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Abstract. In this paper we introduce the mean transform of bounded linear operators acting

on a complex Hilbert space and then explore how the mean transform of weighted shifts behaves,
in comparison with the Aluthge transform.

1. Introduction

Let H be an infinite dimensional complex Hilbert space and B(H) be the algebra of bounded
linear operators acting on H. For T ∈ B(H), let T = U |T | be the polar decomposition of T . The

Aluthge transform T̃ of T is defined by T̃ = |T | 12U |T | 12 . This transform was first studied in [1]
and has received much attention in recent years, in particular, in relation to the invariant subspace

problem. The Duggal transform T̃D of T is defined by T̃D = |T |U , which is first referred to in [12].

Clearly, the spectrum of T̃
(
resp. T̃D

)
equals that of T . For α ≡ {αk}∞k=0 a bounded sequence

of positive real numbers (called weights), let Wα ≡ shift(α0, α1, · · · ) : ℓ2(Z+) → ℓ2(Z+) be the
associated (unilateral) weighted shift, defined by Wαek := αkek+1 (all k ≥ 0), where {ek}∞k=0 is the

canonical orthonormal basis in ℓ2(Z+). If W̃α is the Aluthge transform of Wα, then we can see

that W̃α = shift(
√
α0α1,

√
α1α2, · · · ), where we note that each term of weights of W̃α consists of

the geometric mean of two consecutive terms of Wα. In this paper we introduce a new transform:
if T = U |T | is the polar decomposition of T , then we define

T̂ :=
1

2
(U |T |+ |T |U) ≡ 1

2

(
T + T̃D

)
,

which will be called the mean transform of T and then examine various questions on the mean

transform. In particular we will focus on the mean transform of weighted shifts. If Ŵα is

the mean transform of the weighted shift Wα = shift(α0, α1, · · · ), then we can see that Ŵα =
shift

(
α0+α1

2 , α1+α2

2 , · · ·
)
(see Proposition 2.2 below). In comparison with the Aluthge transform

of weighted shifts, the weights of the mean transform of weighted shifts consist of the arithmetic
means of two consecutive weights of Wα. This suggests there would be a significant difference or
resemblance between the Aluthge transform and the mean transform. First of all, we list problems
in which we are interested:

Problem 1.1. Does the spectrum of T̂ equal that of T ?

Problem 1.2. Given the mean transform map T → T̂ , (i) is it (∥·∥ , ∥·∥)− continuous on B(H) ?;
(ii) is it (∥·∥ , SOT )− continuous on B(H) ?

Problem 1.3. For k ≥ 1, if Wα is k-hyponormal, does it follow that the mean transform Ŵα is
also k-hyponormal ?

Problem 1.4. If Wα is subnormal with Berger measure µ, does it follow that Ŵα is subnormal ?

If it does, what is the Berger measure of Ŵα ?
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In Section 2 we provide basic properties of the mean transform T̂ . In Section 3 we consider the
k-hyponormality and the subnormality for the mean transform of the weighted shifts and moreover
the continuity properties of the mean transform.

2. Basic properties of the mean transform T̂

If T̂ is the mean transform of T , then we can easily check that ||T̂ || ≤ ||T || in general. How

about the spectrum of T̂ ? It is well known that the spectrum of the Aluthge transform T̃
(resp. the Duggal transform) equals that of T . We may ask what happens for the spectrum of the

mean transform T̂ of T . We first give an answer for Problem 1.1. For this, we let P ∈ B(H) be
a positive operator and consider an operator matrix T := ( 0 P

0 0 ) ∈ B(H⊕H). Then σ (T ) = {0}.
A direct calculation shows that T = U |T |, with U := ( 0 I

I 0 ) and |T | := ( 0 0
0 P ). We thus have that

T̂ = 1
2 (

0 P
P 0 ). Observe that

T̂ 2 =
1

4

(
P 2 0
0 P 2

)
, and hence σ(T̂ 2) =

{
σ
(
P 2
)

4

}
,

which implies σ(T̂ ) =
{
±σ(P )

2

}
. Thus we obtain:

Example 2.1. Let T := ( 0 P
0 0 ) ∈ B(H⊕H), where P ∈ B(H) is a positive operator. Then we

have
(i) σ(T ) = {0};
(ii) σ(T̂ ) =

{
±σ(P )

2

}
.

Hence, in particular, σ(T ) ̸= σ(T̂ ) if P ̸= 0, while ||T̂ || ≤ ||T ||.

Since the Duggal transform T̃D shares many spectral properties with T (besides σ(T ) = σ(T̃D))

and T̂ = 1
2 (T+ T̃D), one might be tempted to guess that σ(T ) ⊆ σ(T̂ ). But Example 2.1 illustrates

that this is not such a case: consider the case P = I. On the other hand, we note that if we define
d(T ) for the deviation from the normaloid-ness (normaloid means that norm equals spectral radius)
by

d(T ) := ||T || − r(T ) (where r(T ) denotes the spactral radius of T ),

then T in Example 2.1 has d(T̂ ) = 0, i.e., T̂ is normaloid, even though d(T ) = ||P ||. Thus it may

happen that T̂ becomes a nice operator (i.e., normaloid) by filling out something (i.e., r(T̂ ) = r(P )
2 ,

but r(T ) = 0), but by contrast, the Aluthge transform T̃ becomes a nice operator by collapsing

something (i.e., T̃ = 0, but T ̸= 0).

The iterated mean transforms (or mean iterates) of an operator T are the operators T̂ (n) (n ≥ 0) ,

defined by setting T̂ (0) = T and letting T̂ (n+1) be the mean transform of T̂ (n).

We then have:

Proposition 2.2. For a weighted shift Wα, the mean iterates Ŵ
(n)
α are also weighted shifts with

weight sequences

α(n) ≡
{
α
(n)
i

}∞

i=0
:=

{∑n
j=0

(
n
j

)
αi+j

2n

}∞

i=0

, (2.1)

where
(
n
j

)
= n!

j!(n−j)! .
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Proof. We use an induction on n. For n = 1, we note that the polar decomposition of Wα

is U+Dα, where Dα := diag(α0, α1, · · · ) and U+ is the unilateral shift. Thus we have that

Ŵα = 1
2 (U+Dα +DαU+). For n ≥ 0 and the orthonormal basis {en}∞n=0 for ℓ2 (Z+), we can see

that

U+Dα (en) = αnU+ (en) = αnen+1

and

DαU+ (en) = Dα (en+1) = αn+1en+1.

Therefore we have that

Ŵα (en) =
1

2
(U+Dα +DαU+) (en) =

1

2
(αn + αn+1) en+1.

Thus (2.1) holds for n = 1. We assume that (2.1) holds for n = m. Then we have that

α
(m+1)
i =

α
(m)
i + α

(m)
i+1

2
=

∑m
j=0 (

m
j )αi+j

2m +
∑m

j=0 (
m
j )αi+1+j

2m

2
=

∑m
j=0

(
m
j

)
(αi+j + αi+1+j)

2m+1
.

Since
(
m
j

)
+
(

m
j+1

)
=
(
m+1
j+1

)
,
(
m
0

)
=
(
m+1
0

)
and

(
m
m

)
=
(
m+1
m+1

)
, we can see that

m∑
j=0

(
m

j

)
(αi+j + αi+1+j) =

m+1∑
j=0

(
m+ 1

j

)
αi+j .

Thus (2.1) holds for n = m+ 1. This completes the proof. �

Remark 2.3. By Proposition 2.2, we can see that if Wα ≡ shift(α0, α1, · · · ), then the mean

transform Ŵα of Wα is

shift

(
α0 + α1

2
,
α1 + α2

2
, · · ·

)
. (2.2)

An operator T ∈ B(H) is called normal if T ∗T = TT ∗, hyponormal if its self-commutator
[T ∗, T ] := T ∗T − TT ∗ is positive (semi-definite), and subnormal if there exists a normal operator
N on some Hilbert space K ⊇ H such that H is invariant under N and N |H = T . Also T ∈ B(H)
is called quasinormal if T commutes with T ∗T . It is well known that normal ⇒ quasinormal ⇒
subnormal ⇒ hyponormal.

For a weighted shift Wα, it is easy to see that Wα is hyponormal if and only if α0 ≤ α1 ≤ · · · .
Thus by (2.2), the mean transform Ŵα of Wα is hyponormal if and only if 1

2 (αn + αn+1) ≤
1
2 (αn+1 + αn+2) if and only if αn ≤ αn+2 (all n ≥ 0) (in fact, W̃α is hyponormal if and only if Ŵα

is hyponormal, which says that the mean transform often shares some properties with the Aluthge

transform). Hence, if Wα is hyponormal, then the mean transform Ŵα of Wα is hyponormal.
However, the converse is not true in general. For example, if Wα ≡ shift

(
1
2 ,

3
2 ,

1
2 ,

3
2 ,

1
2 ,

3
2 , · · ·

)
,

then Wα is clearly not hyponormal but the mean transform Ŵα = U+ is subnormal.

Proposition 2.4. T̂ = T if and only if T is quasinormal.

Proof. Note that

T̂ = T ⇐⇒ 1
2 (U |T |+ |T |U) = U |T | ⇐⇒ |T |U = U |T |,

which gives the desired result. �
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3. Main results

We first recall that for k ≥ 1, T ∈ B(H) is k-hyponormal if the (k + 1)× (k + 1) matrix
I T ∗ T ∗2 · · · T ∗k

T T ∗T T ∗2

T · · · T ∗k

T

T 2 T ∗T 2 T ∗2

T 2 · · · T ∗k

T 2

...
...

... · · ·
...

T k T ∗2

T k T ∗2

T k · · · T ∗k

T k


is positive semi-definite. The Bram-Halmos characterization of subnormality ([2, III.1.9]) can
be rephrased as follow: T is subnormal if and only if T is k-hyponormal for every k ≥ 1 ([7,
Proposition 1.9]). We recall that the moments of Wα are given as

γn ≡ γn(Wα) :=

{
1, if n = 0

α2
0 · ... · α2

n−1, if n > 0
. (3.1)

It is well known that Wα is subnormal if and only if

γn =

∫
[0,||Wα||2]

sn dµ(s) (all n ≥ 0),

where µ is a probability measure on the interval [0, ||Wα||2] (this measure µ is called the Berger
measure of the subnormal weighted shift Wα) (cf. [2]).

We now consider whether the mean transform Ŵα of Wα preserves k-hyponormality. Below,

we will show that there exists a subnormal weighted shift Wα such that Ŵα is not 2-hyponormal.
For this, we need the following:

Lemma 3.1. ([3]) Let Wα be a weighted shift with the moments {γn}. The following statements
are equivalent:

(i) Wα is k-hyponormal.
(ii) The Hankel matrix

H(k;n) := (γn+i+j−2)
k+1
i,j=1

is positive semi-definite for all n ≥ 0.

Lemma 3.2. (cf. [15]) Let M ≡
(

C B∗

B A

)
be a 2 × 2 operator matrix, where A and C are

square matrices and B is a rectangular matrix. Then

M ≥ 0 ⇐⇒ there exists W such that

 C ≥ 0
B = CW
A ≥ W ∗CW.

For matrices A,B ∈ Mn(C), we let A◦B denote their Schur product, i.e., (A◦B)ij := AijBij (1 ≤
i, j ≤ n). The following result is well known: If A ≥ 0 and B ≥ 0, then A ◦ B ≥ 0 ([14]). For
α ≡ {αn}∞n=0 and β ≡ {βn}∞n=0, the Schur product of α and β is defined by α ◦ β := {αnβn}∞n=0.
Given two weighted shifts Wα and Wβ , their Schur product, denoted by Wα ◦Wβ , is defined by a
weighted shift Wα◦β . It is known [8] that

Wα and Wβ are subnormal =⇒ Wα ◦Wβ is subnormal. (3.2)

Moreover, it is also shown that if Wα and Wβ are k-hyponormal (k ≥ 1), then Wα ◦ Wβ is
also k-hyponormal (cf. [8]). Let a, b, c, d ≥ 0 satisfy ad − bc > 0. Write S(a, b, c, d) :=

shift(α0, α1, α2, · · · ), where αn :=
√

an+b
cn+d (n ≥ 0). We then have:

Lemma 3.3. ([9]) Let a, b, c, d ≥ 0 satisfy ad− bc > 0. Then S(a, b, c, d) is subnormal.
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Recall that the Bergman shift B+ ≡ shift
(√

1
2 ,
√

2
3 ,
√

3
4 , · · ·

)
is subnormal with Berger measure

dµ(s) = ds. From [11, Theorem 2.8], we know that the Aluthge transform B̃+ of the Bergman

shift B+ is subnormal. We may ask whether the mean transform B̂+ of B+ is subnormal. A
direct calculation using the software tool Mathematica [17] shows that

B̂+ ≡ shift

(
2 +

√
3

2
√
6

,
3 + 2

√
2

4
√
3

,
5
√
3 + 4

√
5

20
, · · ·

)
(3.3)

and

H(k;n)(B̂+) ≥ 0 for 0 ≤ k, n ≤ 5. (3.4)

Looking at (3.4), it is natural to conjecture that the mean transform B̂+ of B+ is subnormal. How-

ever, the proof of it is highly nontrivial. Because the weights of B̂+ shown in (3.3) contain several

irrational numbers without a common pattern, so it becomes unwieldy to check H(k;n)(B̂+) ≥ 0
for all k, n ≥ 0.

Conjecture 3.4. The mean transform B̂+ of B+ is subnormal.

However, in Theorem 3.6 below, we will show that the mean transform B̂◦
+ of B◦

+ := B+ ◦B+ ≡
shift

(
1
2 ,

2
3 ,

3
4 , · · ·

)
is subnormal. Moreover, since∫ 1

0

−sn ln sds =

[
−sn+1 ln s

n+ 1

]1
0

+

∫ 1

0

sn

n+ 1
ds =

1

(n+ 1)
2 = γn(B

◦
+) and

∫ 1

0

− ln sds = 1,

(3.5)
we can see that the Berger measure of B◦

+ is − ln sds. We thus have:

Theorem 3.5. The Aluthge transform B̃◦
+ of B◦

+ is subnormal with Berger measure 2(1− s)ds.

Proof. We let B◦
+ = shift(α0, α1, · · · ) and B̃◦

+ = shift(α̃0, α̃1, · · · ). Then for n ≥ 0, we have

α̃n =
√
αnαn+1 =

(√
n+1
n+2

)(√
n+2
n+3

)
and

B̃◦
+ = S(1, 1, 1, 2) ◦ S(1, 2, 1, 3).

By Lemma 3.3, we can see that S(1, 1, 1, 2) and S(1, 2, 1, 3) are subnormal. Thus by (3.2), we have

that the Aluthge transform B̃◦
+ of B◦

+ is subnormal, as desired. Also a straightforward calculation

shows that the Berger measure of B̃◦
+ is 2(1− s)ds. �

We also have:

Theorem 3.6. The mean transform B̂◦
+ of B◦

+ is subnormal.

Proof. We let B̂◦
+ = shift(α̂0, α̂1, · · · ). Then for n ≥ 0, we can see that

α̂n = αn+αn+1

2

= (n+1)(n+3)+(n+2)2

2(n+2)(n+3) = 2(n+2)2−1

2(n+2)2+2(n+2)
=
(√

2(n+2)+1
2(n+2)+2

)(√
2(n+2)−1
n+2

)
=
(√

2n+2
√
2+1

2n+6

)(√
2n+2

√
2−1

n+2

)
=

(√√
2n+2

√
2+1

2n+6

)(√√
2n+2

√
2+1

2n+6

)(√√
2n+2

√
2−1

n+2

)(√√
2n+2

√
2−1

n+2

)
.
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We thus have that

B̂◦
+ = S(

√
2, 2

√
2 + 1, 2, 6) ◦ S(

√
2, 2

√
2 + 1, 2, 6) ◦ S(

√
2, 2

√
2− 1, 1, 2) ◦ S(

√
2, 2

√
2− 1, 1, 2).

Since S(
√
2, 2

√
2 + 1, 2, 6) and S(

√
2, 2

√
2 − 1, 1, 2) are subnormal, it follows from (3.2) that the

mean transform B̂◦
+ of B◦

+ is also subnormal. �

On the other hand, we need not expect that the mean transform shares so many spectral
properties with the Aluthge transform. However, the mean transform has good properties as the
Aluthge transform does, at least, for the cases of weighted shifts. The following example shows
that both the mean transform and the Aluthge transform may make the given operator a more
nicely behaved operator.

Write Ln :=
∨
{eh : h ≥ n} for the invariant subspace obtained by removing the first n vectors

in the canonical orthonormal basis of ℓ2(Z+). For n ≥ 0, we let shift(α0, α1, α2, · · · )|Ln :=
shift(αn, αn+1, αn+2, · · · ).

Example 3.7. For 0 < x ≤ 3
5 , let Wx ≡ shift

(
x, 3

5 ,
2
3 ,

3
4 ,

4
5 , · · ·

)
. Then we have:

(i) Wx is never 2-hyponormal for any x;

(ii) W̃x is 2-hyponormal if and only if 0 < x ≤ 5
9 ≃ 0.5556;

(iii) Ŵx is 2-hyponormal if and only if

0 < x ≤ −111492009+6460
√
1102532089

185820015 ≃ 0.5543.

Proof. We use Lemma 3.1, i.e., Wx is k-hyponormal if and only if for all k ≥ 1 and n ≥ 0,

H(k;n) (Wx) = (γn+i+j−2 (Wx))
k+1
i,j=1 ≥ 0. (3.6)

A direct calculation shows that the Aluthge transform W̃x of Wx is:

W̃x ≡ shift

(√
3x

5
,

√
2

5
,

√
1

2
,

√
3

5
,

√
2

3
,

√
5

7
, · · ·

)
and the mean transform Ŵx of Wx is:

Ŵx ≡ shift

(
x+ 3

5

2
,
3
5 + 2

3

2
,
2
3 + 3

4

2
,
3
4 + 4

5

2
,
4
5 + 5

6

2
,
5
6 + 6

7

2
, · · ·

)
.

(i) Since Wx|L2 is subnormal, Wx is 2-hyponormal if and only if H(2; 0) (Wx) ≥ 0 and
H(2; 1) (Wx) ≥ 0. By the Nested Determinants Test (or Choleski’s Algorithm), we can see
that

H(2; 1) (Wx) ≥ 0 ⇐⇒ detH(2; 1) (Wx) ≥ 0 .

A direct calculation shows that

detH(2; 1) (Wx) = − 481

6250000
x6 < 0.

Therefore Wx can not be 2-hyponormal for any x.

(ii) By Theorem 3.5, we observe that B̃◦
+|L1 ≡ shift

(√
1
2 ,
√

3
5 ,
√

2
3 , · · ·

)
is subnormal. Hence

by (3.6), W̃x is 2-hyponormal if and only if H(2; 0)(W̃x) ≥ 0 and H(2; 1)(W̃x) ≥ 0. By the Nested
Determinants Test again, we note that

H(2; i)(W̃x) ≥ 0 ⇐⇒ detH(2; i)(W̃x) ≥ 0 for i = 0, 1 .

By a direct calculation, we have

detH(2; 1)(W̃x) ≡ 0 and detH(2; 0)(W̃x) ≥ 0 ⇐⇒ 0 < x ≤ 5

9
,

which gives the result.
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(iii) By Theorem 3.6, we can see that B̂◦
+|L1 ≡ shift

(
2
3+

3
4

2 ,
3
4+

4
5

2 ,
4
5+

5
6

2 , · · ·
)
is subnormal. Hence

by (3.6), Ŵx is 2-hyponormal if and only if H(2; 0)(Ŵx) ≥ 0 and H(2; 1)(Ŵx) ≥ 0. Observe that

H(2; i)(Ŵx) ≥ 0 ⇐⇒ detH(2; i)(Ŵx) ≥ 0 for i = 0, 1 .

By a direct calculation, we have

detH(2; 1)(Ŵx) =
9641999505449051

1393140695040000000000
(3 + 5x)6 > 0

and

detH(2; 0)(Ŵx) ≥ 0 ⇐⇒ 0 < x ≤ −111492009 + 6460
√
1102532089

185820015
,

which gives the result. �

The following example shows that the mean transform often behaves well for “bad” operators,
in comparison with the Aluthge transform.

Example 3.8. For Wα ≡ shift (α0, α1, α2, · · · ) with α0 = α1 := 1
2 , let

Ŵα ≡ B◦
+ = shift

(
1

2
,
2

3
,
3

4
, · · ·

)
.

Then we have:

(i) Wα ≡ shift
(
1
2 ,

1
2 ,

5
6 ,

2
3 ,

14
15 ,

11
15 ,

103
105 , · · ·

)
is not hyponormal;

(ii) W̃α is not 2-hyponormal;

(iii) Ŵα is subnormal.

Proof. (i) and (iii): These are clear from the fact that Ŵα = B◦
+ and the following relation:

αn + αn+1

2
=

n+ 1

n+ 2
for all n ≥ 0.

(ii): Observe that

W̃α ≡ shift

(
1

2
,

√
5

12
,

√
5

9
,

√
28

45
,

√
154

225
,

√
1133

1575
, · · ·

)
and

detH(2; 2)(W̃α) = − 889

7346640384
< 0.

Thus by Lemma 3.1, W̃α is not 2-hyponormal. �

The following example shows that for a very nice operator, the mean transform and the Aluthge
transform may behave very similarly. To see this, we examine the first-slot perturbations of the
Schur product of the Bergman shifts.

Example 3.9. For 0 < x ≤ 2
3 , let Wx ≡ shift

(
x, 2

3 ,
3
4 ,

4
5 , · · ·

)
. Then we have

(i) Wx is 2-hyponormal if and only if 0 < x ≤
√

2511
7456 ≃ 0.5803;

(ii) W̃x is 2-hyponormal if and only if 0 < x ≤ 3
5 = 0.6;

(iii) Ŵx is 2-hyponormal if and only if

0 < x ≤ −82300568+1581
√
9824630305

123450852 ≃ 0.6027;

(iv) Wx is 3-hyponormal if and only if 0 < x ≤
√

1267136
4189775 ≃ 0.5499;

(v) W̃x is 3-hyponormal if and only if 0 < x ≤ 5
9 ≃ 0.5556;
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(vi) Ŵx is 3-hyponormal if and only if

0 < x ≤ −762289598222620+527
√
7042237570725981837949717

1143434397333930 ≃ 0.5564.

Proof. We use Lemma 3.1, i.e., Wx is k-hyponormal if and only if for all k ≥ 1 and n ≥ 0,

H(k;n) (Wx) = (γn+i+j−2 (Wx))
k+1
i,j=1 ≥ 0. (3.7)

A direct calculation shows that the Aluthge transform W̃x of Wx is:

W̃α ≡ shift

(√
2x

3
,

√
1

2
,

√
3

5
,

√
2

3
,

√
5

7
, · · ·

)
and the mean transform Ŵx of Wx is:

Ŵx ≡ shift

(
x+ 2

3

2
,
2
3 + 3

4

2
,
3
4 + 4

5

2
,
4
5 + 5

6

2
,
5
6 + 6

7

2
, · · ·

)
.

(i) Since Wx|L1 is subnormal, Wx is 2-hyponormal if and only if H(2; 0) (Wx) ≥ 0. By the
Nested Determinants Test, we can see that

H(2; 0) (Wx) ≥ 0 ⇐⇒ 0 < x ≤
√

2511

7456
.

(ii) By Theorem 3.5, we observe that B̃◦
+|L1 ≡ shift

(√
1
2 ,
√

3
5 ,
√

2
3 ,
√

5
7 , · · ·

)
is subnormal.

Hence by (3.7),

W̃x is 2-hyponormal ⇐⇒ H(2; 0)(W̃x) ≥ 0 ⇐⇒ 0 < x ≤ 3

5
.

(iii) By Theorem 3.6, we can see that B̂◦
+|L1 ≡ shift

(
2
3+

3
4

2 ,
3
4+

4
5

2 ,
4
5+

5
6

2 , · · ·
)
is subnormal. Hence

by (3.7),

Ŵx is 2-hyponormal ⇐⇒ H(2; 0)(Ŵx) ≥ 0 ⇐⇒ 0 < x ≤ −82300568+1581
√
9824630305

123450852 .

(iv) Since Wx|L1 is subnormal, Wx is 3-hyponormal if and only if H(3; 0) (Wx) ≥ 0. Observe
that

H(3; 0)(Wx) ≥ 0 ⇐⇒


1
x2 1 4

9
1
4

1 4
9

1
4

4
25

4
9

1
4

4
25

1
9

1
4

4
25

1
9

4
49

 ≥ 0 .

Thus, by the Nested Determinants Test, we have that

Wx is 3-hyponormal ⇐⇒ 0 < x ≤
√

1267136

4189775
.

(v) Since B̃◦
+|L1 ≡ shift

(√
1
2 ,
√

3
5 ,
√

2
3 , · · ·

)
is subnormal, W̃x is 3-hyponormal if and only if

H(3; 0)(W̃x) ≥ 0. Observe that

H(3; 0)(W̃x) ≥ 0 ⇐⇒


1
x

2
3

1
3

1
5

2
3

1
3

1
5

2
15

1
3

1
5

2
15

2
21

1
5

2
15

2
21

1
14

 ≥ 0 .

Thus, by the Nested Determinants Test, we have that

W̃x is 3-hyponormal ⇐⇒ 0 < x ≤ 5

9
.
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(vi) Since B̂◦
+|L1 ≡ shift

(
2
3+

3
4

2 ,
3
4+

4
5

2 ,
4
5+

5
6

2 , · · ·
)
is subnormal, W̃x is 3-hyponormal if and only

if H(3; 0)(Ŵx) ≥ 0. Note that

H(3; 0)(Ŵx) ≥ 0

⇐⇒


1

(3x+2)2
1
36

289
20736

277729
33177600

1
36

289
20736

277729
33177600

666827329
119439360000

289
20736

277729
33177600

666827329
119439360000

68601562561
17199267840000

277729
33177600

666827329
119439360000

68601562561
17199267840000

13172900043601
4403012567040000

 ≥ 0 .

Thus, by the Nested Determinants Test, we have that

W̃x is 3-hyponormal ⇐⇒ 0 < x ≤ −762289598222620 + 527
√
7042237570725981837949717

1143434397333930
.

This completes the proof. �

Remark 3.10. (i) By Example 3.9, we can see that the mean transform preserves the k-
hyponormality (k = 2, 3), as does the Aluthge transform when Wα|L1 is subnormal with a contin-
uous Berger measure −4s ln sds.

(ii) Example 3.9 provides a positive evidence for the conjecture that the Aluthge and the mean
transforms preserve the subnormality when Wα is subnormal with a continuous Berger measure.

In [13, Corollary 3.11], we showed that for a subnormal weighted shift Wα with two-atomic

Berger measure aδp+(1− a) δq (0 < a < 1, p < q), the Aluthge transform W̃α of Wα is subnormal

if and only if p = 0. We may also ask whether Ŵα is subnormal when Wα is subnormal with a
finite atomic Berger measure. To examine this question, we recall recursively generated weighted
shifts [5], [6]. We briefly recall some key facts about these shifts, specifically the case when there
are two coefficients of recursion. In [16], J. Stampfli proved that given three positive numbers√
a <

√
b <

√
c, it is always possible to find a subnormal weighted shift, denoted W(

√
a,
√
b,
√
c)∧ ,

whose first three weights are
√
a,
√
b and

√
c. In this case, the coefficients of recursion (cf. [5,

Example 3.12], [6, Section 3], [4, Section 1, p. 81]) are given by

φ0 = −ab(c− b)

b− a
and φ1 =

b(c− a)

b− a
, (3.8)

the atoms t0 and t1 are the roots of the equation

t2 − (φ0 + φ1t) = 0, (3.9)

and the densities ρ0 and ρ1 uniquely solve the 2× 2 system of equations{
ρ0 + ρ1 = 1

ρ0t0 + ρ1t1 = α2
0.

(3.10)

Thus we get a two-atomic measure

µ = ρ0δt0 + ρ1δt1 (3.11)

which is the Berger measure of W(
√
a,
√
b,
√
c)∧ .

Example 3.11. We consider a recursively generated weighted shift Wα ≡ W(1,2,3)∧ . Then by
(3.11), we have that the Berger measure of Wα ≡ W(1,2,3)∧ is:

µ :=

(
27

28

)
δ 2

3
+

(
1

28

)
δ10.
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Thus the mean transform Ŵα of W(1,2,3)∧ is:

Ŵα = shift

(
3

2
,
5

2
,
27 + 2

√
201

18
, · · ·

)
.

A straightforward calculation shows that

H(2; 0)(Ŵα) =


1 9

4
225
16

9
4

225
16

25(27+2
√
201)

2

576

225
16

25(27+2
√
201)

2

576

25(134+21
√
41)

2
(27+2

√
201)

2

4167936

 � 0.

Therefore by Lemma 3.1, Ŵα is not 2-hyponormal, so that Ŵα is not subnormal.

In fact, we are tempted to guess that this phenomenon is not accidental. We thus have:

Conjecture 3.12. Let Wα ≡ shift(α0, α1, · · · ) be a subnormal weighted shift with Berger measure

µ = aδp + (1− a) δq (0 < a < 1, 0 ≤ p < q ≤ 1)

and Ŵα be the mean transform of Wα. Then

Ŵα is subnormal ⇐⇒ p = 0. (3.12)

The following provides some evidence that supports Conjecture 3.12.

The implication (⇐) of (3.12) is evident because Wα = shift
(√

(1− a) q,
√
q,
√
q, · · ·

)
, so that

Ŵα = shift

(√
q(

√
1−a+1)
2 ,

√
q,
√
q, · · ·

)
, and hence Ŵα is subnormal with Berger measure

µ̂ =

(
1−

(√
1− a+ 1

2

)2
)
δ0 +

(√
1− a+ 1

2

)2

δq. (3.13)

For the implication (⇒) of (3.12), we note that if Wα is subnormal with Berger measure µ =

aδp + (1− a) δq, then
(

1√
q

)
Wα is subnormal with Berger measure aδ p

q
+ (1− a) δ1. Also if

Ŵα is subnormal, then
(

1√
q

)
Ŵα is also subnormal. But since

(
1√
q

)
Ŵα is the mean transform

of
(

1√
q

)
Wα, it suffices to show that if Wα is a subnormal weighted shift with Berger measure

µ = aδp + (1− a) δ1 (0 < a < 1, 0 ≤ p < 1), then

Ŵα is subnormal =⇒ p = 0 (3.14)

Towards (3.14), we guess that if p ̸= 0 then Ŵα is not 3-hyponormal. Indeed, from a computation
using the software tool Mathematica [17] we find considerable numerical and graphical evidence.

We turn our attention to the continuity properties of the mean transform T̂ . The following
lemma is well known.

Lemma 3.13. ([10]) The Aluthge transform map T → T̃ is (∥·∥ , ∥·∥)− continuous on B(H).

By comparison, we have:

Theorem 3.14. The mean transform map T → T̂ is (∥·∥ , SOT )− continuous on B(H).

10



Proof. First of all, we will show that

the Duggal transform map T → T̃D is (∥·∥ , SOT )− continuous on B(H). (3.15)

To do so, let T0 be arbitrary in B(H) and suppose that a sequence {Tn} ≡ {Un|Tn|} converges in
norm to T0 = U0|T0|. Since the mappings T → T ∗ and (S, T ) → ST are norm continuous, and so

is the mapping P → P
1
2 (P ≥ 0), it follows that

∥|Tn| − |T0|∥ → 0 and
∥∥∥|Tn|

1
2 − |T0|

1
2

∥∥∥→ 0. (3.16)

By Lemma 3.13 and (3.16), we have that∥∥∥|Tn|Un|Tn|
1
2 − |Tn|Un|T0|

1
2

∥∥∥ ≤ ∥|Tn|Un∥
∥∥∥|Tn|

1
2 − |T0|

1
2

∥∥∥→ 0, (3.17)∥∥∥|Tn|Un|Tn|
1
2 − |Tn|

1
2 |T0|

1
2U0|T0|

1
2

∥∥∥ ≤
∥∥∥|Tn|

1
2

∥∥∥∥∥∥|Tn|
1
2Un|Tn|

1
2 − |T0|

1
2U0|T0|

1
2

∥∥∥→ 0 , (3.18)

and ∥∥∥|Tn|
1
2 |T0|

1
2U0|T0|

1
2 − |T0|U0|T0|

1
2

∥∥∥ ≤
∥∥∥|T0|

1
2U0|T0|

1
2

∥∥∥ ∥∥∥|Tn|
1
2 − |T0|

1
2

∥∥∥→ 0. (3.19)

Observe that ∥∥∥|Tn|Un|T0|
1
2 − |T0|U0|T0|

1
2

∥∥∥
=
∥∥∥|Tn|Un|T0|

1
2 − |Tn|Un|Tn|

1
2 + |Tn|Un|Tn|

1
2 − |T0|U0|T0|

1
2

∥∥∥
≤
∥∥∥|Tn|Un|Tn|

1
2 − |Tn|Un|T0|

1
2

∥∥∥+ ∥∥∥|Tn|Un|Tn|
1
2 − |T0|

1
2U0|T0|

1
2

∥∥∥
(3.20)

and ∥∥∥|Tn|Un|Tn|
1
2 − |T0|U0|T0|

1
2

∥∥∥
≤
∥∥∥|Tn|Un|Tn|

1
2 − |Tn|

1
2 |T0|

1
2U0|T0|

1
2

∥∥∥+ ∥∥∥|Tn|
1
2 |T0|

1
2U0|T0|

1
2 − |T0|U0|T0|

1
2

∥∥∥. (3.21)

Thus since {Un|Tn|} converges in norm to U0|T0|, it follows from (3.16) - (3.21) that for each x ∈
ran
(
|T0|

1
2

)
,

∥|Tn|Un|x− |T0|U0|x∥ → 0 . (3.22)

Note that the ran
(
|T0|

1
2

)
is dense in (kerT0)

⊥
. It thus follows from (3.22) that

{
T̃D
n

}
converges

in SOT to T̃D
0 on (kerT0)

⊥
. Since |T0|

1
2 = 0 on kerT0, it follows from (3.16) that∥∥∥T̃D
n

∥∥∥→ 0 on kerT0. (3.23)

Thus we have that
{
T̃D
n

}
converges in SOT to T̃D

0 . This proves (3.15).

Now since T̂ = 1
2

(
T + T̃D

)
, the desired result follows at once from (3.15). �

Remark 3.15. Since the mean transform involves the sum of two operators (or, a “big” pertur-

bation of the operator in the sense that the Duggal transform T̃D shares many spectral properties
with the unperturbed operator T ), we can not expect that the spectral properties of T are preserved

under the mean transform map in general. In spite of it, the hyponormality of T̂ is transmitted
from that of T if T ∈ B(H) belongs to a certain class of operators. To see this, we introduce a new
class of operators.

Let T = U |T | be the polar decomposition of T ∈ B(H). We can easily check that U |T | = |T |U
if and only if T is quasinormal. If instead U2|T | = |T |U2, then T will be said to be in the δ-class,
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denoted by T ∈ δ(H). Clearly, quasinormal operators belong to δ(H). However, we need not
expect that there is a relationship between δ(H) and hyponormal operators. To see this, we let

T =

(
0 I
P 0

)
∈ B(H⊕H) (where P ≥ 0 and P ̸= I).

Then

T =

(
0 I
I 0

)(
P 0
0 I

)
= U |T |

is the polar decomposition of T . But since U2 = I, it follows that U2|T | = |T |U2, i.e., T ∈ δ(H).
However since

T ∗T =

(
P 2 0
0 I

)
and TT ∗ =

(
I 0
0 P 2

)
,

it follows that T is never hyponormal.

We now have:

Theorem 3.16. If T ∈ B(H) is a hyponormal operator in the δ-class, then the mean transform T̂
is hyponormal.

Proof. Let T = U |T | = |T ∗|U be the polar decomposition of T . First of all, we assume that T has
dense range, so that U can be chosen as a unitary operator. Then

|T |U∗ = U∗|T ∗|. (3.24)

If T is hyponormal then TT ∗ ≤ T ∗T , so that

U |T |2U∗ ≤ |T |2, and hence |T |2 ≤ U∗|T |2U. (3.25)

On the other hand, if T ∈ δ(H), then we have that U2|T | = |T |U2. Thus U(U |T |) = |T |U2 implies
U(|T ∗|U) = |T |U2, which gives

U |T ∗| = |T |U. (3.26)

Thus it follows from (3.26) that

U∗|T ∗||T |U = (|T |U∗) (|T |U) = (|T |U∗) (U |T ∗|) = |T ||T ∗| (3.27)

and

U∗|T ||T ∗|U = (|T ∗|U∗) (|T ∗|U) = (|T ∗|U∗) (U |T |) = |T ∗||T |. (3.28)

Thus we have

T̂ ∗T̂ = 1
4

(
|T |2 + |T |U∗|T |U + U∗|T |U |T | + U∗|T |2U

)
= 1

4

(
|T |2 + U∗|T ∗||T |U + U∗|T ||T ∗|U + U∗|T |2U

)
(by (3.24))

≥ 1
4

(
U |T |2U∗ + |T ||T ∗|+ |T ∗||T |+ |T |2

)
(by (3.25), (3.27) and (3.28))

= 1
4

(
U |T |2U∗ + |T |U |T |U∗ + U |T |U∗|T | + |T |2

)
(by (3.24))

= T̂ T̂ ∗,

which says that the mean transform T̂ is hyponormal, as desired.
Suppose instead that T does not have dense range. Since T is hyponormal, and hence kerT

reduces T , we can write

T =

(
T0 0
0 0

)
on (ketT )⊥ ⊕ kerT,

12



where T0 is still hyponormal and evidently, T0 ∈ δ(H). Thus by the preceding argument, T̂0 is
hyponormal. But since

T̂ =

(
T̂0 0
0 0

)
,

it follows that T̂ is hyponormal. This completes the proof. �

Remark 3.17. This paper is only a start on the theory of the mean transform of bounded
linear operators. In particular, in the view of the practical use, it is so hard to find the Aluthge
transform of the given operator because it involves the positive square roots of positive operators,
and it is quite difficult to find the positive square roots in general. By contrast, the mean transform
involves the sums of two operators, so it is easy to get the mean transforms if we know the polar
decompositions of the operators. Thus the mean transform may be useful in the practical use.

Acknowledgment. The authors are deeply indebted to the referee for many helpful comments that
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