series expansion of q in \mathcal{R} can be written as

$$
q(z) = k_0 + k_1 z + \cdots + k_r z^r + o(z^r).
$$

If we define a polynomial

$$
q^{(r)}(z) := k_0 + k_1 z + \cdots + k_r z^r,
$$

then we can see that

$$
\sigma_j(q) = \sigma_j(q^{(r)}) \quad \text{for all } j = 0, \cdots, r.
$$

Then the Schur’s solution to the Carathéodory interpolation problem implies that

$$
\hat{K} := \begin{bmatrix}
 k_0 & 0 & \cdots & 0 \\
 k_1 & k_0 & \cdots & \vdots \\
 \vdots & \vdots & \ddots & \vdots \\
 k_r & \cdots & k_1 & k_0 \\
\end{bmatrix}
$$

is a contraction

(2.12)

if and only if $q^{(r)}$ satisfies one of two conditions of the Schur’s Theorem. Observe that

$$
|s_0(q^{(r)})| = |s_0(q)| = |k_0| = \frac{1}{|b_r|} = \frac{1}{|s_0(f)|}.
$$

Let $f_0 := f$, $q_0 := q$,

$$
f_{n+1}(z) := \frac{f_n(z) - f_n(0)}{z(1 - f_n(0)f_n(z))} \quad \text{and} \quad q_{n+1}(z) := \frac{q_n(z) - q_n(0)}{z(1 - q_n(0)q_n(z))} \quad (n \geq 0).
$$

Then we have

$$
f_1(z) = \frac{f(z) - f(0)}{z(1 - f(0)f(z))} = \frac{1}{q(z)} - \frac{1}{q(0)}
$$

$$
= \frac{q(0) - q(z)}{z(1 - q(0)q(z))}
$$

$$
= e^{i\theta} q_1(z) \quad (e^{i\theta} := \frac{q(0)}{q(0)q(0)^{-1}}).
$$

In turn,

$$
f_2(z) = \frac{f_1(z) - f_1(0)}{z(1 - f_1(0)f_1(z))} = \frac{e^{i\theta} q_1(z) - e^{i\theta} q(0)}{z(1 - e^{i\theta} q_1(0)e^{i\theta} q_1(z))}
$$

$$
= \frac{q_1(z) - q_1(0)}{z(1 - q_1(0)q_1(z))}
$$

$$
= e^{i\theta} q_2(z).
$$
Inductively we can see that \(f_j(z) = e^{i\theta}q_j(z) = \alpha q_j(z) \) for \(j = 1, 2, \ldots \), where \(\alpha := \frac{h}{g} \). Therefore we have
\[
(2.14) \quad s_j(f) = \alpha s_j(q) = \alpha s_j(q^{(r)}), \quad \text{and hence } |s_j(f)| = |s_j(q^{(r)})| \quad \text{for } j = 1, 2, \ldots.
\]
We now have
\[
|s_j(q^{(r)})| < 1 \quad \text{for } 0 \leq j \leq r \iff |s_0(f)| > 1 \quad \text{and } |s_j(f)| < 1 \quad \text{for } 1 \leq j \leq r,
\]
which says that the first condition of the Schur’s solution to the Carathéodory interpolation problem for \(q^{(r)} \) is equivalent to the condition (i) of the theorem. Now consider the case when the condition (ii) of the theorem holds. Since \(|s_{n_0}(f)| = 1\) implies \(|s_{n_0}(q^{(r)})| = 1\), it follows from the Schur’s Theorem that the Carathéodory interpolation problem for \(q^{(r)} \) has a solution if and only if the coefficients of \(q^{(r)} \) coincide with the first \((r+1)\) coefficients of the function
\[
\tilde{g} := w_{s_0(q^{(r)})}(zw_{s_1(q^{(r)})}(\cdots(zw_{s_{n_0-1}(q^{(r)})}(zs_{n_0}(q^{(r)})))\cdots)).
\]
Since the coefficients of \(f \) and \(q^{(r)} \) are related by (2.11), we can see that the \(m \) coefficients of \(q^{(r)} \) coincide with the first \(m \) coefficients of \(\tilde{g} \) if and only if the \(m \) coefficients of \(f \) coincide with the first \(m \) coefficients of \(\frac{1}{\tilde{g}} \). Using the relations \(s_0(f) = \frac{1}{s_0(q^{(r)})} \) and \(s_j(f) = \alpha s_j(q^{(r)}) \) (where \(\alpha := \frac{h}{g} \)), a straightforward calculation shows that
\[
\tilde{g} = \frac{1}{w_{s_0(f)}(zw_{s_1(f)}(\cdots(zw_{s_{n_0-1}(f})(zs_{n_0}(f)))\cdots))},
\]
that is,
\[
\tilde{f} \equiv \frac{1}{\tilde{g}} = w_{s_0(f)}(zw_{s_1(f)}(\cdots(zw_{s_{n_0-1}(f})(zs_{n_0}(f)))\cdots)).
\]
Therefore we can conclude that the second condition of the Schur’s solution to the Carathéodory interpolation problem for \(q^{(r)} \) is equivalent to the condition (ii) of the theorem. This completes the proof.

The following corollary provides a complete criterion on the hyponormality of \(T_{\varphi} \) with polynomial symbol \(\varphi = \overline{g} + h \) \((g, h \in H^2)\) when \(g \) divides \(h \).

Corollary 2.4. Let \(\varphi \equiv \overline{g} + h \) \((g, h \in H^2)\) be a trigonometric polynomial such that \(g \) divides \(h \).

If \(\frac{h}{g} := b_r z^r + \cdots + b_1 z + b_0 \), put
\[
f(z) := b_r + b_{r-1} z + \cdots + b_{r-m+1} z^{m-1} \quad (m := \text{the degree of } g),
\]
where \(b_j = 0 \) if \(j < 0 \) for notational convenience. If \(s_j(f) \) denotes the \(j \)-th Schur number of \(f \), then \(T_{\varphi} \) is hyponormal if and only if \(f \) satisfies one of the following conditions:

(i) \(|s_0(f)| > 1 \) and \(|s_j(f)| < 1 \) for \(1 \leq j \leq m - 1 \);
(ii) There exists \(n_0 \) \((0 \leq n_0 \leq m - 1)\) such that \(|s_0(f)| > 1\), \(|s_j(f)| < 1\) for \(1 \leq j \leq n_0 - 1\), \(|s_{n_0}(f)| = 1\) and the coefficients of \(f \) coincide with the first \(m \) Fourier coefficients of
\[
\tilde{f} := w_{s_0(f)}(zw_{s_1(f)}(\cdots(zw_{s_{n_0-1}(f})(zs_{n_0}(f)))\cdots)).
\]

Proof. Remembering that the matrix \(B \) in Theorem 2.2 is an inverse of a contractive matrix if and only if all eigenvalues of \(B^*B \) are greater than or equal to 1, this follows at once from Theorems 2.2 and 2.3.

Using Corollary 2.4, we can give a short proof of [HKL2, Lemma 2.6 and Theorem 2.7].
Corollary 2.5. Let $\varphi \equiv \eta + g\psi = \sum_{j=1}^{m} \varpi_j z^{-j} + \left(\sum_{j=1}^{m} a_j z^j \right) \left(\sum_{j=0}^{n} b_j z^j \right)$. If T_φ is hyponormal then

$$
(2.15) \quad \left| \sum_{\xi \in \mathbb{Z}(\psi)} \xi \right| \leq |b_n| - \frac{1}{|b_n|},
$$

where $\mathbb{Z}(\psi)$ denotes the set of zeros of ψ. Moreover if the equality of (2.15) holds, then T_φ is hyponormal if and only if $n \geq m - 1$ and

$$
(2.16) \quad b_{j+1} = b_j \left(\frac{|b_n|^2 - 1}{b_{n-1}b_n} \right) \quad \text{for} \quad j = n - m + 1, \ldots, n - 2.
$$

Proof. Let $f(z) := b_n + b_{n-1}z + \cdots + b_{n-m+1}z^{m-1}$ ($b_j = 0$ if $j < 0$) and suppose that T_φ is hyponormal. If $|s_0(f)| = |b_n| = 1$, then by Corollary 2.4 we have $f(z) = b_n$, i.e., $b_j = 0$ for $n - m - 1 \leq j \leq n - 1$. Observe that $\frac{b_{n-1}}{b_n}$ is equal to $- \sum_{\xi \in \mathbb{Z}(\psi)} \xi$. Therefore if $|s_0(f)| = |b_n| = 1$, then (2.15) and (2.16) are automatically satisfied. Assume instead $|b_n| \neq 1$, so that $s_1(f)$ is well defined. If T_φ is hyponormal then by Corollary 2.4,

$$
|s_1(f)| = \left| \frac{b_{n-1}}{1 - |b_n|^2} \right| \leq 1, \quad \text{so that} \quad \left| \frac{b_{n-1}}{b_n} \right| \leq \left| \frac{1}{|b_n|} - |b_n| \right| = \left| |b_n| - \frac{1}{|b_n|} \right|.
$$

Again, $\frac{b_{n-1}}{b_n} = - \sum_{\xi \in \mathbb{Z}(\psi)} \xi$ gives (2.15).

For the second assertion we assume that the equality holds in (2.15). The preceding calculation shows that $|s_1(f)| = 1$. By Corollary 2.4, T_φ is hyponormal if and only if the second condition of Corollary 2.4 is satisfied by f, i.e., $|s_0(f)| = |b_n| > 1$ and the m coefficients of f coincide with the first m coefficients of

$$
w_{s_0(f)}(z w_{s_1(f)}) = \frac{s_0 + z s_1}{1 - |s_0|^2} \sum_{j=0}^{\infty} \left(-1 \right)^j \left(|s_0| s_1 \right)^j
$$

$$
= s_0 + (s_1 - |s_0|^2 s_1) z - (s_1 - |s_0|^2 s_1)(|s_0|^2 s_1) z^2 + (s_1 - |s_0|^2 s_1)(|s_0|^2 s_1)^2 z^3 - \cdots .
$$

Since (2.15) implies $|b_n| \geq 1$, we have $|b_n| > 1$ because $|b_n| \neq 1$. Therefore we can conclude that

$$
T_\varphi \text{ is hyponormal} \iff n \geq m - 1 \quad \text{and} \quad \frac{b_{n-j-1}}{b_{n-j}} = - |s_0|^2 s_1 = \frac{b_n b_{n-1}}{|b_n|^2 - 1} \quad \text{for} \quad 1 \leq j \leq m - 2,
$$

which implies (2.16). This completes the proof. \qed

We conclude with a revealing example.

Example 2.6. Consider a trigonometric polynomial

$$
\varphi(z) := \sum_{j=1}^{4} \varpi_j z^{-j} + \left(\sum_{j=1}^{4} a_j z^j \right) (2z^4 - 2z^3 + 3z^2 - 3z + 4) \quad (a_4 \neq 0).
$$

If we put

$$
f(z) = 2 - 2z + 3z^2 - 3z^3,
$$

then in view of Corollary 2.4, we need to check the Schur numbers $s_j(f)$ for $j = 0, 1, 2, 3$. Let $f_0(z) = f(z)$. Then $s_0(f) = f_0(0) = 2$ and

$$
f_1(z) = \frac{f(z) - f_0(0)}{z(1 - f_0(0)f(z))} = \frac{-2 + 3z - 3z^2}{-3 + 4z - 6z^2 + 6z^3},
$$

for $j = 1$. The details are omitted.
which implies that \(s_1(f) = f_1(0) = \frac{2}{3} \). Also a straightforward calculation shows that

\[
f_2(z) = \frac{1 + 3z - 12z^2}{-5 + 6z - 12z^2 + 18z^3},
\]

which implies that \(s_2(f) = f_2(0) = -\frac{1}{3} \). Similarly, \(s_3(f) = f_3(0) = -\frac{2}{3} \). Therefore by Corollary 2.4, we can conclude that \(T_\varphi \) is hyponormal, regardless of the values of \(a_1, a_2, a_3, a_4 (a_4 \neq 0) \).

We next consider a trigonometric polynomial

\[
\varphi'(z) := \sum_{j=1}^{5} a_j z^{-j} + \left(\sum_{j=1}^{5} a_j z^j \right) (2z^4 - 2z^3 + 3z^2 - 3z + 4) \quad (a_5 \neq 0).
\]

If we put

\[
f'(z) := 2 - 2z + 3z^2 - 3z^3 + 4z^4,
\]

then a straightforward calculation as in the above shows that \(s_4(f') = f'_4(0) = -3 \). Since \(|s_4(f')| = 3 > 1 \), we can conclude that \(T_{\varphi'} \) is not hyponormal. This example shows that if \(\varphi = \overline{\varphi} + g\psi \) (\(g \) and \(\psi \) are analytic polynomials) then the hyponormality of \(T_\varphi \) depends heavily on the degree of the co-analytic part \(g \).

\[\text{References}\]

Department of Mathematics, Seoul National University, Seoul 151-742, Korea

E-mail address: skylover@snu.ac.kr

Department of Mathematics, Seoul National University, Seoul 151-742, Korea

E-mail address: wylee@snu.ac.kr