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Abstract. In this paper we are concerned with the hyponormality of Toeplitz operators with
matrix-valued circulant symbols. We establish a necessary and sufficient condition for Toeplitz
operators with matrix-valued partially circulant symbols to be hyponormal and also provide a
rank formula for the self-commutator.
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1. Introduction

Throughout this paper, let H denote a separable complex Hilbert space and B(H) denote the set
of all bounded linear operators acting on H. For an operator T' € B(H), T* denotes the adjoint
of T. An operator T' € B(H) is said to be normal if T*T = TT*, unitary if T*T = TT* = 1,
hyponormal if its self-commutator [T*,T] = T*T — TT* is positive semi-definite, and subnormal if
T has a normal extension NN, i.e., there is a Hilbert space K containing H and a normal operator
N on K such that NH C H and T = N|y. For an operator T' € B(H), we write ker T and ranT
for the kernel and the range of T', respectively. For a set M, cl M and M denote the closure and
the orthogonal complement of M, respectively.

We review a few essential facts for (block) Toeplitz operators and (block) Hankel operators
that we will need to begin with, using [Dol], [Do2], [GGK], [Ni], and [Pe]. Let L? = L?(T) be the
set of all square-integrable measurable functions on the unit circle T = 0D in the complex plane
and H? = H?(T) be the corresponding Hardy space. Let H>® = H°°(T) := L°(T)NH?(T), that is,
H® is the set of bounded analytic functions on D. Given ¢ € L = L*(T), the Toeplitz operator
T, and the Hankel operator H, are defined by

Tog:=P(pg) and H,g:=JP(pg) (g€ H?),

where P and P1 denote the orthogonal projections that map from L? onto H? and (H 2)+, respec-
tively, and J denotes the unitary operator on L? defined by J(f)(z) = Zf(%).

Normal Toeplitz operators were characterized by a property of their symbols in the early
1960’s by A. Brown and P.R. Halmos [BH] and the hyponormality of Toeplitz operators was
completely solved in terms of their symbols by C. Cowen [Co2] in 1988.

Cowen’s Theorem ([Co2|, [NT]) For ¢ € L*>°, write
£(p) == {k EH®: [|k|lo <1 and p— kp e HOO}.
Then T, is hyponormal if and only if E(p) is nonempty.
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The elegant and useful theorem of C. Cowen is to recast the operator-theoretic problem of hyponor-
mality for Toeplitz operators into the problem of finding a solution to a certain functional equation
involving the operator’s symbol. Tractable and explicit criteria for the hyponormality of Toeplitz
operators T, with scalar-valued trigonometric polynomials or rational symbols ¢ were established
by many authors (cf. [Col], [Co2], [CL], [FL1], [Gu], [GS], [HK], [HKL1], [HKL2|, [HL1], [HL2],
[HL3], [Le], [NT], [Zhu], and etc.). When we study hyponormality (also, normality and subnormal-
ity) of the Toeplitz operator T, with symbol ¢ we may, without loss of generality, assume that
©(0) = 0 because the hyponormality of an operator is invariant under translation by scalars. We
recall that a function ¢ € L™ is said to be of bounded type (or in the Nevanlinna class) if there are
analytic functions 1,19 € H*°(D) such that

olz) = 1

= for almost all z € T.
Pa(2)
We write, for an inner function 6,

H(0) := H* © 9 H>.
It was known [Ab, Lemma 3] that if ¢ € H? is such that % is of bounded type and ¢(0) = 0 then
we can write

(1.1) © = b,

where 6 is an inner function and b € H(6) satisfies that b and 6 are coprime. If ¢ is a rational
function then by Kronecker’s Lemma [Ni, p.183], # in (1.1) can be chosen as a finite Blaschke
product. It was also [Ab, Lemma 6] known that if T, is hyponormal, if ¢ ¢ H*, and if ¢ or @ is
of bounded type then both ¢ and @ are of bounded type.

We now introduce the notion of block Toeplitz and block Hankel operators. Let M,, denote
the set of n x n complex matrices. For a complex Hilbert space X, let L3 = L3,(T) be the Hilbert
space of X-valued norm square-integrable measurable functions on T and Hg( = Hgg(']l“) be the
corresponding Hardy space. We observe that L2, = L?(T) ® C" and HZ, = H*(T)®@C". If ® is a
matrix-valued function in L3 = L3; (T) (= L>(T) ® M,,) then the block Toeplitz operator Ty
and the block Hankel operator Hg on Hé are defined by

Tof = Po(®f) and Hef = JP,(®f) (f € HE),

where P, and P; denote the orthogonal projections that map from L?Cn onto H%n and (H(%")J',
respectively and J denotes the unitary operator on L2, given by J(g)(z) = zI,g(z) for g € L2,
(I, :==the n x n identity matrix). For ® € L3 , write

(1.2) B(2) == *(2).
An inner (matrix) function © € Hip (= H* ® Myxm) is one satisfying ©*0 = I,,, for almost
all z € T, where M,,«,, denotes the set of n x m complex matrices. The following basic relations
can be easily derived:
(1.3) Ty =Te«, Hy =Hz (®€ L3 );
(1 4) Tew — TeTy = H&;*H\p (‘I),\IJ S L(J)\.;[”);
(15) H@T\y = H<1>\1/7 H‘pq> = T\;Hq) ((I) S L]\O?n7 v e Hﬁn);
(1.6) HiHo — HipHos = HyHo-H. He (O € Hyj isinner, @ € L5y ).
For a matrix-valued function ® = [p;;] € L7 , we say that @ is of bounded type if each

entry ;; is of bounded type and that ® is rational if each entry ;; is a rational function. A
matrix-valued trigonometric polynomial ® € L3; is of the form

N
O(z) = Y A;2 (A; € My),
j=—m

where Ay and A_,,, are called the outer coefficients of ®.
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For matrix-valued functions A(z) = >372  A;27 € L3, and B(2) = Y72 Bz’ € L3, |
we define the inner product of A and B by
(o)
(A,B) = / tr(B*A)dp= > tr(BA;),
T

j=—o00
where tr () means the trace of the matrix and define ||A||2 := (A, A)z. We also define, for A € L3,
[|A]|oo := ess sup,er||A)]| (]| - || means the spectral norm of the matrix).

The following fundamental result is known as the Beurling-Lax-Halmos Theorem (cf. [FF],
[Ni]), which will be useful in the sequel.

The Beurling-Lax-Halmos Theorem. A nonzero subspace M of HZ, is invariant for the shift op-
erator S =Ty, on HZ, (ie., S(M) C M) if and only if M = ©HZ,., where © is an inner matriz
function in HY (m <n).

nxm

From (1.5) we can see that the kernel of a block Hankel operator Hg is an invariant subspace
of the shift operator on HZ,.. Thus, if ker Hg # {0}, then by the Beurling-Lax-Halmos theorem,

ker Hp = OHZ..

for some inner matrix function ©. In general, © need not be square. We note that if © € Hf; is
an inner matrix function then ker Hg~ = @Hén.

Recently, Gu, Hendricks and Rutherford [GHR] characterized the hyponormality of block
Toeplitz operators in terms of their symbols. In particular they showed that if T is a hyponormal
block Toeplitz operator on H(%,L, then ® is normal, i.e., ®*® = ®P*. Their characterization for
hyponormality of block Toeplitz operators resembles the Cowen’s theorem except for an additional
condition — the normality of the symbol.

Lemma 1.1. (Hyponormality of Block Toeplitz Operators) [GHR] For each ® € L3 , let
£(®) := {K EH ¢ ||K|loo <1 and & — KO ¢ H}’V}’}
Then T is hyponormal if and only if ® is normal and E(P) is nonempty.

However, as in the scalar-valued cases, the case of arbitrary matrix-valued symbol ® € Lg; |
though solved by Lemma 1.1, is in practice very difficult. In [GHR] it was shown that, as in
the scalar-valued case, if ® is a matrix-valued trigonometric polynomial with an invertible analytic
outer coefficient then the hyponormality of T can be determined by a matrix-valued Carathéodory
interpolation problem. In [HL4] and [HL3], it was shown that if ® € L37 is a matrix-valued
rational function then the hyponormality of the block Toeplitz operator Ty can be determined by
the matrix-valued tangential or classical Hermite-Fejér interpolation problem.

For a matrix-valued function ¢ € Hsznwv we say that A € sz\/[nxm is a left inner divisor of
® if A is an inner matrix function such that ® = AA for some A € H12\/Imw (m < mn). We also say
that two matrix functions ® € HJQMWT and ¥ € HJQVInXm are left coprime if the only common left
inner divisor of both ® and ¥ is a unitary constant and that ® € HJQWWT and ¥ € HJQWmXT are
right coprime if ® and U are left coprime. Two matrix functions ® and ¥ in HIQ\/In are said to be
coprime if they are both left and right coprime. We remark that if & € H12wn is such that det ® is
not identically zero then any left inner divisor A of ® is square, i.e., A € H 12\/[n. IféeH 12\4n is such
that det ® is not identically zero then we say that A € szwn is a right inner divisor of ® if Ais a

left inner divisor of ®.
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On the other hand, in the preceding, we have remarked that ©® need not be square in the
equality ker Hg = @ch But it was known [GHR] that for ® € L$g a1, » the following statements are
equivalent:

(i) @ is of bounded type;
(ii) ker Hp = ©HZ,, for some square inner matrix function ©;
(iii) ® = A©*, where A € H3j and A and © are right coprime.

For ® € LF; we write
o, =P, 0 HY and &_:= (P ®)" € H} ,
where P, denotes the orthogonal projection from L3, onto H}; . Thus we can write ® = ®* +& .
Suppose ® = [p;;] € H3; is such that ®* is of bounded type. Then we may write ¢;; = 0;;b;;,
where 0;; is an inner function and 60;; and b;; are coprime. Thus if 0 is the least common multiple
of 0;;’s then we can write
(1.7) 1 = [pig) = [0:;55) = 075 = ©A* (O = 0L, Ae H} ).
For brevity, we write I for the identity matrix and
Ir:=(I ((€L™).
For an inner matrix function © € Hy,; , we write
H(O) := HZ, © ©Hg., He:=Hj, ©©H; and Ke:=H; ©Hj ©.
Let & = ®* + &, € L3; be such that ® and ®* are of bounded type. Then in view of (1.7) we
can write
(18) ¢)+ = @1A* and ®_ = @QB*,

where ©; = Iy, with an inner function 6; (i = 1,2), A € K1, and B € Kg,. In particular, if
® € L37 is rational then the 6; are chosen as finite Blaschke products as we observed in (1.1).

Before we proceed we remark that by contrast to the scalar-valued case, ®* may not be of
bounded type even though T4 is hyponormal, ® ¢ H3? a1, and @ is of bounded type. But we have
one-way implication: if Tg is hyponormal and ®* is of ‘bounded type then ® is also of bounded
type (see [GHR]). Thus whenever we deal with hyponormal Toeplitz operators Te with symbols ®
satisfying that both ® and ®* are of bounded type, it suffices to assume that only ®* is of bounded
type.

In this paper we are concerned with the hyponormality of Toeplitz operators with matrix-
valued circulant symbols. In Section 2, we provide some auxiliary lemmas. In Section 3, we prove the
main result which gives a necessary and sufficient condition for Toeplitz operators with matrix-
valued partially circulant symbols to be hyponormal and also provide a rank formula for the
self-commutator.

2. Auxiliary lemmas

If Q is the greatest common left inner divisor of A and © in the representation (1.7):
®=0A"=A"0 (O = Iy for an inner function ),

then ® = QQ; and A = QA; for some inner matrix €; (where €; € H12v1n, because det © is not
identically zero) and some A; € HJZWTL. Therefore if ®* € LF; is of bounded type then we can write

® = A;"Q;, where A; and Q; are left coprime:
in this case, AfQ; is called the left coprime decomposition of ® and similarly, we can write
o =0,A7, where A, and 2, are right coprime (Q; € HIQVITL):

in this case, Q, A} is called the right coprime decomposition of ®.
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In general, it is not easy to check the condition “© and A are right coprime” for the repre-
sentation & = ©A* (O is inner and A € H12\/1n) even though © = Iy for an inner function 0. But if
0 is a finite Blaschke product then we have a more tractable criterion.

Lemma 2.1. If A,© € Hf] (© := Iy with a finite Blaschke product 0) then the following are
equivalent:

(a) A(a) is invertible for each zero o of 0;

(b) A and © are right coprime;

(c) A and © are left coprime.

Remark. Lemma 2.1 extends Lemma 3.10 of [CHL], in which the same result was proved when
A € Hyj is rational.

Proof. (a) = (b): Suppose A(«) is invertible for each zero « of 8. Observe that
he€ ker Hyo- <= AO*h € OHZ, < Ahc OHZ..
Let 6 be a finite Blaschke product of degree d. Then we can write

_ igN z— Q4 i
) = II(=)

where YV m; = d. Thus b € ker Hae- if and only if for each i = 1,2,--- | N

Aio 0 0 0 . 0 " by ]
Ai,1 Ai,O 0 0 - 0 [)171
Ai,z Ais ALO 0 .. 0 [)1'72
' - : : =0,
Aimi—2 Aim—s - - Ao 0 Bim;—2
_Ai,mifl Ai,mi72 e Ai,2 A'L,l Ai,O_ _hi,mi—l_
where " .
A J i J i
Zj:& and f)l]: h (Oé)
7 J! ' J!
Since A(w) is invertible for each zero « of 6, A, ¢ is invertible for each ¢ = 1,2,--- , N. Thus

biszo (i:1a2?"'7N7j:OalaQa"'7mi_1)7

which implies that ker Hyo- C ©HZ,. But since evidently ©HZ, C ker Hae-, it follows that
ker H o~ = ©HZ,, which implies that A and © are right coprime.
(b) = (a) and (b) < (c) : From the proof of [CHL, Lemma 3.10]. O

If ® € LG , then by (1.4),
[T$7Tq)] - H:’I;*Hq)* — H:£H‘I’ + T@*(bi@@* .

Since the normality of @ is a necessary condition for the hyponormality of Ty, the positivity of
Hj.Hg- — Hi Hg is an essential condition for the hyponormality of Tg. Thus it is more convenient
for the argument of the hyponormality of T to define the positivity of H3. He- —Hj Hg as another
notion.

Our proof of Lemma 2.1 relies upon interpolation theory. However, we are informed by the
referee that the proof of Lemma 2.1 can be simplified with the help of the corona theorem for
matrix-valued functions (cf. [Fu], [DD]). The authors are thankful to the referee for the valuable
comment.

Definition 2.2. Let ® € L3; . The pseudo-selfcommutator of Ty is defined by
[Tg,Té]p = Hg,*H@* - H;,Hq).
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Then Ty is said to be pseudo-hyponormal if [T§, Ts), is positive semidefinite.

From the definition, we can see that the pseudo-hyponormality of T4 is independent of the
constant matrix term ®(0). Thus whenever we consider the pseudo-hyponormality of Te we may
assume that ®(0) = 0. Observe that if & € L§; then

[Tg, Tq:,] = [T&‘;, T@]p + T<I>*<I>—<I><I>* .
We thus have
T3 is hyponormal <= Tj is pseudo-hyponormal and ®*® = ®&* ie., & is normal

and (via Theorem 3.3 of [GHR]) Ty is pseudo-hyponormal if and only if £(®) # (.

The following lemma shows that the pseudo-hyponormality of Ty with a bounded type symbol
® gives a relationship between the analytic and co-analytic parts of the symbol:
Lemma 2.3. Let & = > + ;. € Ly;  be such that ® and ®* are of bounded type of the form

d, = ©1 A" (right coprime decomposition) and ®_ = O3B* (right coprime decomposition).

If Ty is pseudo-hyponormal then ©1 = O30 for some inner matrix O.
Proof. Suppose T is pseudo-hyponormal. Then there exists a matrix function K € Hy; such that
[[K|loo <1 and & — K®* € HEp . Thus He- = Hqu+ = T%Hqﬁ, which implies ke1rH<1>jr C

ker Hy+ . Hence 91Hén - @gHén and therefore 04 is a left inner divisor of ©; (cf. [FF, Corollary
IX.2.2]), which gives the result. U

In view of Lemma 2.3, when we study the pseudo-hyponormality of block Toeplitz operator Tg
with symbol ® whose adjoint is of bounded type, we may assume that the symbol & = &* + ¢, €
L3;. is of the form

o, =00,4" and o_ =6OB".

For a closed subspace X of a Hilbert space H, write Py for the orthogonal projection from
‘H onto X.
The following is an elementary observation.

Lemma 2.4. For any inner matrices ©1 and O, in H3; , we have

K@1@2 = IC@1®2 + K:ez.

Proof. For F € Kg,0,, we can write
F= Fl + F2a

where F1 € Hj; ©g and F = P, F. Thus F1 = EO; for some E € Hj; . Since Fy = EO, €
Ko, 0,, it follows that E € Kg,. This proves the inclusion Kg,0, C Keg,02 + Keo,. The reverse
inclusion is obvious. O

The following lemma shows the pull-back property on the symbols of hyponormal block
Toeplitz operators.
Lemma 2.5. Let ® = ®* + &, € Ly be such that ® and ®* are of bounded type of the form
o, =060,A" and ®_ =6OB* (O and O, are inner),
where ©1 and A are right coprime. Put
(2.1) U =0" 40 (Pc,A1)",

where Ay is defined by
014" = A7O,,
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where Ay and ©s are left coprime. Then
(2.2) Ts s pseudo-hyponormal <= Ty is pseudo-hyponormal.
Moreover, if ©1 = Iy, for a finite Blaschke product 01, then in (2.1), Ay can be chosen as A.
Proof. Suppose Tg is pseudo-hyponormal. Then there exists a matrix function K € £(®), i.e.,
BO* — KAO{O* € H}, , which implies that KAO} € H3,; . We thus have

K©j3A, € Hy; , so that, AT (05)"K" € H}, |
where ()7 means the transpose of the matrix. This implies H At ()7 Ter = 0. We thus have
(2.3) K"HZ. C ker Hyr(gr). = 03 H,
where the last equality follows from the observation that A7 and ©1 are right coprime because A;
and O, are left coprime. Thus (2.3) shows that ©1 is a left inner divisor of K7, i.e., KT = 0T (K")T
for some K’ € HZQ\/[", so that K = K’'©,. Thus we have

K € £(9) < BO* — KAO©" € Hy,
< BO* - KO;A,0" € Hy,
< BO* - K'A10" € Hy, .

We write

Al =P Ay and A :=A- Al € H}, ©.
We thus have

K € £(®) < BO* — K'(A} + A])®* € H}, .
But since AY € H3; O, and hence AY©* € H}, , it follows that

K € £(®) <= BO* — K'[Pc,A1]0* € Hy; += K' € £(D),

which gives the result. The second assertion follows at once from the first together with Lemma
2.1. O

Lemma 2.5 guarantees that the analytic part of the symbol ® can be “pulled back” to a
function having the same inner part of the decomposition as that of the co-analytic part without
losing the pseudo-hyponormality. However the ‘coprime’ condition is essential. To see this consider

= 2
& {z—i—Zz 0 }

0 zZ+ 2z
Write
©=0,:=1,, A:=[%7], and B:=[}9].
Then
o, =00,A4" and P_ =6O6B".
Put 3
U := O, (Peo, A)* + BO; = ['z *OQZ ﬂ .

Then Ty is pseudo-hyponormal (because if K := [%Oz 2} then ®* — K®% € H* and ||K||o < 1),

2
whereas Ty is not (because T% is not hyponormal). Note that by Lemma 2.1, A and ©; are not
right coprime because A(0) is not invertible.
If =¢* + &, € Ly; is of bounded type of the form
¢, =0A" and P_ =0OB* (O isinner)
and if ©y is a right inner divisor of O, we write

@@0 = [P)C(_)OB] @6 + @0 [PKGOA]*'
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We then have:
Lemma 2.6. Let & = ¢~ + ¢, € Ly;  be such that ® and ®* are of bounded type of the form
o, =0A" and d_ =0OB",
where © is inner. If Og is a right inner divisor of ©, then
E(P) C E(Pe,)-
In particular, if Te is pseudo-hyponormal then Ty, is pseudo-hyponormal.
Proof. Let © = 0,0 for some inner matrix function ©;. If K € £(®), then BO* — KA®* € H}, ,
or equivalently,
BOj — KA®} € Hy; ©;.
In view of Lemma 2.4, we can write
A= Pco A+ A1 and B:= P, B+ B,

where A; = H10g and By = H30, for some Hy, Hy € Kgo,. We thus have

(P,C(_)OB — K Py, A) oF + (H2 - KHl) € H2, O,
so that

[Po, B] 05 — K [Py, A] ©5 € Hyy

which implies that K € £(®g, ). Thus we have that £(®) C £(Pg,), which gives the result. O

3. Toeplitz operators with matrix-valued circulant symbols

To motivate our interest in the circulant symbols, we recall [FKKL, IC, It] that the characterization
of finite normal Toeplitz matrices states that every finite normal Toeplitz matrix whose eigenvalues
are not collinear must be a generalized circulant, which is a normal matrix of the form

ap e“any ... ... e“aq
ai ao
ay €“an
LaAN . . a1 ap |

We also recall that a trigonometric polynomial p(z) = Zng
if a_j, = e“ay_p41 for every 1 <k < N and w € [0.27), in other words, the compression of T}, to
V{1, z,...,2N} is a generalized circulant matrix. In [FL2], the hyponormality of Toeplitz operators

with circulant polynomial symbols was completely characterized.

N n 2" is called a circulant polynomial

Suppose ¢(z) = Y_p__, axz" is a circulant polynomial. If ¢(0) = 0, then we may write
o=>b+e“nthe L™ (beH(2"M)),
where
HO(6) := {h € H(0) : h(0) = 0}.
More generally, a function ¢ € L is called a circulant function if
o= f+0f (0isinner, f € H"(®)).

We introduce:
Definition 3.1. For ® € L3; , ® is called a (matriz-valued) circulant function if
d=A+0%A,
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where © := I for an inner function 0, A € K& = {B € Kg : B(0) = 0}, and det A is not identically
Z€ro.

On the other hand, if
Y11 .- Pin
¢ = : €Ly,
$n1 .-+ Pnn
then @ is a circulant function if and only if each ¢;; is a circulant function of the form

wij = fij +0fi;  (fij € H(0)).
Since A € K2 we have that &, = A and ®* = ©*A. In particular, if ® is a circulant function then

®* is of bounded type because ®_ = OA* € HIQ\/[n7 so that A* = ©*®_ and ®* = A* + ©A* =
O*Pd_+P_=0*(P_ +09D_).

The authors of [GHR] characterized the hyponormality of Te with symbol @ satisfying
[[@4[l2 = [|®_[[2: for given & = &, + &* € LG , if |[®1[]z = [|®_]|2 and det @, is not iden-
tically zero, then Ty is hyponormal if and only if ®*® = ®®* and ¢, = ¢_K for some inner
matrix function K € Hyg; .

The following lemma says that the hyponormality and the pseudo-hyponormality coincide for
the cases of circulant symbols.

Lemma 3.2. Let V = A+ ©*A € LF; be a circulant function. Then the following statements are
equivalent:

(a) Ty is hyponormal;
(b) Ty is pseudo-hyponormal;
(c) K := (A*)"10*A is the only inner matriz function in E(V).
Proof. (a) = (b): Obvious.
(b) = (c): Suppose Ty is pseudo-hyponormal. Since

[w_|2 = / tr [(OA*)*OA"] dy = / tr AA" dpu = || 0 |5

it follows from the preceding remark that there exists an inner matrix function K € Hjp; such
that A = A*OK. Thus K = (A*)"1©* A because © = Ij.
(c) = (a): Suppose K := (A*)~1O*A is an inner matrix function in £(¥). Then Ty is pseudo-
hyponormal and A = A*©K because © = Iy. Since K is an inner matrix, it follows that
AA* = A"OKK*©"A = A*A,

which implies that A is normal, and hence W is also normal. Therefore Ty is hyponormal. O

We are ready to prove the main theorem, which is a kind of the extension property of the
symbol. It provides a necessary and sufficient condition for the symbol of a hyponormal Toeplitz
operators with circulant symbols to be pulled up without losing the hyponormality.

Theorem 3.3. Let ¥ = A+ ©*A € Ly;  be a circulant function and let ® = ®* + &, € LT be of
the form
b, :=A0g+B and P_:=0AOy+ C,
where Og = Iy, for an inner function Oy and B,C € Kr_o,. Then
Ty is pseudo-hyponormal <= (A*)"'0*A € £(C* + B).

Moreover, if Te is hyponormal then the rank of the self-commutator of Te is computed from the
formula

(3.1 rank [T, Tp] = deg [det ((A*)_l@*A)}7



10 In Sung Hwang, Dong-O Kang and Woo Young Lee

where deg (k) denotes the degree of k - meaning the number of zeros of k (in the open unit disk D)
if k is a finite Blaschke product and oo otherwise.

Proof. Suppose Tg is pseudo-hyponormal. Since © = Iy, we know that
O, 1= AO) + B = (AO* + BO*O}) 090 = (04" + 0¢0B*)" 6,0
O :=0A"0)+C = (A+6,0C*)" 0,0.
Thus it follows that
Do = O [Py, (OA* + ©0B*)]" + [Py (A + 00,C*)] ©*.
But since B € K1.e,, we have that (B, Hy, I.6¢) = 0. Thus BOj € L3, © Hj; I., and hence
©¢B* € Hj; and similarly, ©oC* € H}; . This implies that Py, (000B*) = 0 = Pk, (00,C*),
so that
Bo = O [P (OA™)]" + [Pico (A4)]0* =0 (0A)" + AO* = A+ O0*A=1U.
By Lemma 2.6, Ty is pseudo-hyponormal and £(®) C £(¥). By Lemma 3.2, K := (A*)"'0*A is
the only inner function in £(¥). Since £(®) C £(¥) and E(VP) is a smgleton set, it follows that
E(®) = {K}, so that
¢ — K® = 0jA0" + C* — K(OgA™ + B")
= (054 — (A*)71A5A*) ©* + (C* — (A*)"'©*AB*) € H}; .
Since ©g = Ip,, (3.2) reduces to C* — (A*)"'©*AB* € Hj; because A is normal. But since
K = (A*)7'®*A is an inner function, it follows that (A*)"1©*A € £(C* + B). The converse is
evident from (3.2).

Towards the rank formula (3.1), suppose that Ty is hyponormal. Since K = (A*)710*4 €
E(C* + B), it follows that for some F € Hy; |

(3.2)

(3.3) C* - KB*=F, ie, B=CK-F'K.

We thus have

(3.4) ¢, =9_K — F*K, orequivalently, &_ =& K"+ F*.

Observe by (1.6),

(3.5) [Ty, Ta] = Hys Hoy — Hy- Hox = Hy: Hoy — Hyq: Hixwy = Hys Hicr Hie Ha:

We now claim that
(3.6) ker H;iHK* = ker Hg~.
Towards (3.6), let g € ker H;f)*+ Hp-. We write
g=g1+ Kgy where g; € H(K) and gy € HZ..
We then have
Hj. Hy-g = Hg. JP; (K" (91 + Kg2))
= Hg. J(K"g1)
= TP, (¥ (2) K" ()01 (2))
= IR (2- (DK () - F'(2)K () K (D)01(2)] (by (3.4))
= JPE](2-(2) - C(2) + BEK*(2)) zqr(2)] (by (3.3)
- PnJ(Ig(GA*GO)(E)gl () + B(Z)K*(2) g, (z)) (because JPL = P,.J)
-p, (IgIZGA*@ogl + IgBK*Izgl>
=0A"Oyg1 + Po(BK*g1).
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But since K*g; is co-analytic and B € K, g,, it follows that BK*g; € L2, © ©gHZ.: indeed, for
any d € H%n,
(BK*g1, ©od) = ((©5B)(K"g1), d) = 0.

Therefore we have that P,(BK*g1) € H(0y). Since OA*Ogg1 € OgHZ., it follows from (3.7)
that H;f)erK*g cannot be zero unless g; = 0, which says that g € ker H:IierK* only if g = Kgo.

Consequently, ker Hg. Hiew C ker Hy», which proves (3.6). Thus by (3.5) and (3.6),
rank [Ty, Te) = rank (Hff)erK*)
= dim (Hé & ker Hy, HK*)
= dim (HZ. © ker Hy~)
=dim (Hg. © K Hé.)
= deg (det K),
where the last equality comes from the following observation:
dim (Hg. © K Hg.) = dimker Tx+ = —index Ty = —index Tot
= dim ker Tq = = dim H(det K)
= deg (det K),

where the third equality comes from the well-known Fredholm theory of block Toeplitz operators
since det K # 0 (cf. [Pe, Theorem 3.4.8]). This proves the theorem. O

We give a revealing example.

Example 3.4. Let a;,b; € C for j = 1,2 and consider the matrix-valued trigonometric polynomial

. 2724 27—z 4 22 2272 4 bz 4 agz — 222
o= -2 -1 2 -2 -1 _ 2
1227° + b227" +azz + 22 z2 %+ z zZ4+z
Write
. [zl 42 —2271 -2z z  —2z] 2 0] [z -2z
©o = ®r. = _22_1—1—22 2 4z | 7|22 2 | + 0 22| |22 =z |-

Evidently, @ is a circulant function and T, is normal. Write

A= [Z _2'1, ©:=1,, B:= {_Z @z , C:= [2 bQZ}
2z z asz —z biz =z

By Theorem 3.3, we know that
Ty is pseudo-hyponormal <= (A*)7'0*A € £(C* + B).

Observe that

Thus T is pseudo-hyponormal if and onl

27 bzt 1 [-3 —4][—-2"1 azz! 9
[bzzl 27t } 5 [4 —3] [alzl —z71 € Hir,»
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or equivalently,

or equivalently,

az = =, = 5 = .
2 2 2
In fact, in this case, a straightforward calculation shows that Tg is normal.

The next corollary gives a nice rank formula for the self-commutators of T if the symbol ®
is a circulant polynomial.

Corollary 3.5. Let ® € LF; be a matriz-valued circulant polynomial of the form

D(z) := Z Aj2l =0*A+ A,

j=—r

where © = Iy with 6 := e 2"! for some £ € R and let F denote the analytic matriz polynomial
F(z):= ZAjzjfl.
j=1

If Ty is pseudo-hyponormal then for every zero ¢ of det F' such that |(| > 1, the number 1/ is a
zero of det F' in D of multiplicity greater than or equal to the multiplicity of (. Moreover, if Ty is
hyponormal then the rank of the self-commutator of Tg is given by

(3.8) rank [T, Te] = Zp — Zo\5 — (n(r — 1) — deg(det F))7

where Zp and Z(C\ﬁ are the number of zeros of det F' in D and in C\ D counting multiplicity. In
particular, if the analytic outer coefficient A, is invertible then

(3.9) rank [Ty, Te] = Zp — Z¢\55 -

Proof. Note that A(z) := Zg:l Ajz3. If Tg is pseudo-hyponormal then by Lemma 3.2, K =

(A*)7'©*A is the only inner matrix function in £(®). Thus det K = det A (det @M)’l is a
scalar-valued inner function. Observe

detA z"det F _ _ing  detF
det Odet A emézn(HUzndet B zn(r=Ddet F
Since det K is inner and det F' is a polynomial it follows that det K is a finite Blaschke product.
Therefore for every zero ¢ of det F such that |[¢| > 1, the number 1/ is a zero of det F in D
of multiplicity greater than or equal to the multiplicity of ¢. Towards (3.8) suppose that Tg is
hyponormal. If deg (det F') = m < n(r — 1), then we can write

LIS (2 — )
Zilr=lz=m [T75P(1 - @z)

Since det K is a finite Blaschke product it follows that n(r — 1) —m < p and

(3.10) det K =

det K = e~™¢

(a;j #0).

deg (det K) = Zp — Z¢\5 — (n(r -1) - m).

Thus the formula (3.8) follows from Theorem 3.3. On the other hand, if A, is invertible then
m = n(r — 1), which together with (3.8) gives (3.9). O
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